Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Water Res ; 256: 121558, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604065

RESUMEN

The biodegradation of antibiotics in aquatic environment is consistently impeded by the widespread presence of heavy metals, necessitating urgent measures to mitigate or eliminate this environmental stress. This work investigated the degradation of sulfamethoxazole (SMX) by the white-rot fungus Phanerochaete chrysosporium (WRF) under heavy metal cadmium ion (Cd2+) stress, with a focus on the protective effects of reduced graphene oxide (RGO). The pseudo-first-order rate constant and removal efficiency of 5 mg/L SMX in 48 h by WRF decrease from 0.208 h-1 and 55.6% to 0.08 h-1 and 28.6% at 16 mg/L of Cd2+, while these values recover to 0.297 h-1 and 72.8% by supplementing RGO. The results demonstrate that RGO, possessing excellent biocompatibility, effectively safeguard the mycelial structure of WRF against Cd2+ stress and provide protection against oxidative damage to WRF. Simultaneously, the production of manganese peroxidase (MnP) by WRF decreases to 38.285 U/L in the presence of 24 mg/L Cd2+, whereas it recovers to 328.51 U/L upon the supplement of RGO. RGO can induce oxidative stress in WRF, thereby stimulating the secretion of laccase (Lac) and MnP to enhance the SMX degradation. The mechanism discovered in this study provides a new strategy to mitigate heavy metal stress encountered by WRF during antibiotic degradation.


Asunto(s)
Biodegradación Ambiental , Cadmio , Grafito , Phanerochaete , Sulfametoxazol , Phanerochaete/metabolismo , Sulfametoxazol/metabolismo , Cadmio/metabolismo , Contaminantes Químicos del Agua/metabolismo
2.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631280

RESUMEN

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Imagen por Resonancia Magnética , Compuestos de Manganeso , Óxidos , Fotoquimioterapia , Microambiente Tumoral , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Microambiente Tumoral/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Óxidos/química , Óxidos/farmacología , Humanos , Cobre/química , Cobre/farmacología , Tamaño de la Partícula , Nanoestructuras/química , Antineoplásicos/farmacología , Antineoplásicos/química , Fototerapia , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Propiedades de Superficie , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Animales
3.
J Hazard Mater ; 470: 134125, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565016

RESUMEN

The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.


Asunto(s)
Reactores Biológicos , Dicloruros de Etileno , Membranas Artificiales , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Dicloruros de Etileno/metabolismo , Petróleo/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Eliminación de Residuos Líquidos/métodos
4.
Environ Sci Technol ; 58(12): 5472-5482, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466321

RESUMEN

The fate of selected UV filters (UVFs) was investigated in two soil aquifer treatment (SAT) systems, one supplemented with a reactive barrier containing clay and vegetable compost and the other as a traditional SAT reference system. We monitored benzophenone-3 (BP-3) and its transformation products (TPs), including benzophenone-1 (BP-1), 4,4'-dihydroxybenzophenone (4DHB), 4-hydroxybenzophenone (4HB), and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB), along with benzophenone-4 (BP-4) and avobenzone (AVO) in all involved compartments (water, aquifer sediments, and biofilm). The reactive barrier, which enhances biochemical activity and biofilm development, improved the removal of all detected UVFs in water samples. Among monitored UVFs, only 4HB, BP-4, and AVO were detected in sediment and biofilm samples. But the overall retained amounts were several orders of magnitude larger than those dissolved. These amounts were quantitatively reproduced with a specifically developed simple analytical model that consists of a mobile compartment and an immobile compartment. Retention and degradation are restricted to the immobile water compartment, where biofilm absorption was simulated with well-known compound-specific Kow values. The fact that the model reproduced observations, including metabolites detected in the biofilm but not in the (mobile) water samples, supports its validity. The results imply that accumulation ensures significant biodegradation even if the degradation rates are very low and suggest that our experimental findings for UVFs and TPs can be extended to other hydrophobic compounds. Biofilms act as accumulators and biodegraders of hydrophobic compounds.


Asunto(s)
Suelo , Contaminantes Químicos del Agua , Porosidad , Protectores Solares/análisis , Benzofenonas/química , Agua/química , Contaminantes Químicos del Agua/análisis
5.
Environ Toxicol Chem ; 43(5): 1012-1029, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415986

RESUMEN

The use of novel high-throughput sequencing (HTS) technologies to examine the responses of natural multidomain microbial communities to scrubber effluent discharges to the marine environment is still limited. Thus, we applied metabarcoding sequencing targeting the planktonic unicellular eukaryotic and prokaryotic fraction (phytoplankton, bacterioplankton, and protozooplankton) in mesocosm experiments with natural microbial communities from a polluted and an unpolluted site. Furthermore, metagenomic analysis revealed changes in the taxonomic and functional dominance of multidomain marine microbial communities after scrubber effluent additions. The results indicated a clear shift in the microbial communities after such additions, which favored bacterial taxa with known oil and polycyclic aromatic hydrocarbons (PAHs) biodegradation capacities. These bacteria exhibited high connectedness with planktonic unicellular eukaryotes employing variable trophic strategies, suggesting that environmentally relevant bacteria can influence eukaryotic community structure. Furthermore, Clusters of Orthologous Genes associated with pathways of PAHs and monocyclic hydrocarbon degradation increased in numbers at treatments with high scrubber effluent additions acutely. These genes are known to express enzymes acting at various substrates including PAHs. These indications, in combination with the abrupt decrease in the most abundant PAHs in the scrubber effluent below the limit of detection-much faster than their known half-lives-could point toward a bacterioplankton-initiated rapid ultimate biodegradation of the most abundant toxic contaminants of the scrubber effluent. The implementation of HTS could be a valuable tool to develop multilevel biodiversity indicators of the scrubber effluent impacts on the marine environment, which could lead to improved impact assessment. Environ Toxicol Chem 2024;43:1012-1029. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Microbiota/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Hidrocarburos Policíclicos Aromáticos , Bacterias/genética , Biodegradación Ambiental , Agua de Mar/microbiología , Petróleo , Plancton/genética
6.
Chemosphere ; 352: 141359, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309604

RESUMEN

Dibutyl phthalate (DBP) is a widely used plasticizer to make plastic flexible and long-lasting. It is easily accessible in a broad spectrum of environments as a result of the rising level of plastic pollution. This compound is considered a top-priority toxicant and persistent organic pollutant by international environmental agencies for its endocrine disruptive and carcinogenic propensities. To mitigate the DBP in the soil, one DBP-degrading bacterial strain was isolated from a plastic-polluted landfill and identified as Paenarthrobacter ureafaciens PB10 by 16S rRNA gene sequence-based homology. The strain was found to develop a distinct transparent halo zone around grown colonies on an agar plate supplemented with DBP. The addition of yeast extract (100 mg/L) as a nutrient source accelerated cell biomass production and DBP degradation rate; however, the presence of glucose suppressed DBP degradation by the PB10 strain without affecting its ability to proliferate. The strain PB10 was efficient in eliminating DBP under various pH conditions (5.0-8.0). Maximum cell growth and degradation of 99.49% at 300 mg/L DBP were achieved in 72 h at the optimized mineral salt medium (MS) conditions of pH 7.0 and 32 °C. Despite that, when the concentration of DBP rose to 3000 mg/L, the DBP depletion rate was measured at 79.34% in 72 h. Some novel intermediate metabolites, like myristic acid, hexadecanoic acid, stearic acid, and the methyl derivative of 4-hydroxyphenyl acetate, along with monobutyl phthalate and phthalic acid, were detected in the downstream degradation process of DBP through GC-MS profiling. Furthermore, in synchronization with native soil microbes, this PB10 strain successfully removed a notable amount of DBP (up to 54.11%) from contaminated soil under microcosm study after 10 d. Thus, PB10 has effective DBP removal ability and is considered a potential candidate for bioremediation in DBP-contaminated sites.


Asunto(s)
Dibutil Ftalato , Micrococcaceae , Ácidos Ftálicos , Dibutil Ftalato/metabolismo , Biodegradación Ambiental , Ácido Mirístico , ARN Ribosómico 16S/genética , Ácidos Ftálicos/metabolismo , Suelo
7.
Water Res ; 252: 121226, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309071

RESUMEN

The extensive exploration of antibiotic biodegradation by antibiotic-degrading bacteria in biological wastewater treatment processes has left a notable gap in understanding the behavior of these bacteria when exposed to antibiotics and the initiation of biodegradation processes. This study, therefore, delves into the adhesive behavior of Paraclostridium bifermentans, isolated from a bioreactor treating ciprofloxacin-laden wastewater, towards ciprofloxacin molecules. For the first time, this behavior is observed and characterized through quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy. The investigation further extends to identify key regulatory factors and mechanisms governing this adhesive behavior through a comparative proteomics analysis. The results reveal the dominance of extracellular proteins, particularly those involved in nucleotide binding, hydrolase, and transferase, in the adhesion process. These proteins play pivotal roles through direct chemical binding and the regulation of signaling molecule. Furthermore, QCM-D measurements provide evidence that transferase-related signaling molecules, especially tyrosine, augment the binding between ciprofloxacin and transferases, resulting in enhance ciprofloxacin removal by P. bifermentans (increased by ∼1.2-fold). This suggests a role for transferase-related signaling molecules in manipulating the adhesive behavior of P. bifermentans towards ciprofloxacin. These findings contribute to a new understanding of the prerequisites for antibiotic biodegradation and offer potential strategies for improving the application of antibiotic-degrading bacteria in the treatment of antibiotics-laden wastewater.


Asunto(s)
Antibacterianos , Ciprofloxacina , Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Aguas Residuales , Biodegradación Ambiental , Bacterias/metabolismo , Proteínas , Transferasas/metabolismo
8.
Sci Total Environ ; 922: 171209, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38408657

RESUMEN

The simultaneous application of in situ capping and electro-enhanced biodegradation may be a suitable method for ensuring the feasibility and safety of reusing abandoned coking sites. However, the capping layer type and applied electric field pattern may affect the efficiency of sequestering and removing pollutants. This study investigated changes in electric current, soil moisture content and pH, polycyclic aromatic hydrocarbon (PAH) concentration, bacterial number, and microbial community structure and metabolic function during soil remediation at abandoned coking plant sites under different applied electric field patterns and barrier types. The results indicated that polarity-reversal electric field was more conducive to maintaining electric current, soil properties, resulting in higher microbial number, community diversity, and functional gene abundance. At 21d, the mean PAH concentrations in contaminated soil, the capping layer's clean soil and barrier were 78.79, 7.56, and 1.57 mg kg-1 lower than those with a unidirectional electric field, respectively. The mean degradation rate of PAHs in the bio-barrier was 10.12 % higher than that in the C-Fe barrier. In the experiment combining a polarity-reversal electric field and a bio-barrier, the mean PAH concentrations in contaminated soil and the capping layer were 706.68 and 27.15 mg kg-1 lower than those in other experiments, respectively, and no PAHs were detected in the clean soil, demonstrating that the combination of the polarity-reversal electric field and the bio-barrier was effective in treating soil at abandoned coking plant sites. The established method of combining in situ capping with electro-enhanced biodegradation will provide technical support for the treatment and reuse of heavily PAH-contaminated soil at abandoned coking plant sites.


Asunto(s)
Coque , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Microbiología del Suelo , Biodegradación Ambiental , Suelo/química
9.
Chemosphere ; 352: 141388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346507

RESUMEN

Unconventional substrata like activated carbon or clay beads can enhance micropollutant removal in constructed wetlands. However, hydroponic materials widely used in horticulture have not yet been investigated for their potential to remove micropollutants. In addition, potential effect of plant species other than reeds on micropollutant removal has not been sufficiently investigated. Therefore, a nature-based, post-treatment technology called improved vertical flow constructed wetlands (CW) with hydroponic (H) materials (CWH) was designed by employing cocopeat and mineral with ornamental plant species syngonium and periwinkle. A mesocosm CWH system was tested in a climate-controlled greenhouse for 550 days for its potential to remove frequently found micropollutants in wastewater, namely sulfamethoxazole, trimethoprim, diclofenac, erythromycin, carbamazepine, pyrimethanil, tebuconazole, pymetrozine, atrazine and DEET from wastewater effluent. The main focus was to understand the contribution of sorption, microbial degradation and phytoremediation on the removal of those micropollutants. It was found that cocopeat showed a capacity for sorbing micropollutants, ranging between 80 and 99% of the compounds added while less than 10% sorption was observed for mineral wool. Additionally moderate to high biological removal (25-60 µg of compound/kg dry weight of substratum/day) for most of the studied compounds was observed in all the cocopeat biotic groups. Furthermore, it could be stated that plants appear not to be an important factor for micropollutant removal. The observed differences in removal between the cocopeat and mineral wool systems could be explained by the difference in physico-chemical properties of the substrata, where cocopeat has a higher water holding capacity, moisture content, nutrient and organic matter content, and a higher intraparticle porosity and surface area. This study revealed notable removal of persistent and mobile micropollutants in cocopeat CWH, namely carbamazepine (80-86%) and diclofenac (97-100%). These results demonstrate the potential beneficial use of hydroponic materials as substratum in more advanced constructed wetlands designed to remove micropollutants.


Asunto(s)
Compuestos de Calcio , Silicatos , Aguas Residuales , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Humedales , Hidroponía , Diclofenaco , Contaminantes Químicos del Agua/análisis , Plantas , Carbamazepina
10.
Arch Microbiol ; 206(3): 98, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351169

RESUMEN

Hydrocarbons are considered as one of the most common and harmful environmental pollutants affecting human health and the environment. Bioremediation as an environmentally friendly, highly efficient, and cost-effective method in remediating oil-contaminated environments has been interesting in recent decades. In this study, hydrocarbon degrader bacterial strains were isolated from the highly petroleum-contaminated soils in the Dehloran oil field in the west of Iran. Out of 37 isolates, 15 can grow on M9 agar medium that contains 1.5 g L-1 of crude oil as the sole carbon source. The morphological, biochemical, and 16SrRNA sequencing analyses were performed for the isolates. The choosing of the isolates as the hydrocarbon degrader was examined by evaluating the efficacy of their crude oil removal at a concentration of 10 g L-1 in an aqueous medium. The results showed that five isolates belonging to Pseudomonas sp., Pseudomonas oryzihabitans, Roseomonas aestuarii, Pantoea agglomerans, and Arthrobacter sp. had a hyper hydrocarbon-degrading activity and they could remove more than 85% of the total petroleum hydrocarbon (TPH) after 96 h. The highest TPH removal of about 95.75% and biodegradation rate of 0.0997 g L-1 h-1 was observed for P. agglomerans. The gas chromatography-mass spectroscopy (GC-MS) analysis was performed during the biodegradation process by P. agglomerans to detect the degradation intermediates and final products. The results confirmed the presence of intermediates such as alcohols and fatty acids in the terminal oxidation pathway of alkanes in this biodegradation process. A promising P. agglomerans NB391 strain can remove aliphatic and aromatic hydrocarbons simultaneously.


Asunto(s)
Hidrocarburos Aromáticos , Pantoea , Petróleo , Contaminantes del Suelo , Humanos , Pantoea/genética , Pantoea/metabolismo , Petróleo/metabolismo , Irán , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo , Biodegradación Ambiental , Suelo/química , Microbiología del Suelo
11.
Environ Pollut ; 344: 123299, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185355

RESUMEN

Considering the interference of the complexity of underground environment to the bioremediation scheme, an evaluation model for bioremediation technology in the soil source area of oil contaminated sites was established. On the basis of traditional CDE model, a compartment model was coupled to express the adsorption and degradation process, and the spatial expression of biodegradation was enriched through environment-dependent factors. The visualization of the model was achieved based on COMSOL Multiphysics software platform. Two sets of indoor sandbox experiments on natural attenuation and bioaugmentation were carried out for 120 days to verify the prediction function of the model. The results showed that bioaugmentation greatly improved the remediation effect. Petroleum hydrocarbons with different occurrence states exhibited different spatial distributions under the influence of environmental factors. The prediction accuracy evaluation results of total petroleum hydrocarbons, bio available hydrocarbons and non extractable hydrocarbons showed excellent fitting degree, and the model had a good prediction function for petroleum hydrocarbon in soil under different bioremediation scenarios. This model can be used to screen bioremediation technical schemes, prevent pollution and assess risk of petroleum hydrocarbon contaminated sites.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Petróleo/metabolismo , Suelo , Contaminantes del Suelo/análisis , Microbiología del Suelo , Hidrocarburos/metabolismo
12.
Microbiol Res ; 280: 127600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211497

RESUMEN

Aminophosphonates, like glyphosate (GS) or metal chelators such as ethylenediaminetetra(methylenephosphonic acid) (EDTMP), are released on a large scale worldwide. Here, we have characterized a bacterial strain capable of degrading synthetic aminophosphonates. The strain was isolated from LC/MS standard solution. Genome sequencing indicated that the strain belongs to the genus Ochrobactrum. Whole-genome classification using pyANI software to compute a pairwise ANI and other metrics between Brucella assemblies and Ochrobactrum contigs revealed that the bacterial strain is designated as Ochrobactrum sp. BTU1. Degradation batch tests with Ochrobactrum sp. BTU1 and the selected aminophosphonates GS, EDTMP, aminomethylphosphonic acid (AMPA), iminodi(methylene-phosphonic) (IDMP) and ethylaminobis(methylenephosphonic) acid (EABMP) showed that the strain can use all phosphonates as sole phosphorus source during phosphorus starvation. The highest growth rate was achieved with AMPA, while EDTMP and GS were least supportive for growth. Proteome analysis revealed that GS degradation is promoted by C-P lyase via the sarcosine pathway, i.e., initial cleavage at the C-P bond. We also identified C-P lyase to be responsible for degradation of EDTMP, EABMP, IDMP and AMPA. However, the identification of the metabolite ethylenediaminetri(methylenephosphonic acid) via LC/MS analysis in the test medium during EDTMP degradation indicates a different initial cleavage step as compared to GS. For EDTMP, it is evident that the initial cleavage occurs at the C-N bond. The detection of different key enzymes at regulated levels, form the bacterial proteoms during EDTMP exposure, further supports this finding. This study illustrates that widely used and structurally more complex aminophosphonates can be degraded by Ochrobactrum sp. BTU1 via the well-known degradation pathways but with different initial cleavage strategy compared to GS.


Asunto(s)
Ochrobactrum , Organofosfonatos , Fentermina/análogos & derivados , Ochrobactrum/genética , Ochrobactrum/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Biodegradación Ambiental , Glifosato , Organofosfonatos/metabolismo , Fósforo/metabolismo
13.
Microb Cell Fact ; 23(1): 20, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218907

RESUMEN

The increasing interest in environmental protection laws has compelled companies to regulate the disposal of waste organic materials. Despite efforts to explore alternative energy sources, the world remains heavily dependent on crude petroleum oil and its derivatives. The expansion of the petroleum industry has significant implications for human and environmental well-being. Bioremediation, employing living microorganisms, presents a promising approach to mitigate the harmful effects of organic hydrocarbons derived from petroleum. This study aimed to isolate and purify local yeast strains from oil-contaminated marine water samples capable of aerobically degrading crude petroleum oils and utilizing them as sole carbon and energy sources. One yeast strain (isolate B) identified as Candida tropicalis demonstrated high potential for biodegrading petroleum oil in seawater. Physiological characterization revealed the strain's ability to thrive across a wide pH range (4-11) with optimal growth at pH 4, as well as tolerate salt concentrations ranging from 1 to 12%. The presence of glucose and yeast extract in the growth medium significantly enhanced the strain's biomass formation and biodegradation capacity. Scanning electron microscopy indicated that the yeast cell diameter varied based on the medium composition, further emphasizing the importance of organic nitrogenous sources for initial growth. Furthermore, the yeast strain exhibited remarkable capabilities in degrading various aliphatic and aromatic hydrocarbons, with a notable preference for naphthalene and phenol at 500 and 1000 mg/l, naphthalene removal reached 97.4% and 98.6%, and phenol removal reached 79.48% and 52.79%, respectively. Optimization experiments using multi-factorial sequential designs highlighted the influential role of oil concentration on the bioremediation efficiency of Candida tropicalis strain B. Moreover, immobilized yeast cells on thin wood chips demonstrated enhanced crude oil degradation compared to thick wood chips, likely due to increased surface area for cell attachment. These findings contribute to our understanding of the potential of Candida tropicalis for petroleum oil bioremediation in marine environments, paving the way for sustainable approaches to address oil pollution.


Asunto(s)
Candida tropicalis , Petróleo , Humanos , Candida tropicalis/metabolismo , Biodegradación Ambiental , Levaduras/metabolismo , Petróleo/metabolismo , Hidrocarburos/metabolismo , Fenol/metabolismo , Naftalenos/metabolismo
14.
Sci Total Environ ; 912: 168870, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040377

RESUMEN

This work investigates the biodegradation of polyethylene (PE) and low-density polyethylene (LDPE) and the leaching of their harmful additives. Micro/macro-plastics of both types were subjected to different laboratory-controlled conditions for 3 months. Gas Chromatography-Mass Spectroscopy (GC-MS) results revealed that leachate concentrations ranged from 0.40 ± 0.07 µg/L to 96.36 ± 0.11 µg/L. It was concluded that the additives' leaching process was promoted by light. However, light was not the only factor examined; microorganisms, pH, salinity, aeration/mixing and temperature influenced the biodegradation process, too. GC-MS results showed a prodigious impact on the biodegradation process when Pseudomonas aeruginosa was added to the artificial seawater compared to plastics exposed to light/air only. Scanning Electron Microscopy (SEM) micrographs demonstrated a significant alteration in the plastics' morphologies. Similarly, Fourier-Transform Infrared Spectroscopy (FTIR) spectra showed obvious changes in plastics characteristic peaks, especially microplastics. Furthermore, it was shown that PE was more susceptible to degradation/biodegradation than LDPE. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) findings showed that some toxic metals were present in water samples after experiments, with concentrations above the permissible limits. For instance, bio-augmentation/bio-stimulation experiments showed that the concentrations of Pb, Sr, and Zn were 0.59 mg/L, 70.09 mg/L, and 0.17 mg/L, respectively; values above the permissible limits. It is crucial to emphasise that plastics must be meticulously engineered to avoid environmental and human impacts, originated from their degradation by-products. Furthermore, a holistic approach engaging stakeholders, researchers, policymakers, industries and consumers, is essential to effectively tackle the global challenge of marine plastic pollution.


Asunto(s)
Plásticos , Polietileno , Humanos , Polietileno/metabolismo , Plásticos/química , Agua de Mar/química , Microscopía Electrónica de Rastreo , Biodegradación Ambiental
15.
J Environ Manage ; 351: 119937, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159304

RESUMEN

Petroleum hydrocarbon (PHC) degrading bacteria have been frequently discovered. However, in practical application, a single species of PHC degrading bacterium with weak competitiveness may face environmental pressure and competitive exclusion due to the interspecific competition between petroleum-degrading bacteria as well as indigenous microbiota in soil, leading to a reduced efficacy or even malfunction. In this study, the diesel degradation ability and environmental robustness of an endophytic strain Pseudomonas aeruginosa WS02, were investigated. The results show that the cell membrane surface of WS02 was highly hydrophobic, and the strain secreted glycolipid surfactants. Genetic analysis results revealed that WS02 contained multiple metabolic systems and PHC degradation-related genes, indicating that this strain theoretically possesses the capability of oxidizing both alkanes and aromatic hydrocarbons. Gene annotation also showed many targets which coded for heavy metal resistant and metal transporter proteins. The gene annotation-based inference was confirmed by the experimental results: GC-MS analysis revealed that short chain PHCs (C10-C14) were completely degraded, and the degradation of PHCs ranging from C15-C22 were above 90% after 14 d in diesel-exposed culture; Heavy metal (Mn2+, Pb2+ and Zn2+) exposure was found to affect the growth of WS02 to some extent, but not its ability to degrade diesel, and the degradation efficiency was still maintained at 39-59%. WS02 also showed a environmental robustness along with PHC-degradation performance in the co-culture system with other bacterial strains as well as in the co-cultured system with the indigenous microbiota in soil fluid extracted from a PHC-contaminated site. It can be concluded that the broad-spectrum diesel degradation efficacy and great environmental robustness give P. aeruginosa WS02 great potential for application in the remediation of PHC-contaminated soil.


Asunto(s)
Metales Pesados , Petróleo , Contaminantes del Suelo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Petróleo/análisis , Hidrocarburos/metabolismo , Bacterias/metabolismo , Suelo/química , Metales Pesados/análisis , Microbiología del Suelo
16.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4445-4462, 2023 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-38013177

RESUMEN

Plastics are widely used in human daily life, which bring great convenience. Nevertheless, the disposal of a large amount of plastic wastes also brings great pressure to the environment. Polyethylene terephthalate (PET) is a polymer thermoplastic material produced from petroleum. It has become one of the most commonly used plastics in the world due to its durability, high transparency, light weight and other characteristics. PET can exist in nature for a long time due to its complex structure and the difficulty in degradation, which causes serious pollution to the global ecological environment, and threatens human health. The degradation of PET wastes has since become one of the global challenges. Compared with physical and chemical methods, biodegradation is the greenest way for treating PET wastes. This review summarizes the recent advances on PET biodegradation including microbial and enzymatic degradation of PET, biodegradation pathway, biodegradation mechanisms, and molecular modification of PET-degrading enzymes. In addition, the prospect for achieveing efficient degradation of PET, searching and improving microorganisms or enzymes that can degrade PET of high crystallinity are presented, with the aimto facilitate the development, application and molecular modification of PET biodegradation microorganisms or enzymes.


Asunto(s)
Petróleo , Tereftalatos Polietilenos , Humanos , Tereftalatos Polietilenos/metabolismo , Polímeros , Biodegradación Ambiental
17.
Appl Environ Microbiol ; 89(11): e0098723, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37943057

RESUMEN

IMPORTANCE: Increased ship traffic in the Arctic region raises the risk of oil spills. With an average sea depth of 1,000 m, there is a growing concern over the potential release of oil sinking in the form of marine oil snow into deep Arctic waters. At increasing depth, the oil-degrading community is exposed to increasing hydrostatic pressure, which can reduce microbial activity. However, microbes thriving in polar regions may adapt to low temperature by modulation of membrane fluidity, which is also a well-known adaptation to high hydrostatic pressure. At mild hydrostatic pressures up to 8-12 MPa, we did not observe an altered microbial activity or community composition, whereas comparable studies using deep-sea or sub-Arctic microbial communities with in situ temperatures of 4-5°C showed pressure-induced effects at 10-15 MPa. Our results suggest that the psychrophilic nature of the underwater microbial communities in the Arctic may be featured by specific traits that enhance their fitness at increasing hydrostatic pressure.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Presión Hidrostática , Regiones Árticas , Biodegradación Ambiental , Agua de Mar/microbiología , Bacterias , Hidrocarburos
18.
Environ Sci Pollut Res Int ; 30(59): 123439-123451, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37982951

RESUMEN

Asphaltenes are the most polar and heavy fraction of petroleum, and their complex structure and toxicity make them resistant to biodegradation. The ability to tolerate high asphaltene concentrations is crucial to reducing the toxicity-related inhibition of microbial growth and improving their capacity for adaptation, survival, and biodegradation in soils highly contaminated with asphaltenes. This study developed a highly tolerant consortium for efficient asphaltene biodegradation in soils from 22 bacterial isolates obtained from heavy-crude oil-contaminated soils. Isolates corresponded to the Rhodococcus, Bacillus, Stutzerimonas, Cellulosimicrobium, Pseudomonas, and Paenibacillus genera, among others, and used pure asphaltenes and heavy crude oil as the only carbon sources. Surface plate assays were used to evaluate the tolerance of individual isolates to asphaltenes, and the results showed variations in the extension and inhibition rates with maximum tolerance levels at 60,000 mg asphaltenes l-1. Inhibition assays were used to select non-antagonistic bacterial isolates among those showing the highest tolerance levels to asphaltenes. A consortium made up of the five most tolerant and non-antagonistic bacterial isolates was able to degrade up to 83 wt.% out of 10,000 mg asphaltenes kg-1 in the soil after 52 days. Due to its biological compatibility, high asphaltene tolerance, and ability to utilise it as a source of energy, the degrading consortium developed in this work has shown a high potential for soil bioremediation and is a promising candidate for the treatment of aged soil areas contaminated with heavy and extra-heavy crude oil. This would be the first research to assess and consider extreme bacterial tolerance and microbial antagonism between individual degrading microbes, leading to the development of an improved consortium capable of efficiently degrading high amounts of asphaltenes in soil.


Asunto(s)
Petróleo , Rhodococcus , Contaminantes del Suelo , Biodegradación Ambiental , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Petróleo/metabolismo , Rhodococcus/metabolismo
19.
Chemosphere ; 344: 140340, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778647

RESUMEN

Biosurfactants are surface active molecules generated by various microorganisms, including bacteria, actinobacteria, algae, and fungi. In this study, bacterial strains are isolated from soil contaminated with used motor oil and examined for potential biosurfactant production. A minimum salt medium (MSM), with crude oil as the only carbon source, is used to isolate potential biosurfactant-producing bacterial strains. About 23 strains are isolated, and all are subjected to the primary screening methods for biosurfactant production. Based on the emulsification index, oil displacement, and drop collapse screening methods, two isolates with potential biosurfactant-producing ability are selected for further studies. The synthesis of biosurfactants, crude oil and anthracene biodegradation is carried out with strains DTS1 and DTS2. Both strains show significant outcomes in crude oil degradation. In addition, both strains can utilize anthracene as the sole carbon source. During the degradation course, changes in the growth conditions are continuously monitored by measuring turbidity and pH. In this degradation study, the biosurfactant production aptitude of the isolated strains plays an essential role in increasing the bioavailability of hydrophobic hydrocarbons. These strains are identified down to the molecular level by employing 16S rRNA gene sequencing, and the acquired sequences are submitted to get the accession numbers. These prospective strains can be utilized to remediate hydrocarbon-contaminated environments.


Asunto(s)
Bacillus , Petróleo , Bacillus/metabolismo , Petróleo/análisis , ARN Ribosómico 16S/genética , Estudios Prospectivos , Tensoactivos/química , Bacterias/metabolismo , Hidrocarburos/metabolismo , Biodegradación Ambiental , Antracenos/metabolismo , Carbono/metabolismo
20.
J Environ Manage ; 348: 119207, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832293

RESUMEN

The combustion of mobil oil leads to the emission of toxic compounds in the environment. In this study, the aromatic and aliphatic hydrocarbon fractions present in a waste mobil oil collected from automobile market were comprehensively identified and their toxicity was evaluated using wheat grain. Lysinibacillus sphaericus strain IITR51 isolated and characterized previously could degrade 30-80% of both aliphatic and aromatic hydrocarbons in liquid culture. Interestingly, the strain IITR51 produced 627 mg/L of rhamnolipid biosurfactant by utilizing 3% (v/v) of waste mobil oil in the presence of 1.5% glycerol as additional carbon source. In a soil microcosm study by employing strain IITR51, 50-86% of 3-6 ring aromatic hydrocarbons and 63-98% of aliphatic hydrocarbons (C8 to C22) were degraded. Addition of 60 µg/mL rhamnolipid biosurfactant enhanced the degradation of both aliphatic and aromatic hydrocarbons from 76.88% to 61.21%-94.11% and 78.27% respectively. The degradation of mobil oil components improved the soil physico-chemical properties and increased soil fertility to 64% as evident by the phytotoxicity assessments. The findings indicate that strain IITR51 with degradation capability coupled with biosurfactant production could be a candidate for restoring hydrocarbon contaminated soils.


Asunto(s)
Hidrocarburos Aromáticos , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Tensoactivos/metabolismo , Suelo/química , Contaminantes del Suelo/química , Hidrocarburos/metabolismo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA