Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Phytochem Anal ; 34(7): 816-829, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36704818

RESUMEN

INTRODUCTION: Scrophulariae Radix (SR) has been extensively used in traditional Chinese medicine (TCM) for thousands of years. However, the processing methods and production areas of Scrophularia ningpoensis have undergone notable historic changes. Thus, their effects on the bioactive constituents of SR still need to be studied further. OBJECTIVES: This study aimed to establish an objective and comprehensive method to identify the correlation of bioactive constituents of SR with variety, place of origin and processing method for evaluating their qualities. METHODOLOGY: An accurate and rapid high-performance liquid chromatography-diode array detector (HPLC-DAD) method for the simultaneous determination of 11 marker components (aucubin, harpagide, 6-O-methyl-catalpol, harpagoside, verbascoside, isoverbascoside, angoroside C, cinnamic acid, l-tyrosine, l-phenylalanine, and l-tryptophan) was established to evaluate the quality of SR for the first time. In addition, the effects of different production areas and processed methods on the target compounds were studied by analysing 66 batches of SR samples with chemometrics methods, including similarity evaluation of chromatographic fingerprints of TCM, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA). RESULTS: Compared with "sweating", short-term "steaming" and "slice-drying" could largely preserve the bioactive constituents of SR. When using the model established through PLS-DA, five components were identified as the most significant variables for discrimination. Furthermore, the score plots of PCA and the similarity evaluation revealed that variety had a more notable influence on the quality of SR than the place of origin. CONCLUSION: An objective approach of HPLC fingerprint coupled with chemometrics analysis and quantitative assessment could be applied to discriminate different processed SR and evaluate the qualities of SR rapidly.


Asunto(s)
Medicamentos Herbarios Chinos , Scrophularia , Cromatografía Líquida de Alta Presión/métodos , Quimiometría , Medicamentos Herbarios Chinos/química , Scrophularia/química , China
2.
Crit Rev Anal Chem ; 53(7): 1393-1418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34991387

RESUMEN

Since ancient times, herbal medicines (HMs) have been widely popular with consumers as a "natural" drug for health care and disease treatment. With the emergence of problems, such as increasing demand for HMs and shortage of resources, it often occurs the phenomenon of shoddy exceed and mixing the false with the genuine in the market. There is an urgent need to evaluate the quality of HMs to ensure their important role in health care and disease treatment, and to reduce the possibility of threat to human health. Modern analytical technology is can be analyzed for analyzing chemical components of HMs or their preparations. Reflecting complex chemical components' characteristic curves in the analysis sample, and the comprehensive effect of active ingredients of HMs. In this review, modern analytical technology (chromatography, spectroscopy, mass spectrometry), chemometrics methods (unsupervised, supervised) and their advantages, disadvantages, and applicability were introduced and summarized. In addition, the authentication application of modern analytical technology combined with chemometrics methods in four aspects, including origin, processing methods, cultivation methods, and adulteration of HMs have also been discussed and illustrated by a few typical studies. This article offers a general workflow of analytical methods that have been applied for HMs authentication and explains that the accuracy of authentication in favor of the quality assurance of HMs. It was provided reference value for the development and application of modern HMs.


Asunto(s)
Quimiometría , Plantas Medicinales , Humanos , Plantas Medicinales/química , Espectrometría de Masas/métodos , Tecnología , Extractos Vegetales
3.
Crit Rev Anal Chem ; 52(7): 1606-1623, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33840329

RESUMEN

Fraud in herbal medicines (HMs), commonplace throughout human history, is significantly related to medicinal effects with sometimes lethal consequences. Major HMs fraud events seem to occur with a certain regularity, such as substitution by counterfeits, adulteration by addition of inferior production-own materials, adulteration by chemical compounds, and adulteration by addition of foreign matter. The assessment of HMs fraud is in urgent demand to guarantee consumer protection against the four fraudulent activities. In this review, three analysis platforms (targeted, non-targeted, and the combination of non-targeted and targeted analysis) were introduced and summarized. Furthermore, the integration of analysis technology and chemometrics method (e.g., class-modeling, discrimination, and regression method) have also been discussed. Each integration shows different applicability depending on their advantages, drawbacks, and some factors, such as the explicit objective analysis or the nature of four types of HMs fraud. In an attempt to better solve four typical HMs fraud, appropriate analytical strategies are advised and illustrated with several typical studies. The article provides a general workflow of analysis methods that have been used for detection of HMs fraud. All analysis technologies and chemometrics methods applied can conduce to excellent reference value for further exploration of analysis methods in HMs fraud.


Asunto(s)
Quimiometría , Plantas Medicinales , Fraude , Humanos , Tecnología
4.
Front Pharmacol ; 11: 570616, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364946

RESUMEN

Cannabis (Cannabis sativa L.) is a highly promising medicinal plant with well-documented effectiveness and growing use in the treatment of various medical conditions. Cannabis oils are mostly used in galenic preparations, due to their easy adjustment of the administration dose, together with the enhanced bioavailability of its active compounds. As stated by the Italian Law (9/11/2015, 279 Official Gazette), "to ensure the quality of the oil-based cannabis preparation, the titration of the active substance(s) should be carried out." This study aims to represent the Italian panorama of cannabis oils, which were analyzed (8,201) to determine their cannabinoids content from 2017 to 2019. After application of the exclusion criteria, 4,774 standardized cannabis oils were included, which belong to different medicinal cannabis varieties and prepared according to different extraction methods. The concentration of the principal cannabinoids was taken into account dividing samples on the basis of the main extraction procedures and cannabis varieties. According to this analysis, the most substantial variations should be attributed to different cannabis varieties rather than to their extraction protocols. This study may be the starting point of preparatory pharmacists to assess the correct implementation of the preparation procedures and the quality of the extracts.

5.
Zhongguo Zhong Yao Za Zhi ; 44(5): 975-982, 2019 Mar.
Artículo en Chino | MEDLINE | ID: mdl-30989858

RESUMEN

This study aims to establish a combinative method based on fingerprint,assay of multi-component and chemometrics for quality evaluation of Magnoliae Officinalis Cortex. Twenty batches of samples were determined by UPLC and a common mode of fingerprint was established. The similarities between fingerprints of 20 batches of samples were over 0. 90 and the common mode were evaluated. Eight components were identified as syringing, magnocurarine, magnoflorine, magnoloside B, magnoloside A, honokiol,magnolol,and piperitylmagnolol by comparison with reference substances and their content in samples were simultaneously determined.Based on the results,the fingerprint had good consistency between the same origin and minor diversity between the different sources.Piperitylmagnolol and peak 13 could be used as a distinction with the different sources. According to content of 8 components,Fisher discriminant analysis model was established and different source sample was classified pursuant to the discriminant fraction. It is indicated that simultaneous quantification of multi components coupled with chemometrics analysis could be a well-acceptable strategy to identify and evaluate the quality of Magnoliae Officinalis Cortex.


Asunto(s)
Medicamentos Herbarios Chinos/normas , Magnolia/química , Fitoquímicos/análisis , Control de Calidad , Cromatografía Líquida de Alta Presión , Análisis Discriminante , Fitoquímicos/normas
6.
Zhongguo Zhong Yao Za Zhi ; 44(1): 100-105, 2019 Jan.
Artículo en Chino | MEDLINE | ID: mdl-30868819

RESUMEN

This present study aims to establish a UPLC method for simultaneously determining eleven components such as new chlorogenic acid,chlorogenic acid,caffeic acid,cryptochlorogenic acid,artichoke,isochlorogenic acid A,isochlorogenic acid B,isochlorogenic acid C,rutin,hibisin and loganin in Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica and comparing the differences in the contents of phenolic acids,flavonoids and iridoid glycosides of Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica.The method was carried out on an ACQUITY UPLC BEH C18column(2.1 mm×100 mm,1.7 µm) by a gradient elution using acetonitrile and 0.1% phosphoric acid.The flow rate was 0.3 mL·min-1.The column temperature was maintained at 30 ℃.The sample room temperature was 8 ℃.The wavelength was set at 326 nm for new chlorogenic acid,chlorogenic acid,caffeic acid,cryptochlorogenic acid,artichoke,isochlorogenic acid A,isochlorogenic acid B and isochlorogenic acid C,352 nm for rutin and lignin,and 238 nm for loganin.The injection volume was 1 µL.The eleven components has good resolution and was separated to baseline.Each component had a wide linear range and a good linear relationship(r≥0.999 6),the average recovery rate(n=9) was 98.96%,100.7%,97.24%,97.06%,99.53%,96.78%,98.12%,95.20%,95.12%,100.2%,98.61%and with RSD was 2.5%,1.4%,1.9%,2.1%,1.7%,1.9%,1.6%,2.0%,1.4%,2.2%,2.0%,respectively.Based on the results of the content determination,the chemometric methods such as cluster analysis and principal component analysis were used to compare the Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica.The results showed that Lonicerae Japonicae Flos and leaves of Lonicera japonica were similar in the chemical constituents,but both showed chemical constituents difference compored to Lonicerae Japonicae Caulis.The established multi-component quantitative analysis method can provide a reference for the quality control of Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica.


Asunto(s)
Medicamentos Herbarios Chinos/química , Lonicera/química , Fitoquímicos/análisis , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Flores/química , Hidroxibenzoatos/análisis , Glicósidos Iridoides/análisis , Hojas de la Planta/química , Control de Calidad
7.
Artículo en Chino | WPRIM | ID: wpr-771511

RESUMEN

This present study aims to establish a UPLC method for simultaneously determining eleven components such as new chlorogenic acid,chlorogenic acid,caffeic acid,cryptochlorogenic acid,artichoke,isochlorogenic acid A,isochlorogenic acid B,isochlorogenic acid C,rutin,hibisin and loganin in Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica and comparing the differences in the contents of phenolic acids,flavonoids and iridoid glycosides of Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica.The method was carried out on an ACQUITY UPLC BEH C18column(2.1 mm×100 mm,1.7 μm) by a gradient elution using acetonitrile and 0.1% phosphoric acid.The flow rate was 0.3 mL·min-1.The column temperature was maintained at 30 ℃.The sample room temperature was 8 ℃.The wavelength was set at 326 nm for new chlorogenic acid,chlorogenic acid,caffeic acid,cryptochlorogenic acid,artichoke,isochlorogenic acid A,isochlorogenic acid B and isochlorogenic acid C,352 nm for rutin and lignin,and 238 nm for loganin.The injection volume was 1 μL.The eleven components has good resolution and was separated to baseline.Each component had a wide linear range and a good linear relationship(r≥0.999 6),the average recovery rate(n=9) was 98.96%,100.7%,97.24%,97.06%,99.53%,96.78%,98.12%,95.20%,95.12%,100.2%,98.61%and with RSD was 2.5%,1.4%,1.9%,2.1%,1.7%,1.9%,1.6%,2.0%,1.4%,2.2%,2.0%,respectively.Based on the results of the content determination,the chemometric methods such as cluster analysis and principal component analysis were used to compare the Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica.The results showed that Lonicerae Japonicae Flos and leaves of Lonicera japonica were similar in the chemical constituents,but both showed chemical constituents difference compored to Lonicerae Japonicae Caulis.The established multi-component quantitative analysis method can provide a reference for the quality control of Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica.


Asunto(s)
Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos , Química , Flavonoides , Flores , Química , Hidroxibenzoatos , Glicósidos Iridoides , Lonicera , Química , Fitoquímicos , Hojas de la Planta , Química , Control de Calidad
8.
Artículo en Chino | WPRIM | ID: wpr-777529

RESUMEN

This study aims to establish a combinative method based on fingerprint,assay of multi-component and chemometrics for quality evaluation of Magnoliae Officinalis Cortex. Twenty batches of samples were determined by UPLC and a common mode of fingerprint was established. The similarities between fingerprints of 20 batches of samples were over 0. 90 and the common mode were evaluated. Eight components were identified as syringing, magnocurarine, magnoflorine, magnoloside B, magnoloside A, honokiol,magnolol,and piperitylmagnolol by comparison with reference substances and their content in samples were simultaneously determined.Based on the results,the fingerprint had good consistency between the same origin and minor diversity between the different sources.Piperitylmagnolol and peak 13 could be used as a distinction with the different sources. According to content of 8 components,Fisher discriminant analysis model was established and different source sample was classified pursuant to the discriminant fraction. It is indicated that simultaneous quantification of multi components coupled with chemometrics analysis could be a well-acceptable strategy to identify and evaluate the quality of Magnoliae Officinalis Cortex.


Asunto(s)
Cromatografía Líquida de Alta Presión , Análisis Discriminante , Medicamentos Herbarios Chinos , Estándares de Referencia , Magnolia , Química , Fitoquímicos , Estándares de Referencia , Control de Calidad
9.
Zhongguo Zhong Yao Za Zhi ; 43(19): 3962-3969, 2018 Oct.
Artículo en Chino | MEDLINE | ID: mdl-30453724

RESUMEN

To establish the high performance liquid chromatography (HPLC) fingerprint for Digeda-4 decoction (DGD-4D), determine the contents of aesculetin, geniposide, picroside Ⅰ, picroside Ⅱ and ellagicacid in DGD-4D, and provide the scientific foundation for quality control of DGD-4D. The analysis was performed on Diamonsil(2) C18 (4.6 mm×250 mm,5 µm) column, with methanol-0.1% phosphoric acid aqueous solution as mobile phase for gradient elution. The flow rate was 1.0 mL·min⁻¹; injection size was 10 µL; temperature was maintained at 30 °C, and the detection wavelength was set at 254 nm. The common mode of DGD-4D HPLC fingerprint was established, and the hidden information was analyzed by Chemometrics. Chromatographic peaks for DGD-4D were identified by HPLC and quantitative analysis was conducted for characteristic peaks. There were 17 common peaks in the fingerprints and the similarity of the fingerprints was over 0.9 in all 15 batches. The samples were broadly divided into four kinds by principal component analysis and clustering analysis. Four marker compounds were verified by partial least squares discriminant analysis, and No. 9, 12 and 14 peaks were identified as geniposide, picroside Ⅱ, and picroside Ⅰ respectively. The average recoveries were in the range of 95.91%-97.31%. The HPLC fingerprint method for content determination is reliable, accurate, rapid, simple, and reproducible, and can be used as one of the effective methods to control the quality of DGD-4D.


Asunto(s)
Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/normas , Cromatografía Líquida de Alta Presión , Cinamatos , Glucósidos Iridoides , Iridoides , Metanol , Análisis de Componente Principal , Control de Calidad
10.
Zhongguo Zhong Yao Za Zhi ; 43(5): 977-984, 2018 Mar.
Artículo en Chino | MEDLINE | ID: mdl-29676097

RESUMEN

Artemisiae Argyi Folium, the dried leaves of Artemisia argyi, has been widely used in traditional Chinese and folk medicines for treatment of hemorrhage, pain, and skin itch. Phytochemical studies indicated that volatile oil, organic acid and flavonoids were the main bioactive components in Artemisiae Argyi Folium. Compared to the volatile compounds, the research of nonvolatile compounds in Artemisiae Argyi Folium are limited. In the present study, an accurate and reliable fingerprint approach was developed using HPLC for quality control of Artemisiae Argyi Folium. A total of 10 common peaks were marked,and the similarity of all the Artemisiae Argyi Folium samples was above 0.940. The established fingerprint method could be used for quality control of Artemisiae Argyi Folium. Furthermore, an HPLC method was applied for simultaneous determination of seven bioactive compounds including five organic acids and two flavonoids in Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium samples. Moreover, chemometrics methods such as hierarchical clustering analysis and principal component analysis were performed to compare and discriminate the Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium based on the quantitative data of analytes. The results indicated that simultaneous quantification of multicomponents coupled with chemometrics analysis could be a well-acceptable strategy to identify and evaluate the quality of Artemisiae Argyi Folium.


Asunto(s)
Artemisia/química , Medicamentos Herbarios Chinos/normas , Flavonoides/análisis , Hojas de la Planta/química , Cromatografía Líquida de Alta Presión
11.
Artículo en Chino | WPRIM | ID: wpr-690530

RESUMEN

Artemisiae Argyi Folium, the dried leaves of Artemisia argyi, has been widely used in traditional Chinese and folk medicines for treatment of hemorrhage, pain, and skin itch. Phytochemical studies indicated that volatile oil, organic acid and flavonoids were the main bioactive components in Artemisiae Argyi Folium. Compared to the volatile compounds, the research of nonvolatile compounds in Artemisiae Argyi Folium are limited. In the present study, an accurate and reliable fingerprint approach was developed using HPLC for quality control of Artemisiae Argyi Folium. A total of 10 common peaks were marked,and the similarity of all the Artemisiae Argyi Folium samples was above 0.940. The established fingerprint method could be used for quality control of Artemisiae Argyi Folium. Furthermore, an HPLC method was applied for simultaneous determination of seven bioactive compounds including five organic acids and two flavonoids in Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium samples. Moreover, chemometrics methods such as hierarchical clustering analysis and principal component analysis were performed to compare and discriminate the Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium based on the quantitative data of analytes. The results indicated that simultaneous quantification of multicomponents coupled with chemometrics analysis could be a well-acceptable strategy to identify and evaluate the quality of Artemisiae Argyi Folium.

12.
Artículo en Chino | WPRIM | ID: wpr-775391

RESUMEN

To establish the high performance liquid chromatography (HPLC) fingerprint for Digeda-4 decoction (DGD-4D), determine the contents of aesculetin, geniposide, picroside Ⅰ, picroside Ⅱ and ellagicacid in DGD-4D, and provide the scientific foundation for quality control of DGD-4D. The analysis was performed on Diamonsil(2) C₁₈ (4.6 mm×250 mm,5 μm) column, with methanol-0.1% phosphoric acid aqueous solution as mobile phase for gradient elution. The flow rate was 1.0 mL·min⁻¹; injection size was 10 μL; temperature was maintained at 30 °C, and the detection wavelength was set at 254 nm. The common mode of DGD-4D HPLC fingerprint was established, and the hidden information was analyzed by Chemometrics. Chromatographic peaks for DGD-4D were identified by HPLC and quantitative analysis was conducted for characteristic peaks. There were 17 common peaks in the fingerprints and the similarity of the fingerprints was over 0.9 in all 15 batches. The samples were broadly divided into four kinds by principal component analysis and clustering analysis. Four marker compounds were verified by partial least squares discriminant analysis, and No. 9, 12 and 14 peaks were identified as geniposide, picroside Ⅱ, and picroside Ⅰ respectively. The average recoveries were in the range of 95.91%-97.31%. The HPLC fingerprint method for content determination is reliable, accurate, rapid, simple, and reproducible, and can be used as one of the effective methods to control the quality of DGD-4D.


Asunto(s)
Cromatografía Líquida de Alta Presión , Cinamatos , Medicamentos Herbarios Chinos , Estándares de Referencia , Glucósidos Iridoides , Iridoides , Metanol , Análisis de Componente Principal , Control de Calidad
13.
J Chromatogr A ; 1469: 96-107, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27717489

RESUMEN

To get a better understanding of the bioactive constituents in Aurantii Fructus Immaturus (AFI) and Aurantii Fructus (AF), in the present study, a comprehensive strategy integrating multiple chromatographic analysis and chemometrics methods was firstly proposed. Based on segmental monitoring, a high-performance liquid chromatography (HPLC)-variable wavelength detection method was established for simultaneous quantification of ten major flavonoids, and the quantitative data were further analyzed by hierarchical cluster analysis (HCA) and principal component analysis (PCA). A strong cation exchange-high performance liquid chromatography (SCX-HPLC) method combined with t-test and one-way analysis of variance (ANOVA) was developed to determine synephrine, the major alkaloid in AFI and AF. The essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS) and further processed by partial least squares discrimination analysis (PLS-DA). The results indicated that the contents of ten flavonoids and synephrine in AFI were significantly higher than those in AF, and significant difference existed in samples from different geographical origins. Also, 9 differential volatile constituents detected could be used as chemical markers for discrimination of AFI and AF. Collectively, the proposed comprehensive analysis might be a well-acceptable strategy to evaluate the quality of traditional citrus herbs.


Asunto(s)
Citrus/química , Flavonoides/análisis , Frutas/química , Sinefrina/análisis , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles/química , Aceites de Plantas/química , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA