Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621879

RESUMEN

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Asunto(s)
Miocitos Cardíacos , ATPasa Intercambiadora de Sodio-Potasio , Ratas , Animales , Células Cultivadas , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Angiotensina II/efectos adversos , Angiotensina II/metabolismo , Péptido Natriurético Encefálico/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621976

RESUMEN

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Asunto(s)
Alcaloides de Berberina , Hipoxia , Mitofagia , Fenilacetatos , Humanos , Mitofagia/fisiología , Caspasa 3 , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Adenosina Trifosfato/farmacología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales
3.
Phytomedicine ; 129: 155597, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643713

RESUMEN

BACKGROUND: Sepsis-induced cardiac dysfunction (SICD) is a serious complication of sepsis that is associated with increased mortality. Ferroptosis has been reported in the SICD. TaoHe ChengQi decoction (THCQD), a classical traditional Chinese medicinal formula, has multiple beneficial pharmacological effects. The potential effects of THCQD on the SICD remain unknown. PURPOSE: To investigate the effect of THCQD on SICD and explore whether this effect is related to the regulation of myocardial ferroptosis through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. METHODS: We induced sepsis in a mouse model using cecal ligation and puncture (CLP) and administered THCQD (2 and 4 g/kg) and dexamethasone (40 mg/kg). Mice mortality was recorded and survival curves were plotted. Echocardiography, hematoxylin and eosin staining, and analysis of serum myocardial injury markers and inflammatory factors were used to evaluate cardiac pathology. Myocardial ferroptosis was detected by quantifying specific biomarker content and protein levels. Through HPLC-Q-Exactive-MS analysis, we identified the components of the THCQD. Network pharmacology analysis and Cellular Thermal Shift Assay (CETSA) were utilized to predict the targets of THCQD for treating SICD. We detected the expression of Nrf2 using Western blotting or immunofluorescence. An RSL3-induced ferroptosis model was established using neonatal rat cardiomyocytes (NRCMs) to further explore the pharmacological mechanism of THCQD. In addition to measuring cell viability, we observed changes in NRCM mitochondria using electron microscopy and JC-1 staining. NRF2 inhibitor ML385 and Nrf2 knockout mice were used to validate whether THCQD exerted protective effects against SICD through Nrf2-mediated ferroptosis signaling. RESULTS: THCQD reduced mortality in septic mice, protected against CLP-induced myocardial injury, decreased systemic inflammatory response, and prevented myocardial ferroptosis. Network pharmacology analysis and CETSA experiments predicted that THCQD may protect against SICD by activating the Nrf2 signaling pathway. Western blotting and immunofluorescence showed that THCQD activated Nrf2 in cardiac tissue. THCQDs consistently mitigated RSL3-induced ferroptosis in NRCM, which is related to Nrf2. Furthermore, the pharmacological inhibition of Nrf2 and genetic Nrf2 knockout partially reversed the protective effects of THCQD on SICD and ferroptosis. CONCLUSION: The effect of THCQD on SICD was achieved by activating Nrf2 and its downstream pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Ferroptosis , Factor 2 Relacionado con NF-E2 , Sepsis , Animales , Masculino , Ratones , Ratas , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Ferroptosis/efectos de los fármacos , Cardiopatías/tratamiento farmacológico , Cardiopatías/etiología , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Farmacología en Red , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Sprague-Dawley , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
4.
Redox Biol ; 71: 103124, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503216

RESUMEN

OBJECTIVE: Cardiomyocyte senescence is an important contributor to cardiovascular diseases and can be induced by stressors including DNA damage, oxidative stress, mitochondrial dysfunction, epigenetic regulation, etc. However, the underlying mechanisms for the development of cardiomyocyte senescence remain largely unknown. Sulfur dioxide (SO2) is produced endogenously by aspartate aminotransferase 2 (AAT2) catalysis and plays an important regulatory role in the development of cardiovascular diseases. The present study aimed to explore the effect of endogenous SO2 on cardiomyocyte senescence and the underlying molecular mechanisms. APPROACH AND RESULTS: We interestingly found a substantial reduction in the expression of AAT2 in the heart of aged mice in comparison to young mice. AAT2-knockdowned cardiomyocytes exhibited reduced SO2 content, elevated expression levels of Tp53, p21Cip/Waf, and p16INk4a, enhanced SA-ß-Gal activity, and elevated level of γ-H2AX foci. Notably, supplementation with a SO2 donor ameliorated the spontaneous senescence phenotype and DNA damage caused by AAT2 deficiency in cardiomyocytes. Mechanistically, AAT2 deficiency suppressed the sulphenylation of signal transducer and activator of transcription 3 (STAT3) facilitated its nuclear translocation and DNA-binding capacity. Conversely, a mutation in the cysteine (Cys) 259 residue of STAT3 blocked SO2-induced STAT3 sulphenylation and subsequently prevented the inhibitory effect of SO2 on STAT3-DNA-binding capacity, DNA damage, and cardiomyocyte senescence. Additionally, cardiomyocyte (cm)-specific AAT2 knockout (AAT2cmKO) mice exhibited a deterioration in cardiac function, cardiomegaly, and cardiac aging, whereas supplementation with SO2 donors mitigated the cardiac aging and remodeling phenotypes in AAT2cmKO mice. CONCLUSION: Downregulation of the endogenous SO2/AAT2 pathway is a crucial pathogenic mechanism underlying cardiomyocyte senescence. Endogenous SO2 modifies STAT3 by sulphenylating Cys259, leading to the inhibition of DNA damage and the protection against cardiomyocyte senescence.


Asunto(s)
Enfermedades Cardiovasculares , Cisteína , Ratones , Animales , Cisteína/metabolismo , Miocitos Cardíacos/metabolismo , Dióxido de Azufre/farmacología , Enfermedades Cardiovasculares/metabolismo , Factor de Transcripción STAT3/metabolismo , Epigénesis Genética , ADN/metabolismo , Senescencia Celular
5.
J Biol Chem ; 300(3): 105759, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367666

RESUMEN

Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.


Asunto(s)
Miocitos Cardíacos , Canales de Potasio Shal , Ubiquitina-Proteína Ligasas , Animales , Humanos , Conejos , Potenciales de Acción/fisiología , Estudio de Asociación del Genoma Completo , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células HEK293
6.
Phytomedicine ; 126: 155441, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394729

RESUMEN

BACKGROUND: The mitochondrial unfolded protein response (UPRmt) is the first line of defense against mitochondrial dysfunction in several diseases. Baicalein, which is an extract of Scutellaria baicalensis Georgi roots, exerts mitoprotective effects on metabolic disorders and cardiovascular diseases. However, it remains unclear whether baicalein alleviates obesity-induced cardiac damage through the UPRmt. PURPOSE: The present research designed to clarify the role of baicalein in lipotoxicity-induced myocardial apoptosis and investigated the UPRmt-related mechanism. METHODS: In the in vitro experiment, palmitic acid (PA)-treated AC16 cardiomyocytes were established to mimic obesity-induced myocardial injury. After pretreatment of AC16 cells with baicalein, the levels of cell vitality, apoptosis, mitochondrial membrane potential, mitochondrial oxidative stress, and UPRmt-related proteins were determined. Additionally, AC16 cells were treated with ML385 or siRNA to explore the regulation of the UPRmt by NRF2 signaling. In the in vivo experiment, male db/db mice administered with baicalein for 8 weeks were used to validate the effects of baicalein on cardiac damage induced by obesity, the UPRmt, and the NRF2-related pathway. RESULTS: In AC16 cardiomyocytes, PA dose-dependently increased the expression of UPRmt markers (HSP60, LONP1, ATF4, and ATF5). This increase was accompanied by enhanced production of mitochondrial ROS, reduced mitochondrial membrane potential, and elevated the expression levels of cytochrome c, cleaved caspase-3, and Bax/Bcl2, eventually leading to cell apoptosis. Baicalein treatment reversed UPRmt activation and mitochondrial damage and impeded mitochondrial-mediated cell apoptosis. Moreover, NRF2 downregulation by its inhibitor ML385 or siRNA diminished baicalein-mediated NRF2 signaling activation and UPRmt inhibition and triggered mitochondrial dysfunction. Additionally, NRF2 deficiency more intensely activated the UPRmt, resulting in mitochondrial oxidative stress and apoptosis of PA-induced cardiomyocytes, thus indicating that NRF2 plays a vital role in mitochondrial homeostasis regulation. In the in vivo study in db/db mice, baicalein inhibited the UPRmt, enhanced the antioxidant capacity, and attenuated cardiac dysfunction through a NRF2-activated pathway. CONCLUSION: To our best knowledge, these results provide the first insight that baicalein inhibits the UPRmt to induce a protective effect against lipotoxicity-induced mitochondrial damage and cardiomyocyte apoptosis via activating NRF2 signaling and suggest a new role of NRF2 in UPRmt regulation.


Asunto(s)
Flavanonas , Cardiopatías , Enfermedades Mitocondriales , Ratones , Animales , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Respuesta de Proteína Desplegada , Apoptosis , ARN Interferente Pequeño/farmacología , Enfermedades Mitocondriales/metabolismo , Estrés Oxidativo , Miocitos Cardíacos
7.
Phytochemistry ; 218: 113935, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029953

RESUMEN

Seven undescribed tannins, namely gejaponin A-G, and one dehydrodigallic acid derivative 3,4-dihydroxy-5-(3,4,5-trihydroxy-1-ethoxycarbonyl phenoxy)benzoic acid, together with eighteen known polyphenols were isolated from the 95% ethanol extract of the aerial part of Geum japonicum Thunb. var. chinense F. Bolle. Their structures were elucidated on the basis of comprehensive analysis of UV, IR, NMR, HRMS, and CD spectroscopy experiments. To evaluate their bioactivities, sixteen major compounds were selected to intervene in hydrogen peroxide (H2O2)-induced oxidative damage on H9c2 rat cardiomyoblasts. Some compounds demonstrated high activity in this assay, of which, the known compounds 16 and 21 exhibited strong protective effects against H2O2-induced injury in H9c2 rat cardiomyoblasts, with a comparable cardioprotective activity as that of the positive control trimetazidine, thereby revealing cardioprotective activities from G. japonicum var. chinense.


Asunto(s)
Geum , Ratas , Animales , Geum/química , Peróxido de Hidrógeno/farmacología , Polifenoles/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectroscopía de Resonancia Magnética
8.
Front Cell Dev Biol ; 11: 1264076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020917

RESUMEN

Cardiomyocyte hypertrophy, induced by elevated levels of angiotensin II (AngII), plays a crucial role in cardiovascular diseases. Current therapeutic approaches aim to regress cardiac hypertrophy but have limited efficacy. Widely used Japanese Kampo medicines are highly safe and potential therapeutic agents. This study aims to explore the impact and mechanisms by which Moku-boi-to (MBT), a Japanese Kampo medicine, exerts its potential cardioprotective benefits against AngII-induced cardiomyocyte hypertrophy, bridging the knowledge gap and contributing to the development of novel therapeutic strategies. By evaluating the effects of six Japanese Kampo medicines with known cardiovascular efficiency on AngII-induced cardiomyocyte hypertrophy and cell death, we identified MBT as a promising candidate. MBT exhibited preventive effects against AngII-induced cardiomyocyte hypertrophy, cell death and demonstrated improvements in intracellular Ca2+ signaling regulation, ROS production, and mitochondrial function. Unexpectedly, experiments combining MBT with the AT1 receptor antagonist losartan suggested that MBT may target the AT1 receptor. In an isoproterenol-induced heart failure mouse model, MBT treatment demonstrated significant effects on cardiac function and hypertrophy. These findings highlight the cardioprotective potential of MBT through AT1 receptor-mediated mechanisms, offering valuable insights into its efficacy in alleviating AngII-induced dysfunction in cardiomyocytes. The study suggests that MBT holds promise as a safe and effective prophylactic agent for cardiac hypertrophy, providing a deeper understanding of its mechanisms for cardioprotection against AngII-induced dysfunction.

9.
Cell Mol Bioeng ; 16(4): 243-259, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37810996

RESUMEN

Introduction: Early afterdepolarizations (EADs) are secondary voltage depolarizations associated with reduced repolarization reserve (RRR) that can trigger lethal arrhythmias. Relating EADs to triggered activity is difficult to study, so the ability to suppress or provoke EADs would be experimentally useful. Here, we use computational simulations to assess the feasibility of subthreshold optogenetic stimulation modulating the propensity for EADs (cell-scale) and EAD-associated ectopic beats (organ-scale). Methods: We modified a ventricular ionic model by reducing rapid delayed rectifier potassium (0.25-0.1 × baseline) and increasing L-type calcium (1.0-3.5 × baseline) currents to create RRR conditions with varying severity. We ran simulations in models of single cardiomyocytes and left ventricles from post-myocardial infarction patient MRI scans. Optogenetic stimulation was simulated using either ChR2 (depolarizing) or GtACR1 (repolarizing) opsins. Results: In cell-scale simulations without illumination, EADs were seen for 164 of 416 RRR conditions. Subthreshold stimulation of GtACR1 reduced EAD incidence by up to 84.8% (25/416 RRR conditions; 0.1 µW/mm2); in contrast, subthreshold ChR2 excitation increased EAD incidence by up to 136.6% (388/416 RRR conditions; 50 µW/mm2). At the organ scale, we assumed simultaneous, uniform illumination of the epicardial and endocardial surfaces. GtACR1-mediated suppression (10-50 µW/mm2) and ChR2-mediated unmasking (50-100 µW/mm2) of EAD-associated ectopic beats were feasible in three distinct ventricular models. Conclusions: Our findings suggest that optogenetics could be used to silence or provoke both EADs and EAD-associated ectopic beats. Validation in animal models could lead to exciting new experimental regimes and potentially to novel anti-arrhythmia treatments. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00781-z.

10.
Stem Cell Res Ther ; 14(1): 296, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37840130

RESUMEN

BACKGROUND: Direct cardiac reprogramming is currently being investigated for the generation of cells with a true cardiomyocyte (CM) phenotype. Based on the original approach of cardiac transcription factor-induced reprogramming of fibroblasts into CM-like cells, various modifications of that strategy have been developed. However, they uniformly suffer from poor reprogramming efficacy and a lack of translational tools for target cell expansion and purification. Therefore, our group has developed a unique approach to generate proliferative cells with a pre-CM phenotype that can be expanded in vitro to yield substantial cell doses. METHODS: Cardiac fibroblasts were reprogrammed toward CM fate using lentiviral transduction of cardiac transcriptions factors (GATA4, MEF2C, TBX5, and MYOCD). The resulting cellular phenotype was analyzed by RNA sequencing and immunocytology. Live target cells were purified based on intracellular CM marker expression using molecular beacon technology and fluorescence-activated cell sorting. CM commitment was assessed using 5-azacytidine-based differentiation assays and the therapeutic effect was evaluated in a mouse model of acute myocardial infarction using echocardiography and histology. The cellular secretome was analyzed using mass spectrometry. RESULTS: We found that proliferative CM precursor-like cells were part of the phenotype spectrum arising during direct reprogramming of fibroblasts toward CMs. These induced CM precursors (iCMPs) expressed CPC- and CM-specific proteins and were selectable via hairpin-shaped oligonucleotide hybridization probes targeting Myh6/7-mRNA-expressing cells. After purification, iCMPs were capable of extensive expansion, with preserved phenotype when under ascorbic acid supplementation, and gave rise to CM-like cells with organized sarcomeres in differentiation assays. When transplanted into infarcted mouse hearts, iCMPs prevented CM loss, attenuated fibrotic scarring, and preserved ventricular function, which can in part be attributed to their substantial secretion of factors with documented beneficial effect on cardiac repair. CONCLUSIONS: Fibroblast reprogramming combined with molecular beacon-based cell selection yields an iCMP-like cell population with cardioprotective potential. Further studies are needed to elucidate mechanism-of-action and translational potential.


Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Remodelación Ventricular , Proteínas de Dominio T Box/genética , Factores de Transcripción MEF2/genética , Infarto del Miocardio/terapia , Infarto del Miocardio/tratamiento farmacológico , Fibroblastos , Reprogramación Celular/genética
11.
Exp Gerontol ; 182: 112305, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37797916

RESUMEN

Heart disease is a significant health concern for elderly individuals, with heart aging being the primary cause. Recent studies have shown that autophagy can play a protective role in preventing cardiac aging. Our previous research confirmed that Chikusetsu saponin IVa, a fundamental component of Saponins of Panax japonics (SPJ), can enhance basic autophagy levels in cardiomyocyte of isoproterenol induced cardiac fibrosis mice. However, it remains unclear whether SPJ possesses a protective effect on cardiac dysfunction during the natural aging process. Rats were randomly divided into four groups: adult control group (6 months old), aging group (24 months old), aging group treated with 10 mg/kg SPJ, and aging group treated with 30 mg/kg SPJ. The heart function, blood pressure, and heart mass index (HMI) were measured. Hematoxylin and eosin staining (H&E) and Wheat Germ Agglutinin (WGA) staining were used to observe the changes in morphology, while Masson staining was used to examine collagen deposition in the rat hearts and CD45 immunohistochemistry was conducted to examine the macrophage infiltration in heart tissues. TUNEL kit was used to detect apoptosis level of cardiomyocyte, and western blot was used to evaluate autophagy-related proteins as well as AMPK/mTOR/ULK1 pathway-related markers. SPJ treatment improved the cardiac function, reduced HMI, attenuated myocardial fiber disorder, inhibited inflammatory cell infiltration, and decreased collagen deposition and cardiomyocyte apoptosis in aging rats. Additionally, SPJ treatment decreased the expression of aging-related proteins and restored the expression of autophagy-related markers. SPJ activated autophagy through the activation of AMPK, which in turn increased the phosphorylation of ULK1(Ser555), while inhibited the phosphorylation of mTOR and ULK1(Ser757). Our study demonstrates that SPJ improves the cardiac function of aging rats by enhancing basal autophagy through the AMPK/mTOR/ULK1 pathway. These results offer a theoretical foundation and empirical evidence to support the clinical advancement of SPJ in enhancing age-related cardiac dysfunction.


Asunto(s)
Cardiomiopatías , Panax , Saponinas , Humanos , Ratas , Ratones , Animales , Anciano , Proteínas Quinasas Activadas por AMP/metabolismo , Panax/metabolismo , Miocitos Cardíacos , Serina-Treonina Quinasas TOR/metabolismo , Envejecimiento/metabolismo , Saponinas/farmacología , Autofagia , Colágeno , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular
12.
Int J Biol Macromol ; 253(Pt 3): 126994, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37730001

RESUMEN

Ginseng is rich of polysaccharides, however, the evidence supporting polysaccharides to distinguish various ginseng species is rarely reported. Focusing on six root ginseng (e.g., Panax ginseng-PG, P. quinquefolius-PQ, P. notoginseng-PN, red ginseng-RG, P. japonicus-PJ, and P. japonicus var. major-PJM), the contained non-starch polysaccharides (NPs) were structurally characterized and compared by both the chemical and biological evaluation. Holistic fingerprinting at three levels (the NPs and the acid hydrolysates involving oligosaccharides and monosaccharides) utilized various chromatography methods, and the treatment of H9c2 cells with the NPs by OGD and H2O2-induced injury models was used to assess the protective effect. NPs from six Panax herbal medicines occupied about 20 % of the total polysaccharides, which were of the highest content in RG and the lowest in PN. NPs from six ginseng exhibited weak differentiations in the molecular weight distribution, while marker oligosaccharides were found to distinguish PN and RG from the others. Glc and GalA were more abundant in the NPs for PG and RG, respectively. NPs from PQ (100/200 µg/mL) showed significant cardiomyocyte protection effect by regulating the mitochondrial functions. This work further testifies the role of polysaccharides in quality control of herbal medicine, with new markers discovered beneficial to distinguish the ginseng.


Asunto(s)
Panax , Plantas Medicinales , Miocitos Cardíacos , Peróxido de Hidrógeno , Panax/química , Extractos Vegetales/química , Polisacáridos/farmacología , Polisacáridos/química , Oligosacáridos
13.
Phytother Res ; 37(12): 5854-5870, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37655750

RESUMEN

Doxorubicin (DOX) has aroused contradiction between its potent anti-tumor capacity and severe cardiotoxicity. Galangin (Gal) possesses antioxidant, anti-inflammatory, and antiapoptotic activities. We aimed to explore the role and underlying mechanisms of Gal on DOX-induced cardiotoxicity. Mice were intraperitoneally injected with DOX (3 mg/kg, every 2 days for 2 weeks) to generate cardiotoxicity model and Gal (15 mg/kg, 2 weeks) was co-administered via gavage daily. Nuclear factor erythroid 2-related factor 2 (Nrf2) specific inhibitor, ML385, was employed to explore the underlying mechanisms. Compared to DOX-insulted mice, Gal effectively improved cardiac dysfunction and ameliorated myocardial damage. DOX-induced increase of reactive oxygen species, malondialdehyde, and NADPH oxidase activity and downregulation of superoxide dismutase (SOD) activity were blunted by Gal. Gal also markedly blocked increase of IL-1ß, IL-6, and TNF-α in DOX-insulted heart. Mechanistically, Gal reversed DOX-induced downregulation of Nrf2, HO-1, and promoted nuclear translocation of Nrf2. ML385 markedly blunted the cardioprotective effects of Gal, as well as inhibitive effects on oxidative stress and inflammation. Gal ameliorates DOX-induced cardiotoxicity by suppressing oxidative stress and inflammation via activating Nrf2/HO-1 signaling pathway. Gal may serve as a promising cardioprotective agent for DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Hemo-Oxigenasa 1 , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Apoptosis , Estrés Oxidativo , Doxorrubicina/efectos adversos , Transducción de Señal , Inflamación/metabolismo , Miocitos Cardíacos
14.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3508-3515, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37474985

RESUMEN

Corydalis hendersonii(CH) is a Tibetan folk medicine with the functions of clearing heat, detoxifying, cooling blood, checking diarrhea, and lowering blood pressure. It is often used to treat high altitude polycythemia, vasculitis, peptic ulcer, and diarrhea. Nine compounds were separated from the ethanol extract of CH by silica gel, ODS, Sephadex LH-20 chromatography and semi-preparative HPLC. Their structures were identified as hendersine H(1),hendersine I(2), dehydrocheilanthifoline(3), protopine(4), izmirine(5), 6,7-methylenedioxy-1(2H)-isoquinolinone(6), icariside D_2(7), ethyl 4-(ß-D-glucopyranosyloxy)-3-methoxybenzoate(8), 3-hydroxy-4-methoxybenzoic acid(9), respectively, by the spectroscopic data analysis and comparison with those in the literature. Among them, compounds 1 and 2 are new isoquinoline alkaloids, and compounds 7-9 are reported the first time for Corydalis. The hypoglycemic model of H9c2 cardiomyocytes and the inflammatory model of H9c2 cardiomyocytes induced by conditional supernatant were employed to determine the activities of the above compounds. The results showed that 20 µmol·L~(-1) compound 1 had a protective effect on H9c2 cardiomyocytes and 10 µmol·L~(-1) compounds 4 and 5 inhibited H9c2 cardiomyocyte inflammation induced by conditional supernatant.


Asunto(s)
Alcaloides , Corydalis , Humanos , Corydalis/química , Alcaloides/farmacología , Alcaloides/química , Inflamación , Análisis Espectral , Isoquinolinas/farmacología
15.
Theranostics ; 13(11): 3872-3896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441603

RESUMEN

Introduction: The potentially unlimited number of cardiomyocyte (CMs) derived from human induced pluripotent stem cells (hiPSCs) in vitro facilitates high throughput applications like cell transplantation for myocardial repair, disease modelling, and cardiotoxicity testing during drug development. Despite promising progress in these areas, a major disadvantage that limits the use of hiPSC derived CMs (hiPSC-CMs) is their immaturity. Methods: Three hiPSC lines (PCBC-hiPSC, DP3-hiPSCs, and MLC2v-mEGFP hiPSC) were differentiated into CMs (PCBC-CMs, DP3-CMs, and MLC2v-CMs, respectively) with or without retinoic acid (RA). hiPSC-CMs were either maintained up to day 30 of contraction (D30C), or D60C, or purified using lactate acid and used for experiments. Purified hiPSC-CMs were cultured in basal maturation medium (BMM) or BMM supplemented with ascorbic acid (AA) for 14 days. The AA treated and non-treated hiPSC-CMs were characterized for sarcomeric proteins (MLC2v, TNNI3, and MYH7), ion channel proteins (Kir2.1, Nav1.5, Cav1.2, SERCA2a, and RyR), mitochondrial membrane potential, metabolomics, and action potential. Bobcat339, a selective and potent inhibitor of DNA demethylation, was used to determine whether AA promoted hiPSC-CM maturation through modulating DNA demethylation. Results: AA significantly increased MLC2v expression in PCBC-CMs, DP3-CMs, MLC2v-CMs, and RA induced atrial-like PCBC-CMs. AA treatment significantly increased mitochondrial mass, membrane potential, and amino acid and fatty acid metabolism in PCBC-CMs. Patch clamp studies showed that AA treatment induced PCBC-CMs and DP3-CMs adaptation to a ventricular-like phenotype. Bobcat339 inhibited MLC2v protein expression in AA treated PCBC-CMs and DP3-CMs. DNA demethylation inhibition was also associated with reduced TET1 and TET2 protein expressions and reduced accumulation of the oxidative product, 5 hmC, in both PCBC-CMs and DP3-CMs, in the presence of AA. Conclusions: Ascorbic acid induced MLC2v protein expression and promoted ventricular-like CM subtype in hiPSC-CMs. The effect of AA on hiPSC-CM was attenuated with inhibition of TET1/TET2 mediated DNA demethylation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ácido Ascórbico/farmacología , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Tretinoina/farmacología , Tretinoina/metabolismo , Células Cultivadas , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
16.
Histochem Cell Biol ; 160(4): 341-347, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37329457

RESUMEN

L-Carnitine (ß-hydroxy-γ-trimethylaminobutyric acid, LC) is a crucial molecule for the mitochondrial oxidation of fatty acids. It facilitates the transport of long-chain fatty acids into the mitochondrial matrix. The reduction in LC levels during the aging process has been linked to numerous cardiovascular disorders, including contractility dysfunction, and disrupted intracellular Ca2+ homeostasis. The aim of this study was to examine the effects of long-term (7 months) LC administration on cardiomyocyte contraction and intracellular Ca2+ transients ([Ca2+]i) in aging rats. Male albino Wistar rats were randomly assigned to either the control or LC-treated groups. LC (50 mg/kg body weight/day) was dissolved in distilled water and orally administered for a period of 7 months. The control group received distilled water alone. Subsequently, ventricular single cardiomyocytes were isolated, and the contractility and Ca2+ transients were recorded in aging (18 months) rats. This study demonstrates, for the first time, a novel inotropic effect of long-term LC treatment on rat ventricular cardiomyocyte contraction. LC increased cardiomyocyte cell shortening and resting sarcomere length. Furthermore, LC supplementation led to a reduction in resting [Ca2+]i level and an increase in the amplitude of [Ca2+]i transients, indicative of enhanced contraction. Consistent with these results, decay time of Ca2+ transients also decreased significantly in the LC-treated group. The long-term administration of LC may help restore the Ca2+ homeostasis altered during aging and could be used as a cardioprotective medication in cases where myocyte contractility is diminished.


Asunto(s)
Carnitina , Miocitos Cardíacos , Ratas , Masculino , Animales , Miocitos Cardíacos/metabolismo , Carnitina/farmacología , Carnitina/metabolismo , Señalización del Calcio/fisiología , Ratas Wistar , Envejecimiento , Homeostasis , Agua/metabolismo , Agua/farmacología , Calcio/metabolismo
17.
Phytomedicine ; 117: 154922, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37321078

RESUMEN

BACKGROUND: Doxorubicin (DOX) is a potent anticancer chemotherapeutic agent whose clinical application is substantially constrained by its cardiotoxicity. The pathophysiology of DOX-induced cardiotoxicity manifests as cardiomyocyte pyroptosis and inflammation. Amentoflavone (AMF) is a naturally occurring biflavone possessing anti-pyroptotic and anti-inflammatory properties. However, the mechanism through which AMF alleviates DOX-induced cardiotoxicity remains undetermined. PURPOSE: This study aimed at investigating the role of AMF in alleviating DOX-induced cardiotoxicity. STUDY DESIGN AND METHODS: To assess the in vivo effect of AMF, DOX was intraperitoneally administered into a mouse model to induce cardiotoxicity. To elucidate the underlying mechanisms, the activities of STING/NLRP3 were quantified using the NLRP3 agonist nigericin and the STING agonist amidobenzimidazole (ABZI). Primary cardiomyocytes isolated from neonatal Sprague-Dawley rats were treated with saline (vehicle) or DOX with or without AMF and/or ABZI. The echocardiogram, haemodynamics, cardiac injury markers, heart/body weight ratio, and pathological alterations were monitored; the STING/NLRP3 pathway-associated proteins were detected by western blot and cardiomyocyte pyroptosis was analysed by immunofluorescence staining of cleaved N-terminal GSDMD and scanning electron microscopy. Furthermore, we evaluated the potential of AMF in compromising the anticancer effects of DOX in human breast cancer cell lines. RESULTS: AMF substantially alleviated cardiac dysfunction and reduced heart/body weight ratio and myocardial damage in mice models of DOX-induced cardiotoxicity. AMF effectively suppressed DOX-mediated upregulation of IL-1ß, IL-18, TNF-α, and pyroptosis-related proteins, including NLRP3, cleaved caspase-1, and cleaved N-terminal GSDMD. The levels of apoptosis-related proteins, namely Bax, cleaved caspase-3, and BCL-2 were not affected. In addition, AMF inhibited STING phosphorylation in DOX-affected hearts. Intriguingly, the administration of nigericin or ABZI dampened the cardioprotective effects of AMF. The in vitro anti-pyroptotic effect of AMF was demonstrated in attenuating the DOX-induced reduction in cardiomyocyte cell viability, upregulation of cleaved N-terminal GSDMD, and pyroptotic morphology alteration at the microstructural level. AMF exhibited a synergistic effect with DOX to reduce the viability of human breast cancer cells. CONCLUSION: AMF alleviates DOX-induced cardiotoxicity by suppressing cardiomyocyte pyroptosis and inflammation via inhibition of the STING/NLRP3 signalling pathway, thereby validating its efficacy as a cardioprotective agent.


Asunto(s)
Neoplasias de la Mama , Miocitos Cardíacos , Ratas , Ratones , Animales , Humanos , Femenino , Piroptosis , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nigericina/efectos adversos , Nigericina/metabolismo , Ratas Sprague-Dawley , Doxorrubicina/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamación/metabolismo , Neoplasias de la Mama/patología , Peso Corporal
18.
Int J Biol Macromol ; 242(Pt 1): 124708, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137351

RESUMEN

Nano­selenium (SeNPs) is a red elemental selenium with extremely small particles, which can be absorbed by the body and has biological activity. Currently, the most commonly used synthetic methods for SeNPs are biosynthesis and chemical synthesis. In this study, YC-3-SeNPs were biosynthesized by a strain of yak-gut Bacillus cereus YC-3, and meanwhile, CST-SeNPs were chemically synthesized and encapsulated with chitosan. A series of characterizations proved that YC-3-SeNPs and CST-SeNPs are spherical particles with excellent stability, and both have an excellent ability to scavenge free radicals in vitro. The particles of YC-3-SeNPs were encapsulated with polysaccharides, fiber, and protein, and it was less toxic than that of CST-SeNPs. Additionally, YC-3-SeNPs and CST-SeNPs may inhibit H2O2-induced oxidative stress in cardiomyocytes by activating the Keap1/Nrf2/HO-1 signaling pathway thereby scavenging ROS. Meanwhile, they may exert anti-apoptotic activity in cardiomyocytes by stabilizing mitochondrial membrane potential (∆Ψm) and balancing Bax/Bcl-2 protein, thereby reducing the protein expression of Cyt-c and Cleaved-caspase 3. Given the above, YC-3-SeNPs and CST-SeNPs with excellent antioxidant and anti-apoptotic activities may have broad application potential in the field of cardiovascular diseases.


Asunto(s)
Quitosano , Nanopartículas , Selenio , Animales , Bovinos , Antioxidantes/farmacología , Antioxidantes/química , Selenio/farmacología , Selenio/química , Quitosano/farmacología , Quitosano/química , Bacillus cereus , Proteína 1 Asociada A ECH Tipo Kelch , Peróxido de Hidrógeno , Nanopartículas/química , Factor 2 Relacionado con NF-E2
19.
Exp Ther Med ; 25(4): 172, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37006873

RESUMEN

Pathological cardiac hypertrophy is an independent risk factor for complications such as arrhythmia, myocardial infarction, sudden mortality and heart failure. Succinate, an intermediate product of the Krebs cycle, is released into the bloodstream by cells; its levels increase with exacerbations of hypertension, myocardial and other tissue damage and metabolic disease. Succinate may also be involved in several metabolic pathways and mediates numerous pathological effects through its receptor, succinate receptor 1 (SUCNR1; previously known as GPR91). Succinate-induced activation of SUCNR1 has been reported to be related to cardiac hypertrophy, making SUCNR1 a potential target for treating cardiac hypertrophy. Traditional Chinese medicine (TCM) and its active ingredients have served important roles in improving cardiac functions and treating heart failure. The present study investigated whether 4'-O-methylbavachadone (MeBavaC), an active ingredient of the herbal remedy Fructus Psoraleae, which is often used in TCM and has protective effect on myocardial injury and hypertrophy induced by adriamycin, ischemia-reperfusion and sepsis, could ameliorate succinate-induced cardiomyocyte hypertrophy by inhibiting the NFATc4 pathway. Using immunofluorescence staining, reverse transcription-quantitative PCR, western blotting and molecular docking analysis, it was determined that succinate activated the calcineurin/NFATc4 and ERK1/2 pathways to promote cardiomyocyte hypertrophy. MeBavaC inhibited cardiomyocyte hypertrophy, nuclear translocation of NFATc4 and ERK1/2 signaling activation in succinate-induced cardiomyocytes. Molecular docking analysis revealed that MeBavaC interacts with SUCNR1 to form a relatively stable binding and inhibits the succinate-SUCNR1 interaction. The results demonstrated that MeBavaC suppressed cardiomyocyte hypertrophy by blocking SUCNR1 receptor activity and inhibiting NFATc4 and ERK1/2 signaling, which will contribute to the preclinical development of this compound.

20.
Toxins (Basel) ; 15(4)2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37104221

RESUMEN

Jellyfish stings are the most common marine animal injuries worldwide, with approximately 150 million envenomation cases annually, and the victims may suffer from severe pain, itching, swelling, inflammation, arrhythmias, cardiac failure, or even death. Consequently, identification of effective first aid reagents for jellyfish envenoming is urgently needed. Here, we found that the polyphenol epigallocatechin-3-gallate (EGCG) markedly antagonized the hemolytic toxicity, proteolytic activity, and cardiomyocyte toxicity of the jellyfish Nemopilema nomurai venom in vitro and could prevent and treat systemic envenoming caused by N. nomurai venom in vivo. Moreover, EGCG is a natural plant active ingredient and widely used as a food additive without toxic side effects. Hence, we suppose that EGCG might be an effective antagonist against systemic envenoming induced by jellyfish venom.


Asunto(s)
Catequina , Venenos de Cnidarios , Escifozoos , Animales , Catequina/farmacología , Cnidarios , Venenos de Cnidarios/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA