Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38503565

RESUMEN

AIMS: This study aimed to assess the impact of rocket (Eruca sativa) extract on Verticillium wilt in eggplants, explore rhizospheric microorganisms for disease biocontrol, and evaluate selected strains' induced systemic resistance (ISR) potential while characterizing their genomic and biosynthetic profiles. METHODS AND RESULTS: Rocket extract application led to a significant reduction in Verticillium wilt symptoms in eggplants compared to controls. Isolated microorganisms from treated soil, including Paraburkholderia oxyphila EP1, Pseudomonas citronellolis EP2, Paraburkholderia eburnea EP3, and P. oxyphila EP4 and EP5, displayed efficacy against Verticillium dahliae, decreasing disease severity and incidence in planta. Notably, strains EP3 and EP4 triggered ISR in eggplants against V. dahliae. Genomic analysis unveiled shared biosynthetic gene clusters, such as ranthipeptide and non-ribosomal peptide synthetase-metallophore types, among the isolated strains. Additionally, metabolomic profiling of EP2 revealed the production of metabolites associated with amino acid metabolism, putative antibiotics, and phytohormones. CONCLUSIONS: The application of rocket extract resulted in a significant reduction in Verticillium wilt symptoms in eggplants, while the isolated microorganisms displayed efficacy against V. dahliae, inducing systemic resistance and revealing shared biosynthetic gene clusters, with metabolomic profiling highlighting potential disease-suppressing metabolites.


Asunto(s)
Verticillium , Verticillium/metabolismo , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/farmacología , Gossypium , Resistencia a la Enfermedad
2.
Microbiol Res ; 283: 127699, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520838

RESUMEN

Bacteriophages have emerged as promising alternatives to pesticides for controlling bacterial pathogens in crops. Among these pathogens, Streptomyces stelliscabiei (syn. S. stelliscabiei) is a primary causative agent of potato common scab (PCS), resulting in substantial global economic losses. The traditional management methods for PCS face numerous challenges, highlighting the need for effective and environmentally friendly control strategies. In this study, we successfully isolated three novel bacteriophages, namely Psst1, Psst2, and Psst4, which exhibited a broad host range encompassing seven S. stelliscabiei strains. Morphological analysis revealed their distinct features, including an icosahedral head and a non-contractile tail. These phages demonstrated stability across a broad range of temperatures (20-50°C), pH (pH 3-11), and UV exposure time (80 min). Genome sequencing revealed double-stranded DNA phage with open reading frames encoding genes for phage structure, DNA packaging and replication, host lysis and other essential functions. These phages lacked genes for antibiotic resistance, virulence, and toxicity. Average nucleotide identity, phylogenetic, and comparative genomic analyses classified the three phages as members of the Rimavirus genus, with Psst1 and Psst2 representing novel species. All three phages efficiently lysed S. stelliscabiei in the liquid medium and alleviated scab symptom development and reduced pathogen abundance on potato slices. Furthermore, phage treatments of radish seedlings alleviated the growth inhibition caused by S. stelliscabiei with no disease symptoms. In soil potted experiments, phages significantly reduced disease incidence by 40%. This decrease is attributed to a reduction in pathogen density and the selection of S. stelliscabiei strains with reduced virulence and slower growth rates in natural environments. Our study is the first to report the isolation of three novel phages that infect S. stelliscabiei as a host bacterium. These phages exhibit a broad host range, and demonstrate stability under a variety of environmental conditions. Additionally, they demonstrate biocontrol efficacy against bacterial infections in potato slices, radish seedlings, and potted experiments, underscoring their significant potential as biocontrol agents for the effective management of PCS.


Asunto(s)
Bacteriófagos , Solanum tuberosum , Streptomyces , Bacteriófagos/genética , Filogenia , Solanum tuberosum/microbiología , Streptomyces/genética
3.
Front Plant Sci ; 15: 1305376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384765

RESUMEN

Endophytic fungi are important microbial resources for developing novel antibacterial and antifungal drugs to prevent and control crop diseases. Panax notoginseng has been used as a Chinese medicinal herb for a long time, as it has various bioactivities. However, information on endophytic fungi isolated from Panax notoginseng is rare. In this study, an endophytic fungus known as SQGX-6, which was later identified as the golden hair fungus Arcopilus aureus, was isolated from Panax notoginseng. SQGX-6 was extracted using ethyl acetate, and the active components of the fungus were identified using ultra-performance liquid chromatography-mass spectrometry (UHPLC-MS). The antifungal and antioxidant activities of the extract were determined and evaluated in vitro and in vivo. SQGX-6 and its extract inhibited the growth of Corn stalk rot (Fusarium graminearum), Corn southern leaf blight (Helminthosporium maydis), and Tomato gray mold (Botrytis cinerea) in vitro. The free radical scavenging rates for 2,2-Diphenyl-1-pyridinyl hydrazide (DPPH) radical scavenging activity, 3-Ethylbenzothiazoline-6-Sulfonic Acid Radical scavenging (ABTS) activity were also downregulated by the SQGX-6 extract. In vivo, the SQGX-6 extract inhibited the mycelial growth rates of the three aforementioned fungi and downregulated malondialdehyde (MDA) content and upregulated peroxidase (POD) and phenylalanine ammonia-lyase (PAL) content in fruits, leading to significant reduction in damage to cherry tomatoes caused by Botrytis cinerea. UHPLC-MS was performed to identify various active substances, including Alkaloids, Azoles, Benzofurans, Coumarins, Flavonoids, Organic acids, Phenols, and plant growth regulators contained in the extract. These results suggested that the endophytic fungus SQGX-6 of Panax notoginseng and its extract have excellent antifungal and antioxidant activities, and thus, it is an important microbial resource for the developing novel drugs against plant fungal infections.

4.
Appl Microbiol Biotechnol ; 108(1): 8, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38165479

RESUMEN

Many species of slugs are considered serious pests in agriculture and horticulture around the world. In Europe, slugs of the genera Arion and Deroceras are the most harmful pests in agriculture. Therefore, the main goal of this study was to evaluate the effect of the whole-cell metabolites of 10 strains of five Xenorhabdus and three slug-parasitic nematodes (Phasmarhabditis hermaphrodita, Phasmarhabditis bohemica, and Phasmarhabditis apuliae) on the feeding behaviour and repellent effect on target slugs and evaluate a new possible means of biocontrol of these pests. The repellent and anti-feedant effects of nematode-killed insects, metabolites, slug-parasitic nematodes and a combination of metabolites and nematodes were studied through experimental designs: sand-filled plastic boxes divided into two parts in several modifications: with dead Galleria mellonella killed by nematodes, lettuce treated with bacterial metabolites and lettuce placed on the treated sand. We found that slugs avoid eating G. mellonella killed by nematodes, while they eat freeze-killed G. mellonella. Similarly, they avoid the consumption of lettuce in areas treated with bacterial metabolites (the most effective strains being Xenorhabus bovienii NFUST, Xenorhabdus kozodoii SLOV and JEGOR) with zero feeding in the treated side. All three Phasmarhabditis species also provided a significant anti-feedant/repellent effect. Our study is the first to show the repellent and anti-feedant effects of metabolites of Xenorhabdus bacteria against Arion vulgaris, and the results suggest that these substances have great potential for biocontrol. Our study is also the first to demonstrate the repellent effect of P. apuliae and P. bohemica. KEY POINTS: • Slugs avoid eating G. mellonella killed by entomopathogenic nematodes. • Bacterial metabolites have a strong repellent and antifeedant effect on slugs. • Presence of slug parasitic nematodes increases the repellent effect of metabolites.


Asunto(s)
Nematodos , Xenorhabdus , Animales , Arena , Agricultura , Bacterias , Lactuca
5.
Phytopathology ; 114(1): 61-72, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37530500

RESUMEN

Endophytes play important roles in promoting plant growth and controlling plant diseases. Verticillium wilt is a vascular wilt disease caused by Verticillium dahliae, a widely distributed soilborne pathogen that causes significant economic losses on cotton each year. In this study, an endophyte KRS015, isolated from the seed of the Verticillium wilt-resistant Gossypium hirsutum 'Zhongzhimian No. 2', was identified as Bacillus subtilis by morphological, phylogenetic, physiological, and biochemical analyses. The volatile organic compounds (VOCs) produced by KRS015 or its cell-free fermentation extract had significant antagonistic effects on various pathogenic fungi, including V. dahliae. KRS015 reduced Verticillium wilt index and colonization of V. dahliae in treated cotton seedlings significantly; the disease reduction rate was ∼62%. KRS015 also promoted plant growth, potentially mediated by the growth-related cotton genes GhACL5 and GhCPD-3. The cell-free fermentation extract of KRS015 triggered a hypersensitivity response, including reactive oxygen species (ROS) and expression of resistance-related plant genes. VOCs from KRS015 also inhibited germination of conidia and the mycelial growth of V. dahliae, and were mediated by growth and development-related genes such as VdHapX, VdMcm1, Vdpf, and Vel1. These results suggest that KRS015 is a potential agent for controlling Verticillium wilt and promoting growth of cotton.


Asunto(s)
Acremonium , Ascomicetos , Verticillium , Bacillus subtilis/genética , Filogenia , Enfermedades de las Plantas/microbiología , Verticillium/fisiología , Gossypium/genética , Extractos Vegetales , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas
6.
Environ Entomol ; 52(6): 1048-1056, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37823555

RESUMEN

Empoasca onukii Matsuda is an important pest widely distributed in tea areas in China, which greatly affects tea production and quality. The long-term use of chemical control measures will cause environmental pollution. To better utilize wandering spiders that have strong competitive effects on the predation of E. onukii, we conducted a path analysis between the populations of E. onukii and wandering spiders in 3 tea plantations in 2020 and 2021. The wandering spider species that had the greatest direct and indirect effects on the population of E. onukii were analyzed by the magnitude of the path coefficient. Then, a gray system analysis was conducted to determine the closeness of the populations of different wandering spiders to E. onukii by the magnitude of gray correlation coefficient. Finally, the competition coefficients were calculated to determine the competitiveness of wandering spiders. In addition, considering the influence of the number of E. onukii on the interspecific competition of wandering spiders, the gray correlation coefficient and competition coefficient were combined to derive the competition intensity index, which was used to analyze the competitiveness of wandering spiders in a comprehensive manner. The highest competition coefficients in 2020 and 2021 were found for Ebrechtella tricuspidata Fabricius (Araneae: Thomisidae) (X2, 0.5329) and Clubiona reichlini Fabricius (Araneae: Clubionidae) (X4, 0.8475), respectively. The magnitude of the competition intensity index showed that the most competitive wandering spider in 2020 and 2021 was E. tricuspidata (X2, 0.5692) and C. reichlini (X4, 0.8892), respectively. The least competitive spider in both years was Plexippus setipes Karsch (Araneae: Salticidae) (X7). The more competitive the wandering spider is, the closer it is to E. onukii in terms of numbers, and the more dominant it is in feeding on E. onukii. By reasonably protecting and utilizing the competitive E. tricuspidata (X2) and C. reichlini (X4), we can achieve sustainable and effective control of E. onukii.


Asunto(s)
Hemípteros , Arañas , Animales , Conducta Predatoria ,
7.
Food Res Int ; 173(Pt 2): 113388, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803726

RESUMEN

Aspergillus ochraceus is an ochratoxin-producing fungus which contaminates coffee. In this study the antifungal effect of the yeast Hanseniaspora opuntiae on three Aspergillus ochraceus strains (IOC 4417, IOC 4462, Ao 14) was evaluated in vitro and on coffee fruits. H. opuntiae (106 and 107 cells mL-1) reduced in vitro fungal growth from 82% to 87%, when co-cultivated with A. ochraceus. The yeast cell free supernatant (CFS) inhibited conidial germination from 76.5% to 92.5%, and hyphal growth from 54% to 78%. The yeast (107 and 109 cells mL-1) applied on coffee fruits delayed fruit decay by A. ochraceus (IOC 4417 and Ao 14) until the 9th day, and was significantly different (p < 0.05) from the controls. Furthermore, the ultrastructure of the yeast-fungus interaction on the coffee fruit surface showed yeast attachment to A. ochraceus hyphae, and morphological alterations in fungal structures, with hyphal abnormalities, such as tortuous hyphae with irregular, non-uniform surface compared to the control without yeast. H. opuntiae showed efficacy as biocontrol agent and, to the best of our knowledge, this is the first study on the antifungal activity of H. opuntiae against A. ochraceus on coffee fruits Nevertheless, application of H. opuntiae to the crop in the field requires further studies.


Asunto(s)
Aspergillus ochraceus , Café , Café/metabolismo , Frutas/microbiología , Antifúngicos/farmacología
8.
Pest Manag Sci ; 79(12): 5250-5259, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37595072

RESUMEN

BACKGROUND: Potato, Solanum tuberosum, is one of the most important food crops in the world, playing a significant role in global food security. However, many potato industries and farms may suffer losses of tuber yield and quality in storage due to lepidopteran pests. Here, we evaluated the effectiveness of an ectoparasitic idiobiont mite Pyemotes zhonghuajia in the biological control of the potato tuber moth (PTM) Phthorimaea operculella by determining the lethal, sublethal (nonconsumptive) and transgenerational effects of P. zhonghuajia of various population densities and exposure durations on PTM survival, development and reproduction. RESULTS: Pyemotes zhonghuajia females were capable of killing all instar stages of PTM, while resistance to mite parasitism increased with the development of PTM life stage. The mortality of mature larvae (i.e., fourth instar) and pupae increased with increasing mite density and exposure duration. P. zhonghuajia imposed significant negative sublethal impacts on PTM pupation rate, female fecundity and adult longevity but not on immature development. The sublethal stress was transgenerational, resulting in lower reproduction in the offspring generation. CONCLUSION: P. zhonghuajia induces lethal, sublethal and transgenerational effects and significantly decreases PTM survival and reproductive out, demonstrating its high efficiency in the biological control of PTM. Our study provides insight into the mechanisms underlying the nonconsumptive effects of parasitism in an ectoparasite-host system and delivers critical information for the design and implementation of augmentative releases of P. zhonghuajia in the biological control of PTM in potato storage. © 2023 Society of Chemical Industry.


Asunto(s)
Ácaros , Mariposas Nocturnas , Solanum tuberosum , Femenino , Animales , Control Biológico de Vectores/métodos , Larva
9.
Pest Manag Sci ; 79(12): 5073-5086, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37572366

RESUMEN

BACKGROUND: As a highly prevalent epidemic disease of potato, late blight caused by Phytophthora infestans poses a serious threat to potato yield and quality. At present, chemical fungicides are mainly used to control potato late blight, but long-term overuse of chemical fungicides may lead to environmental pollution and human health threats. Endophytes, natural resources for plant diseases control, can promote plant growth, enhance plant resistance, and secrete antifungal substances. Therefore, there is an urgent need to find some beneficial endophytes to control potato late blight. RESULTS: We isolated a strain of Bacillus subtilis H17-16 from potato healthy roots. It can significantly inhibit mycelial growth, sporangia germination and the pathogenicity of Phytophthora infestans, induce the resistance of potato to late blight, and promote potato growth. In addition, H17-16 has the ability to produce protease, volatile compounds (VOCs) and form biofilms. After H17-16 treatment, most of the genes involved in metabolism, virulence and drug resistance of Phytophthora infestans were down-regulated significantly, and the genes related to ribosome biogenesis were mainly up-regulated. Moreover, field and postharvest application of H17-16 can effectively reduce the occurrence of potato late blight, and the combination of H17-16 with chitosan or chemical fungicides had a better effect than single H17-16. CONCLUSION: Our results reveal that Bacillus subtilis H17-16 has great potential as a natural fungicide for controlling potato late blight, laying a theoretical basis for its development as a biological control agent. © 2023 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Phytophthora infestans , Solanum tuberosum , Humanos , Phytophthora infestans/genética , Solanum tuberosum/genética , Bacillus subtilis , Fungicidas Industriales/farmacología , Raíces de Plantas , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
10.
Exp Appl Acarol ; 91(1): 43-55, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37498402

RESUMEN

Diversification of cultivation systems plays a critical role in ecosystem functions such as pest control, diversity of beneficial arthropods, and soil fertility. Repellent plants (releasing volatile organic compounds as arthropod repellents and providing alternative prey for natural enemies) may be used in an intercropping system for pest control; however, little is known concerning their relative priority. In this study, the impact of intercropping eggplant (E) (Solanum melongena L.) and garlic (G) (Allium sativum L.) in three designs - with row ratios of 4E:4G, 4E:8G, or 4E:12G - was assessed on the density of the two-spotted spider mite (TSSM) (Tetranychus urticae Koch), the abundance and diversity of predators, and crop yields, compared with the sole crops over two growing seasons of 2019 and 2020. In three intercrops, a significant decrease in the density of TSSM egg and mobile stages was observed compared with the sole eggplant at each growth stage of eggplant. The damage index by TSSM on eggplants was lower in intercrops (8.1-11.5%) compared with sole crop (37.0-40.3%) in the two seasons. The abundance of Stethorus gilvifrons was lower in the three intercrops than in the sole crop on the blooming-initial fruit set and the fruit development stages of eggplant. The density of Orius niger was higher in the three intercrops compared with the sole crop on vegetative growth and flowering to initial fruit set stages of eggplants. The abundance of Chrysoperla carnea was not significant among treatments. Greater values of the Shannon diversity index and the Pielou's evenness index for the construction of TSSM predators were recorded in the three intercrops compared with the sole eggplant over both growing seasons. In addition, a significant improvement in the yield per unit area of eggplant and garlic was obtained in intercrops compared with sole crops. These results indicate intercropping eggplant and garlic was a practical solution for reducing TSSM on eggplant, promoting the abundance of predators, and improving the crop yields of eggplant and garlic compared with the sole crops.


Asunto(s)
Productos Biológicos , Ajo , Solanum melongena , Tetranychidae , Animales , Ecosistema , Suelo
11.
Neotrop Entomol ; 52(5): 945-955, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37498512

RESUMEN

Pollen is a food source for adult Chrysoperla externa (Hagen), whose larvae are biocontrol agents against pests. However, adults may face challenges in foraging for pollen due to differences in pollen accessibility and variability in pollen morphology and chemistry. In the laboratory, we investigated the ability of adult C. externa to consume pollen from flowers of Cajanus cajan, Canavalia ensiformis, Crotalaria juncea, Flemingia macrophylla, Avena strigosa, Pennisetum glaucum, Sorghum bicolor, and Zea mays, and we explored whether adults chose any of these pollens based on their quantitative and qualitative features. Cajanus cajan and F. macrophylla pollen were the only ones not consumed by adults when confined to flowers. Pollen removed from the preanthesis buds was offered simultaneously for 24 and 48 h. In both periods, adults consumed more of the medium-sized P. glaucum (with the second largest exine thickness) and large-sized Z. mays (with the thinnest exine) pollen, even though they had significantly less crude protein than Fabaceae pollen, whose sizes varied from medium (C. juncea, with the thickest exine) to large (C. ensiformis, whose exine thickness was equal to that of P. glaucum). Overall, adults consumed more Poaceae pollen than Fabaceae pollen, but the palynological features and the protein contents did not affect this choice. Our results highlighted that C. juncea, P. glaucum, S. bicolor and Z. mays are good pollen sources for adult C. externa and should be considered promising candidates in the selection of insectary plants to deploy in biocontrol programs aimed at the conservation of this lacewing.


Asunto(s)
Fabaceae , Insectos , Animales , Larva , Polen , Poaceae
12.
J Econ Entomol ; 116(5): 1934-1938, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37478407

RESUMEN

Wireworms (Coleoptera: Elateridae) are economically significant pests of potatoes (Solanum tuberosum), damaging the marketable portion of the crop by feeding and tunneling into tubers. While conventional potato growers use the few registered synthetic insecticides to control wireworms, certified organic growers are left with less options due to the limited effectiveness of the available insecticides. Biologically derived pesticides provide an additional alternative for both systems. Certain gram-negative proteobacteria, such as Burkholderia spp., possess insecticidal compounds. However, very little is known about their efficacy on wireworms. From 2018 to 2021, we conducted experiments in Virginia to assess the efficacy of a Burkholderia spp.-based commercial pesticide, Majestene, as a wireworm control in potatoes. In a lab experiment, soil drench application of this insecticide at a rate of 66 g a.i. per 1 liter resulted in 30% wireworm mortality and significantly reduced wireworm feeding damage on potato tubers. In the field, in-furrow applications of Burkholderia spp. at a rate of 17.66 kg a.i. per ha significantly reduced wireworm damage to tubers in 2 of 7 field experiments conducted. By comparison, the commercial standard insecticide, bifenthrin, significantly reduced tuber damage in 3 of the 7 field experiments. Our study demonstrates the prospect for proteobacteria-derived insecticides for control of wireworms and potentially other soil-dwelling insects. In conclusion, findings present growers with another option to combat wireworm pressure, especially in organic systems.


Asunto(s)
Escarabajos , Insecticidas , Solanum tuberosum , Animales , Larva/microbiología , Agentes de Control Biológico , Suelo
13.
J Chem Ecol ; 49(9-10): 498-506, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37278905

RESUMEN

Air potato, Dioscorea bulbifera L., is an invasive vine found in the southeastern United States and is native to Asia and Africa. The air potato leaf beetle Lilioceris cheni (Coleoptera: Chrysomelidae), is a host specific biological control agent introduced for D. bulbifera control. In this study, odor cues that control the attraction of L. cheni to D. bulbifera were investigated. The first experiment investigated the response of L. cheni to D. bulbifera leaves versus no leaves in the presence or absence of air flow. The experiment showed a significant response of L. cheni to D. bulbifera leaves in the presence of air flow with leaves placed upwind. When air flow and/or leaves were absent, L. cheni dispersed randomly between the upwind and downwind targets, indicating L. cheni uses volatiles from D. bulbifera in host selection. The second experiment investigated L. cheni response to undamaged, larval-damaged, and adult-damaged plants. Lilioceris cheni showed preference to move towards conspecific damaged plants compared to undamaged plants but did not discriminate between larvae-damaged or adult-damaged plants. The third experiment investigated volatile profiles of damaged D. bulbifera plants using gas chromatography coupled with mass spectroscopy. We found significant differences in volatile profiles between adult and larval damaged plants compared to mechanically damaged and undamaged plants, with increases in 11 volatile compounds. However, larval and adult-damaged volatile profiles did not differ. The information acquired during this study could be used to develop strategies to monitor for L. cheni and improve its biological control program.


Asunto(s)
Escarabajos , Dioscorea , Solanum tuberosum , Compuestos Orgánicos Volátiles , Animales , Escarabajos/fisiología , Larva , Odorantes , Compuestos Orgánicos Volátiles/análisis , Hojas de la Planta/química , Herbivoria
14.
Front Microbiol ; 14: 1192932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266004

RESUMEN

Medicinal plants harbor tremendously diverse bacterial endophytes that maintain plant growth and health. In the present study, a total of 124 culturable bacterial endophytes were isolated from healthy Aconitum carmichaelii Debx. plants. These strains were clustered into 10 genera based on full-length 16S rDNA sequences, among which Bacillus and Pseudomonas were the dominant genera. In addition, A. carmichaelii may capture 10 potential new bacterial species based on multi-locus sequence analysis of three housekeeping genes (gyrA, rpoB, and atpD). The majority of these bacterial endophytes exhibited plant growth-promoting ability through diverse actions including the production of either indole acetic acid and siderophore or hydrolytic enzymes (glucanase, cellulose, and protease) and solubilization of phosphate or potassium. A total of 20 strains inhibited hyphal growth of fungal pathogens Sclerotium rolfsii and Fusarium oxysporum in vitro on root slices of A. carmichaelii by the dual-culture method, among which Pseudomonas sp. SWUSTb-19 showed the best antagonistic activity. Field experiment confirmed that Pseudomonas sp. SWUSTb-19 significantly reduced the occurrence of southern blight and promoted plant biomass compared with non-inoculation treatment. The possible mode of actions for Pseudomonas sp. SWUSTb-19 to antagonize against S. rolfsii involved the production of glucanase, siderophore, lipopeptides, and antimicrobial volatile compounds. Altogether, this study revealed that A. carmichaelii harbored diverse plant growth-promoting bacterial endophytes, and Pseudomonas sp. SWUSTb-19 could be served as a potential biocontrol agent against southern blight.

15.
Pest Manag Sci ; 79(7): 2503-2516, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36863935

RESUMEN

BACKGROUND: In recent years, biofungicides have drawn increasing interest in vineyards for a more sustainable integrated and copper-limited pest management. Among alternatives, botanicals could represent valuable tools, being rich sources of biologically active compounds. Conversely to the well-known antioxidant and biological properties in relation to health benefits, investigation on bioactivity of hot pungent Capsicum sp. products against fungal phytopathogens in vineyards is still scarce. Therefore, the present study aimed at exploring the biologically active compounds profile of a chili pepper (Capsicum chinense Jacq.) pod extract and its antimicrobial properties against some of the major fungal and Oomycetes pathogens of grapevine, including Botrytis cinerea Pers., Guignardia bidwellii (Ellis) Viala & Ravaz and Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni. RESULTS: The ethyl acetate-extracted oleoresin from the most pungent varieties was rich in capsaicinoids and polyphenols (371.09 and 268.5 µg mg-1 dry weight, respectively). Capsaicin and dihydrocapsaicin, hydroxycinnamic and hydroxybenzoic acids and quercetin derivatives were the most abundant, while carotenoids represented only a minor fraction. The oleoresin was efficient to inhibit all three pathogenic fungi and ED50 values were determined, evidencing that G. bidwellii was the more sensitive (0.233 ± 0.034 mg mL-1 ). CONCLUSION: The results suggested a potentiality of chili pepper extract for the control of some important grapevine pathogens, their possible application being helpful for the recommended limitation in extensive use of copper in vineyard. The complex mixture of high amounts of capsaicinoids, associated to specific phenolic acids and other minor bioactive components might contribute to the observed antimicrobial action of chili pepper extract. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Antiinfecciosos , Capsicum , Oomicetos , Antifúngicos , Cobre , Antiinfecciosos/farmacología , Extractos Vegetales/farmacología
16.
Comb Chem High Throughput Screen ; 26(10): 1920-1928, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36924094

RESUMEN

BACKGROUND: Potatoes are extremely important compared to other vegetable crops. Several species of fungi cause severe damage to different components of the plant (leaves, stems, and tubers), leading to significant losses during cultivation and even after harvest. In the framework of the investigation for alternative methods against the proliferation of these fungi, the present work focuses on the study of the antifungal effect of essential oils of some plants that could be used to solve these problems without the use of harmful chemical substances. AIM AND PURPOSE: This study aims to discuss the chemical composition of essential oils of Artemisia herba alba and Ammoides verticillata and evaluate their in vitro and in vivo antifungal activities in order to prevent fungal diseases of potatoes and replace chemical pesticides that cause neurodegenerative diseases. METHODS: Essential oils extracted from the aerial parts of the plants Artemesia herba alba and Ammoides verticillata were analyzed by gas chromatography-mass spectrometry (GC/MS) and tested individually and in combination for their antifungal effects against Fusarium solani, Penicillium expansum, and Aspergillus flavus, by the radial growth technique. RESULTS: The essential oil of A. herba alba was mainly composed of hydrocarbon monoterpenes (80.8%), while the oil of A. verticillata was mainly composed of oxygenated monoterpenes (54.4%). The study on the antifungal effect of essential oils in vitro showed that essential oil of A. verticillata was more effective against P. expansum (64.40%) than A. flovus (41.10%) and F. Solani (53.30%), and the oil of A.herba alba was more effective against A. flavus (54.40%) and (42%) F. Solani. While the combination of these two essential oils of A. verticillata and A. herba-alba gave excellent results, i.e., 100% against P. expansum and A. flavus and 94.40% against F. solani and provided an in vivo protection to the potato in the range of 80% to 90% against the three fungi. CONCLUSION: A. herba alba and A. verticillata individual and combined essential oils are very effective antifungal biocides that can be used as an alternative to chemical pesticides to prevent their harmful effects on health.


Asunto(s)
Artemisia , Aceites Volátiles , Plaguicidas , Solanum tuberosum , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antifúngicos/farmacología , Antifúngicos/química , Artemisia/química , Hongos , Monoterpenos/farmacología , Plaguicidas/farmacología
17.
Environ Entomol ; 52(2): 183-196, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36843392

RESUMEN

The effects of two possible factors, prevention of pest immigration and enhancement of natural enemies, in suppressing onion thrips, Thrips tabaci L., were estimated in a small-scale experimental system of spring-planted onions intercropped with barley. The population dynamics of the thrips and their potential predatory natural enemies were investigated in four treatments: control (bare ground), insect net barrier, and onion-barley intercropping with or without trimming. We found that intercropping significantly suppressed onion thrips. It is unlikely that this effect was due to the prevention of thrip immigration because they seemed to move over the camouflage and/or physical barriers of the barley and the net barrier surrounding the onions easily. Intercropping with barley significantly increased hoverfly (Syrphidae) larvae numbers on onion leaves, and that of some groups of ground-dwelling predators such as large carnivorous ground beetles (Carabidae), ants (Formicidae), and wolf spiders (Lycosidae). We conclude that the suppression of thrips in this system was associated with the enhancement of hoverfly larvae abundance, mainly Sphaerophoria macrogaster (Thomson) (Syrphidae: Diptera) because they were observed together with thrips on onions and have been reported to predate thrips as well as aphids. Some hoverfly larvae on barley might move to nearby onions to search for new food sources and attack thrips.


Asunto(s)
Hormigas , Escarabajos , Hordeum , Thysanoptera , Animales , Cebollas , Insectos , Larva
18.
Arch Microbiol ; 205(3): 83, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746793

RESUMEN

The aim of this study was to evaluate and select entomopathogenic fungi that produces insecticidal compounds for the control of adults of Anastrepha obliqua Macquart (Diptera: tephritidae) that are the main pest of mango (Mangifera indica L. Bark) in Colombia. Nine entomopathogenic fungi isolates were evaluated, five belonging to the genus Metarhizium and four belonging to the genus Beauveria. One strain of the species Metarhizium robertsii with insecticidal activity was selected. By column fractionation, an active fraction was obtained, which caused mortalities higher than 90% after 48 h of exposure. Through HPLC it was determined that the active fraction is composed of more than 22 metabolites. Identification of the metabolites by UHPLC MS/MS revealed the presence of destruxin in E, D, A and B groups (destruxin E-diol, destruxin D, destruxin D1, destruxin D2, destruxin A2, destruxin A, destruxin A3, dihydrodestruxin A, desmB, destruxin B2, destruxin B and destruxin B1). The evaluation of the insecticidal capacity of the organic fractions obtained by HPLC indicated that the extract obtained from the isolate M. robertsii had a compound with high activity on adults of A. obliqua (destruxin A) causing massive mortality of up to 100%, after 48 h of the treatment administration. Furthermore, two other compounds with medium activity were found (destruxin A2 and destruxin B), showing mortalities between 60.0 and 81.3%, respectively. The extract of the isolate MT008 of M. robertsii showed higher insecticidal activity and a potential source for the control of A. obliqua.


Asunto(s)
Insecticidas , Mangifera , Tephritidae , Animales , Insecticidas/farmacología , Colombia , Espectrometría de Masas en Tándem , Extractos Vegetales
19.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36763790

RESUMEN

Maize is one of the most cultivated species and requires agrochOPemicals for nutrition and pathogen control. Fusarium verticillioides is responsible for damaging plants and stored grains. Plants naturally exposed to stresses have defense mechanisms that are triggered by chemical or biological agents, known as induced systemic resistance. In this study, the yeast Torulaspora globosa (strain CCA6S01) was evaluated as an immune response promoter in maize against F. verticillioides. The treatments started 4 days after maize emergence and consisted of control (saline solution), acetylsalicylic acid (ASA, 100 mg/L), yeast cells (1 × 105 cells/mL), or yeast metabolites (cell-free filtrates). After running the treatments, the plants were inoculated with 1 mL of a F. verticillioides suspension at a concentration of 1 × 106 spores/mL. The application of yeast cells provided similar results to ASA treatment, a known inducer of plant resistance. Yeast cells provided maize plants with fewer rot symptoms and higher activities of enzymes related to plant resistance. Thus, we concluded that T. globosa (strain CCA6S01) might be used in agriculture practice as a plant protection agent. It can help to decrease the application of fungicides in the field and maintain plant productivity under stress.


Asunto(s)
Fusarium , Zea mays , Regiones Promotoras Genéticas , Enfermedades de las Plantas/prevención & control
20.
Phytopathology ; 113(7): 1192-1201, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36794987

RESUMEN

Fire blight, caused by Erwinia amylovora, is a devastating disease of apple. Blossom Protect, a product that contains Aureobasidium pullulans as the active ingredient, is one of the most effective biological controls of fire blight. It has been postulated that the mode of action of A. pullulans is to compete against and antagonize epiphytic growth of E. amylovora on flowers, but recent studies have found that flowers treated with Blossom Protect harbored similar to or only slightly reduced E. amylovora populations compared with nontreated flowers. In this study, we tested the hypothesis that A. pullulans-mediated biocontrol of fire blight is the result of induced host resistance. We found that PR genes in the systemic acquired resistance pathway, but not genes in the induced systemic resistance pathway, were induced in hypanthial tissue of apple flowers after the Blossom Protect treatment. Additionally, the induction of PR gene expression was coupled with an increase of plant-derived salicylic acid in this tissue. After inoculation with E. amylovora, PR gene expression was suppressed in nontreated flowers, but in flowers pretreated with Blossom Protect, the heightened PR expression offset the immune repression caused by E. amylovora, and prevented infection. Temporal and spatial analysis of PR gene induction showed that induction of PR genes occurred 2 days after the Blossom Protect treatment, and required direct flower-yeast contact. Finally, we observed deterioration of the epidermal layer of the hypanthium in some of the Blossom Protect-treated flowers, suggesting that PR gene induction in flowers may be a result of pathogenesis by A. pullulans.


Asunto(s)
Malus , Malus/genética , Enfermedades de las Plantas/genética , Flores , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA