Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 21(1): 61, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658998

RESUMEN

BACKGROUND: Brain-computer interface (BCI) technology offers children with quadriplegic cerebral palsy unique opportunities for communication, environmental exploration, learning, and game play. Research in adults demonstrates a negative impact of fatigue on BCI enjoyment, while effects on BCI performance are variable. To date, there have been no pediatric studies of BCI fatigue. The purpose of this study was to assess the effects of two different BCI paradigms, motor imagery and visual P300, on the development of self-reported fatigue and an electroencephalography (EEG) biomarker of fatigue in typically developing children. METHODS: Thirty-seven typically-developing school-aged children were recruited to a prospective, crossover study. Participants attended three sessions: (A) motor imagery-BCI, (B) visual P300-BCI, and (C) video viewing (control). The motor imagery task involved an imagined left- or right-hand squeeze. The P300 task involved attending to one square on a 3 × 3 grid during a random single flash sequence. Each paradigm had respective calibration periods and a similar visual counting game. Primary outcomes were self-reported fatigue and the power of the EEG alpha band both collected during resting-state periods pre- and post-task. Self-reported fatigue was measured using a 10-point visual analog scale. EEG alpha band power was calculated as the integrated power spectral density from 8 to 12 Hz of the EEG spectrum. RESULTS: Thirty-two children completed the protocol (age range 7-16, 63% female). Self-reported fatigue and EEG alpha band power increased across all sessions (F(1,155) = 33.9, p < 0.001; F = 5.0(1,149), p = 0.027 respectively). No differences in fatigue development were observed between session types. There was no correlation between self-reported fatigue and EEG alpha band power change. BCI performance varied between participants and paradigms as expected but was not associated with self-reported fatigue or EEG alpha band power. CONCLUSION: Short periods (30-mintues) of BCI use can increase self-reported fatigue and EEG alpha band power to a similar degree in children performing motor imagery and P300 BCI paradigms. Performance was not associated with our measures of fatigue; the impact of fatigue on useability and enjoyment is unclear. Our results reflect the variability of fatigue and the BCI experience more broadly in children and warrant further investigation.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Potenciales Relacionados con Evento P300 , Fatiga , Imaginación , Humanos , Niño , Masculino , Femenino , Potenciales Relacionados con Evento P300/fisiología , Fatiga/fisiopatología , Fatiga/psicología , Imaginación/fisiología , Estudios Cruzados , Adolescente , Estudios Prospectivos
2.
J Neural Eng ; 21(2)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38565100

RESUMEN

Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals.Approach. To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data.Main results. To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods.Significance. Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje , Electroencefalografía , Imágenes en Psicoterapia , Redes Neurales de la Computación , Algoritmos
3.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38475214

RESUMEN

Motor imagery (MI)-based brain-computer interface (BCI) has emerged as a crucial method for rehabilitating stroke patients. However, the variability in the time-frequency distribution of MI-electroencephalography (EEG) among individuals limits the generalizability of algorithms that rely on non-customized time-frequency segments. In this study, we propose a novel method for optimizing time-frequency segments of MI-EEG using the sparrow search algorithm (SSA). Additionally, we apply a correlation-based channel selection (CCS) method that considers the correlation coefficient of features between each pair of EEG channels. Subsequently, we utilize a regularized common spatial pattern method to extract effective features. Finally, a support vector machine is employed for signal classification. The results on three BCI datasets confirmed that our algorithm achieved better accuracy (99.11% vs. 94.00% for BCI Competition III Dataset IIIa, 87.70% vs. 81.10% for Chinese Academy of Medical Sciences dataset, and 87.94% vs. 81.97% for BCI Competition IV Dataset 1) compared to algorithms with non-customized time-frequency segments. Our proposed algorithm enables adaptive optimization of EEG time-frequency segments, which is crucial for the development of clinically effective motor rehabilitation.


Asunto(s)
Interfaces Cerebro-Computador , Accidente Cerebrovascular , Humanos , Imaginación , Imágenes en Psicoterapia/métodos , Electroencefalografía/métodos , Algoritmos
4.
Biomed Phys Eng Express ; 10(3)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38513274

RESUMEN

A Motor Imagery (MI) based Brain Computer Interface (BCI) system aims to provide neuro-rehabilitation for the motor disabled people and patients with brain injuries (e.g., stroke patients) etc. The aim of this work is to classify the left and right hand MI tasks by utilizing the occurrence of event related desynchronization and synchronization (ERD\ERS) in the Electroencephalogram (EEG) during these tasks. This study proposes to use a set of Complex Morlet Wavelets (CMW) having frequency dependent widths to generate high-resolution time-frequency representations (TFR) of the MI EEG signals present in the channels C3 and C4. A novel method for the selection of the value of number of cycles relative to the center frequency of the CMW is studied here for extracting the MI task features. The generated TFRs are given as input to a Convolutional neural network (CNN) for classifying them into left or right hand MI tasks. The proposed framework attains a classification accuracy of 82.2% on the BCI Competition IV dataset 2a, showing that the TFRs generated in this work give a higher classification accuracy than the baseline methods and other existing algorithms.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Electroencefalografía/métodos , Imágenes en Psicoterapia , Redes Neurales de la Computación , Algoritmos
5.
Neuroscience ; 542: 59-68, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38369007

RESUMEN

Brain Computer Interface (BCI) is a highly promising human-computer interaction method that can utilize brain signals to control external devices. BCI based on functional near-infrared spectroscopy (fNIRS) is considered a relatively new and promising paradigm. fNIRS is a technique of measuring functional changes in cerebral hemodynamics. It detects changes in the hemodynamic activity of the cerebral cortex by measuring oxyhemoglobin and deoxyhemoglobin (HbR) concentrations and inversely predicts the neural activity of the brain. At the present time, Deep learning (DL) methods have not been widely used in fNIRS decoding, and there are fewer studies considering both spatial and temporal dimensions for fNIRS classification. To solve these problems, we proposed an end-to-end hybrid neural network for feature extraction of fNIRS. The method utilizes a spatial-temporal convolutional layer for automatic extraction of temporally valid information and uses a spatial attention mechanism to extract spatially localized information. A temporal convolutional network (TCN) is used to further utilize the temporal information of fNIRS before the fully connected layer. We validated our approach on a publicly available dataset including 29 subjects, including left-hand and right-hand motor imagery (MI), mental arithmetic (MA), and a baseline task. The results show that the method has few training parameters and high accuracy, providing a meaningful reference for BCI development.


Asunto(s)
Interfaces Cerebro-Computador , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Redes Neurales de la Computación , Algoritmos , Corteza Cerebral/diagnóstico por imagen , Mano , Electroencefalografía/métodos , Imaginación
6.
J Neural Eng ; 21(2)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38394680

RESUMEN

Objective. Neurofeedback (NFB) training through brain-computer interfacing has demonstrated efficacy in treating neurological deficits and diseases, and enhancing cognitive abilities in healthy individuals. It was previously shown that event-related potential (ERP)-based NFB training using a P300 speller can improve attention in healthy adults by incrementally increasing the difficulty of the spelling task. This study aims to assess the impact of task difficulty adaptation on ERP-based attention training in healthy adults. To achieve this, we introduce a novel adaptation employing iterative learning control (ILC) and compare it against an existing method and a control group with random task difficulty variation.Approach. The study involved 45 healthy participants in a single-blind, three-arm randomised controlled trial. Each group underwent one NFB training session, using different methods to adapt task difficulty in a P300 spelling task: two groups with personalised difficulty adjustments (our proposed ILC and an existing approach) and one group with random difficulty. Cognitive performance was evaluated before and after the training session using a visual spatial attention task and we gathered participant feedback through questionnaires.Main results. All groups demonstrated a significant performance improvement in the spatial attention task post-training, with an average increase of 12.63%. Notably, the group using the proposed iterative learning controller achieved a 22% increase in P300 amplitude during training and a 17% reduction in post-training alpha power, all while significantly accelerating the training process compared to other groups.Significance. Our results suggest that ERP-based NFB training using a P300 speller effectively enhances attention in healthy adults, with significant improvements observed after a single session. Personalised task difficulty adaptation using ILC not only accelerates the training but also enhances ERPs during the training. Accelerating NFB training, while maintaining its effectiveness, is vital for its acceptability by both end-users and clinicians.


Asunto(s)
Neurorretroalimentación , Adulto , Humanos , Neurorretroalimentación/métodos , Electroencefalografía/métodos , Método Simple Ciego , Aprendizaje , Cognición
7.
Neural Netw ; 172: 106100, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38232427

RESUMEN

Insufficient data is a long-standing challenge for Brain-Computer Interface (BCI) to build a high-performance deep learning model. Though numerous research groups and institutes collect a multitude of EEG datasets for the same BCI task, sharing EEG data from multiple sites is still challenging due to the heterogeneity of devices. The significance of this challenge cannot be overstated, given the critical role of data diversity in fostering model robustness. However, existing works rarely discuss this issue, predominantly centering their attention on model training within a single dataset, often in the context of inter-subject or inter-session settings. In this work, we propose a hierarchical personalized Federated Learning EEG decoding (FLEEG) framework to surmount this challenge. This innovative framework heralds a new learning paradigm for BCI, enabling datasets with disparate data formats to collaborate in the model training process. Each client is assigned a specific dataset and trains a hierarchical personalized model to manage diverse data formats and facilitate information exchange. Meanwhile, the server coordinates the training procedure to harness knowledge gleaned from all datasets, thus elevating overall performance. The framework has been evaluated in Motor Imagery (MI) classification with nine EEG datasets collected by different devices but implementing the same MI task. Results demonstrate that the proposed framework can boost classification performance up to 8.4% by enabling knowledge sharing between multiple datasets, especially for smaller datasets. Visualization results also indicate that the proposed framework can empower the local models to put a stable focus on task-related areas, yielding better performance. To the best of our knowledge, this is the first end-to-end solution to address this important challenge.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Conocimiento , Electroencefalografía , Imaginación
8.
J Neural Eng ; 21(1)2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38167234

RESUMEN

Objective: Current efforts to build reliable brain-computer interfaces (BCI) span multiple axes from hardware, to software, to more sophisticated experimental protocols, and personalized approaches. However, despite these abundant efforts, there is still room for significant improvement. We argue that a rather overlooked direction lies in linking BCI protocols with recent advances in fundamental neuroscience.Approach: In light of these advances, and particularly the characterization of the burst-like nature of beta frequency band activity and the diversity of beta bursts, we revisit the role of beta activity in 'left vs. right hand' motor imagery (MI) tasks. Current decoding approaches for such tasks take advantage of the fact that MI generates time-locked changes in induced power in the sensorimotor cortex and rely on band-passed power changes in single or multiple channels. Although little is known about the dynamics of beta burst activity during MI, we hypothesized that beta bursts should be modulated in a way analogous to their activity during performance of real upper limb movements.Main results and Significance: We show that classification features based on patterns of beta burst modulations yield decoding results that are equivalent to or better than typically used beta power across multiple open electroencephalography datasets, thus providing insights into the specificity of these bio-markers.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/métodos , Imágenes en Psicoterapia , Movimiento , Mano , Imaginación , Algoritmos
9.
J Neural Eng ; 21(1)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38232381

RESUMEN

Objective. The non-stationarity of electroencephalogram (EEG) signals and the variability among different subjects present significant challenges in current Brain-Computer Interfaces (BCI) research, which requires a time-consuming specific calibration procedure to address. Transfer Learning (TL) offers a potential solution by leveraging data or models from one or more source domains to facilitate learning in the target domain, so as to address these challenges.Approach. In this paper, a novel Multi-source domain Transfer Learning Fusion (MTLF) framework is proposed to address the calibration problem. Firstly, the method transforms the source domain data with the resting state segment data, in order to decrease the differences between the source domain and the target domain. Subsequently, feature extraction is performed using common spatial pattern. Finally, an improved TL classifier is employed to classify the target samples. Notably, this method does not require the label information of target domain samples, while concurrently reducing the calibration workload.Main results. The proposed MTLF is assessed on Datasets 2a and 2b from the BCI Competition IV. Compared with other algorithms, our method performed relatively the best and achieved mean classification accuracy of 73.69% and 70.83% on Datasets 2a and 2b respectively.Significance.Experimental results demonstrate that the MTLF framework effectively reduces the discrepancy between the source and target domains and acquires better classification performance on two motor imagery datasets.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Imágenes en Psicoterapia , Electroencefalografía/métodos , Algoritmos , Aprendizaje Automático , Imaginación
10.
J Neural Eng ; 21(1)2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38295419

RESUMEN

Objective. The number of electrode channels in a motor imagery-based brain-computer interface (MI-BCI) system influences not only its decoding performance, but also its convenience for use in applications. Although many channel selection methods have been proposed in the literature, they are usually based on the univariate features of a single channel. This leads to a loss of the interaction between channels and the exchange of information between networks operating at different frequency bands.Approach. We integrate brain networks containing four frequency bands into a multilayer network framework and propose a multilayer network-based channel selection (MNCS) method for MI-BCI systems. A graph learning-based method is used to estimate the multilayer network from electroencephalogram (EEG) data that are filtered by multiple frequency bands. The multilayer participation coefficient of the multilayer network is then computed to select EEG channels that do not contain redundant information. Furthermore, the common spatial pattern (CSP) method is used to extract effective features. Finally, a support vector machine classifier with a linear kernel is trained to accurately identify MI tasks.Main results. We used three publicly available datasets from the BCI Competition containing data on 12 healthy subjects and one dataset containing data on 15 stroke patients to validate the effectiveness of our proposed method. The results showed that the proposed MNCS method outperforms all channels (85.8% vs. 93.1%, 84.4% vs. 89.0%, 71.7% vs. 79.4%, and 72.7% vs. 84.0%). Moreover, it achieved significantly higher decoding accuracies on MI-BCI systems than state-of-the-art methods (pairedt-tests,p< 0.05).Significance. The experimental results showed that the proposed MNCS method can select appropriate channels to improve the decoding performance as well as the convenience of the application of MI-BCI systems.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Imaginación , Electroencefalografía/métodos , Imágenes en Psicoterapia , Encéfalo , Algoritmos
11.
Appl Psychophysiol Biofeedback ; 49(1): 47-53, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37540396

RESUMEN

Brain-Computer Interface (BCI) and Neurofeedback (NF) both rely on the technology to capture brain activity. However, the literature lacks a clear distinction between the two, with some scholars categorizing NF as a special case of BCI while others view BCI as a natural extension of NF, or classify them as fundamentally different entities. This ambiguity hinders the flow of information and expertise among scholars and can cause confusion. To address this issue, we conducted a study comparing BCI and NF from two perspectives: the background and context within which BCI and NF developed, and their system design. We utilized Functional Flow Block Diagram (FFBD) as a system modelling approach to visualize inputs, functions, and outputs to compare BCI and NF at a conceptual level. Our analysis revealed that while NF is a subset of the biofeedback method that requires data from the brain to be extracted and processed, the device performing these tasks is a BCI system by definition. Therefore, we conclude that NF should be considered a specific application of BCI technology. By clarifying the relationship between BCI and NF, we hope to facilitate better communication and collaboration among scholars in these fields.


Asunto(s)
Interfaces Cerebro-Computador , Neurorretroalimentación , Humanos , Neurorretroalimentación/métodos , Electroencefalografía/métodos , Encéfalo , Confusión
12.
Neuroscience ; 538: 22-29, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38072171

RESUMEN

In the field of brain-to-text communication, it is difficult to finish highly dexterous behaviors of writing multi-character by motor-imagery-based brain-computer interface (MI-BCI), setting a barrier to restore communication in people who have lost the ability to move and speak. In this paper, we design and implement a multi-character classification scheme based on 29 characters of motor imagery (MI) electroencephalogram (EEG) signals, which contains 26 English letters and 3 punctuation marks. Firstly, we design a novel experimental paradigm to increase the variety of BCI inputs by asking subjects to imagine the movement of writing 29 characters instead of gross motor skills such as reaching or grasping. Secondly, because of the high dimension of EEG signals, we adopt power spectral density (PSD), principal components analysis (PCA), kernel principal components analysis (KPCA) respectively to decompose EEG signals and extract feature, and then test the results with pearson product-moment correlation coefficient (PCCs). Thirdly, we respectively employ k-nearest neighbor (kNN), support vector machine (SVM), extreme learning machine (ELM) and light gradient boosting machine (LightGBM) to classify 29 characters and compare the results. We have implemented a complete scheme, including paradigm design, signal acquisition, feature extraction and classification, which can effectively classify 29 characters. The experimental results show that the KPCA has the best feature extraction effect and the kNN has the highest classification accuracy, with the final classification accuracy reaching 96.2%, which is better than other studies.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Electroencefalografía/métodos , Imágenes en Psicoterapia , Movimiento , Encéfalo , Algoritmos , Imaginación
13.
Med Biol Eng Comput ; 62(1): 107-120, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37728715

RESUMEN

Motor imagery (MI) electroencephalogram (EEG) signal is recognized as a promising paradigm for brain-computer interface (BCI) systems and has been extensively employed in various BCI applications, including assisting disabled individuals, controlling devices and environments, and enhancing human capabilities. The high-performance decoding capability of MI-EEG signals is a key issue that impacts the development of the industry. However, decoding MI-EEG signals is challenging due to the low signal-to-noise ratio and inter-subject variability. In response to the aforementioned core problems, this paper proposes a novel end-to-end network, a fusion multi-branch 1D convolutional neural network (EEG-FMCNN), to decode MI-EEG signals without pre-processing. The utilization of multi-branch 1D convolution not only exhibits a certain level of noise tolerance but also addresses the issue of inter-subject variability to some extent. This is attributed to the ability of multi-branch architectures to capture information from different frequency bands, enabling the establishment of optimal convolutional scales and depths. Furthermore, we incorporate 1D squeeze-and-excitation (SE) blocks and shortcut connections at appropriate locations to further enhance the generalization and robustness of the network. In the BCI Competition IV-2a dataset, our proposed model has obtained good experimental results, achieving accuracies of 78.82% and 68.41% for subject-dependent and subject-independent modes, respectively. In addition, extensive ablative experiments and fine-tuning experiments were conducted, resulting in a notable 7% improvement in the average performance of the network, which holds significant implications for the generalization and application of the network.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Imágenes en Psicoterapia , Redes Neurales de la Computación , Relación Señal-Ruido , Imaginación , Algoritmos
14.
Brain Res ; 1823: 148673, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956749

RESUMEN

Brain-computer interface (BCI) enables the control of external devices using signals from the brain, offering immense potential in assisting individuals with neuromuscular disabilities. Among the different paradigms of BCI systems, the motor imagery (MI) based electroencephalogram (EEG) signal is widely recognized as exceptionally promising. Deep learning (DL) has found extensive applications in the processing of MI signals, wherein convolutional neural networks (CNN) have demonstrated superior performance compared to conventional machine learning (ML) approaches. Nevertheless, challenges related to subject independence and subject dependence persist, while the inherent low signal-to-noise ratio of EEG signals remains a critical aspect that demands attention. Accurately deciphering intentions from EEG signals continues to present a formidable challenge. This paper introduces an advanced end-to-end network that effectively combines the efficient channel attention (ECA) and temporal convolutional network (TCN) components for the classification of motor imagination signals. We incorporated an ECA module prior to feature extraction in order to enhance the extraction of channel-specific features. A compact convolutional network model uses for feature extraction in the middle part. Finally, the time characteristic information is obtained by using TCN. The results show that our network is a lightweight network that is characterized by few parameters and fast speed. Our network achieves an average accuracy of 80.71% on the BCI Competition IV-2a dataset.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Humanos , Redes Neurales de la Computación , Imaginación , Electroencefalografía/métodos , Atención
15.
Behav Brain Res ; 459: 114760, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-37979923

RESUMEN

Brain-computer interfaces (BCIs) rely heavily on motor imagery (MI) for operation, yet tactile imagery (TI) presents a novel approach that may be advantageous in situations where visual feedback is impractical. The current study aimed to compare the cortical activity and digit classification performance induced by TI and MI to assess the viability of TI for use in BCIs. Twelve right-handed participants engaged in trials of TI and MI, focusing on their left and right index digits. Event-related desynchronization (ERD) in the mu and beta bands was analyzed, and classification accuracy was determined through an artificial neural network (ANN). Comparable ERD patterns were observed in both TI and MI, with significant decreases in ERD during imagery tasks. The ANN demonstrated high classification accuracy, with TI achieving a mean±SD of 79.30 ± 3.91 % and MI achieving 81.10 ± 2.96 %, with no significant difference between the two (p = 0.11). The study found that TI induces substantial ERD comparable to MI and maintains high classification accuracy, supporting its potential as an effective mental strategy for BCIs. This suggests that TI could be a valuable alternative in BCI applications, particularly for individuals unable to rely on visual cues.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Imaginación/fisiología , Imágenes en Psicoterapia , Redes Neurales de la Computación
16.
J Neural Eng ; 20(6)2023 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-38128128

RESUMEN

Objective.While electroencephalography (EEG)-based brain-computer interfaces (BCIs) have many potential clinical applications, their use is impeded by poor performance for many users. To improve BCI performance, either via enhanced signal processing or user training, it is critical to understand and describe each user's ability to perform mental control tasks and produce discernible EEG patterns. While classification accuracy has predominantly been used to assess user performance, limitations and criticisms of this approach have emerged, thus prompting the need to develop novel user assessment approaches with greater descriptive capability. Here, we propose a combination of unsupervised clustering and Markov chain models to assess and describe user skill.Approach.Using unsupervisedK-means clustering, we segmented the EEG signal space into regions representing pattern states that users could produce. A user's movement through these pattern states while performing different tasks was modeled using Markov chains. Finally, using the steady-state distributions and entropy rates of the Markov chains, we proposed two metricstaskDistinctandrelativeTaskInconsistencyto assess, respectively, a user's ability to (i) produce distinct task-specific patterns for each mental task and (ii) maintain consistent patterns during individual tasks.Main results.Analysis of data from 14 adolescents using a three-class BCI revealed significant correlations between thetaskDistinctandrelativeTaskInconsistencymetrics and classification F1 score. Moreover, analysis of the pattern states and Markov chain models yielded descriptive information regarding user performance not immediately apparent from classification accuracy.Significance.Our proposed user assessment method can be used in concert with classifier-based analysis to further understand the extent to which users produce task-specific, time-evolving EEG patterns. In turn, this information could be used to enhance user training or classifier design.


Asunto(s)
Interfaces Cerebro-Computador , Adolescente , Humanos , Cadenas de Markov , Electroencefalografía/métodos , Imágenes en Psicoterapia , Movimiento , Encéfalo
17.
Neurophotonics ; 10(4): 045005, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37928600

RESUMEN

Significance: Brain-computer interfaces (BCIs) can provide severely motor-impaired patients with a motor-independent communication channel. Functional near-infrared spectroscopy (fNIRS) constitutes a promising BCI-input modality given its high mobility, safety, user comfort, cost-efficiency, and relatively low motion sensitivity. Aim: The present study aimed at developing an efficient and convenient two-choice fNIRS communication BCI by implementing a relatively short encoding time (2 s), considerably increasing communication speed, and decreasing the cognitive load of BCI users. Approach: To encode binary answers to 10 biographical questions, 10 healthy adults repeatedly performed a combined motor-speech imagery task within 2 different time windows guided by auditory instructions. Each answer-encoding run consisted of 10 trials. Answers were decoded during the ongoing experiment from the time course of the individually identified most-informative fNIRS channel-by-chromophore combination. Results: The answers of participants were decoded online with an accuracy of 85.8% (run-based group mean). Post-hoc analysis yielded an average single-trial accuracy of 68.1%. Analysis of the effect of number of trial repetitions showed that the best information-transfer rate could be obtained by combining four encoding trials. Conclusions: The study demonstrates that an encoding time as short as 2 s can enable immediate, efficient, and convenient fNIRS-BCI communication.

18.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960592

RESUMEN

A Brain-Computer Interface (BCI) is a medium for communication between the human brain and computers, which does not rely on other human neural tissues, but only decodes Electroencephalography (EEG) signals and converts them into commands to control external devices. Motor Imagery (MI) is an important BCI paradigm that generates a spontaneous EEG signal without external stimulation by imagining limb movements to strengthen the brain's compensatory function, and it has a promising future in the field of computer-aided diagnosis and rehabilitation technology for brain diseases. However, there are a series of technical difficulties in the research of motor imagery-based brain-computer interface (MI-BCI) systems, such as: large individual differences in subjects and poor performance of the cross-subject classification model; a low signal-to-noise ratio of EEG signals and poor classification accuracy; and the poor online performance of the MI-BCI system. To address the above problems, this paper proposed a combined virtual electrode-based EEG Source Analysis (ESA) and Convolutional Neural Network (CNN) method for MI-EEG signal feature extraction and classification. The outcomes reveal that the online MI-BCI system developed based on this method can improve the decoding ability of multi-task MI-EEG after training, it can learn generalized features from multiple subjects in cross-subject experiments and has some adaptability to the individual differences of new subjects, and it can decode the EEG intent online and realize the brain control function of the intelligent cart, which provides a new idea for the research of an online MI-BCI system.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Electroencefalografía/métodos , Redes Neurales de la Computación , Imágenes en Psicoterapia , Electrodos , Algoritmos
19.
J Neural Eng ; 20(6)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37963394

RESUMEN

Objective. In the field of motor imagery (MI) electroencephalography (EEG)-based brain-computer interfaces, deep transfer learning (TL) has proven to be an effective tool for solving the problem of limited availability in subject-specific data for the training of robust deep learning (DL) models. Although considerable progress has been made in the cross-subject/session and cross-device scenarios, the more challenging problem of cross-task deep TL remains largely unexplored.Approach. We propose a novel explainable cross-task adaptive TL method for MI EEG decoding. Firstly, similarity analysis and data alignment are performed for EEG data of motor execution (ME) and MI tasks. Afterwards, the MI EEG decoding model is obtained via pre-training with extensive ME EEG data and fine-tuning with partial MI EEG data. Finally, expected gradient-based post-hoc explainability analysis is conducted for the visualization of important temporal-spatial features.Main results. Extensive experiments are conducted on one large ME EEG High-Gamma dataset and two large MI EEG datasets (openBMI and GIST). The best average classification accuracy of our method reaches 80.00% and 72.73% for OpenBMI and GIST respectively, which outperforms several state-of-the-art algorithms. In addition, the results of the explainability analysis further validate the correlation between ME and MI EEG data and the effectiveness of ME/MI cross-task adaptation.Significance. This paper confirms that the decoding of MI EEG can be well facilitated by pre-existing ME EEG data, which largely relaxes the constraint of training samples for MI EEG decoding and is important in a practical sense.


Asunto(s)
Interfaces Cerebro-Computador , Imaginación , Electroencefalografía/métodos , Algoritmos , Aprendizaje Automático
20.
J Neuroeng Rehabil ; 20(1): 159, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980496

RESUMEN

BACKGROUND: In clinical practice, motor imagery has been proposed as a treatment modality for stroke owing to its feasibility in patients with severe motor impairment. Motor imagery-based interventions can be categorized as open- or closed-loop. Closed-loop intervention is based on voluntary motor imagery and induced peripheral sensory afferent (e.g., Brain Computer Interface (BCI)-based interventions). Meanwhile, open-loop interventions include methods without voluntary motor imagery or sensory afferent. Resting-state functional connectivity (rs-FC) is defined as a significant temporal correlated signal among functionally related brain regions without any stimulus. rs-FC is a powerful tool for exploring the baseline characteristics of brain connectivity. Previous studies reported changes in rs-FC after motor imagery interventions. Systematic reviews also reported the effects of motor imagery-based interventions at the behavioral level. This study aimed to review and describe the relationship between the improvement in motor function and changes in rs-FC after motor imagery in patients with stroke. REVIEW PROCESS: The literature review was based on Arksey and O'Malley's framework. PubMed, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science were searched up to September 30, 2023. The included studies covered the following topics: illusion without voluntary action, motor imagery, action imitation, and BCI-based interventions. The correlation between rs-FC and motor function before and after the intervention was analyzed. After screening by two independent researchers, 13 studies on BCI-based intervention, motor imagery intervention, and kinesthetic illusion induced by visual stimulation therapy were included. CONCLUSION: All studies relating to motor imagery in this review reported improvement in motor function post-intervention. Furthermore, all those studies demonstrated a significant relationship between the change in motor function and rs-FC (e.g., sensorimotor network and parietal cortex).


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Encéfalo , Imágenes en Psicoterapia/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Recuperación de la Función/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA