Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Waste Manag Res ; 42(9): 797-805, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38584402

RESUMEN

The decarbonisation of the steel and cement industry is of utmost importance in tackling climate change. Hence, steel production in modern integrated steel mills will be shifted towards electric arc furnaces in the future, in turn causing dwindling supplies of blast furnace slag, which is used as a supplementary cementitious material inter alia to reduce the CO2 emissions of cement production. Achieving a sustainable circular steel and building material economy requires the valorisation of currently landfilled steel slags and investigating utilisation options for electric arc furnace slag, which is increasingly being generated. For this purpose, different metallurgical residues and by-products were treated by carbothermal reduction in an inductively heated graphite crucible and then rapidly cooled by wet granulation, yielding a slag fraction similar to granulated blast furnace slag and a metal fraction valuable as a secondary raw material. A spreadsheet-based model was developed to calculate residue combinations to accomplish target compositions of the slag and metal fractions to fulfil previously identified requirements of the targeted cementitious and ferrous products. The results demonstrate the high accuracy of the model in predicting the properties (e.g. main oxide composition) of the generated slag and metal fraction, which fulfil the needed requirements for their use as (i) a supplementary cementitious material and (ii) a secondary raw material in steel production.


Asunto(s)
Materiales de Construcción , Residuos Industriales , Hierro , Metalurgia , Acero , Residuos Industriales/análisis , Hierro/química , Administración de Residuos/métodos , Reciclaje/métodos
2.
Gels ; 10(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667665

RESUMEN

The enzymatic extraction of proteins from fish biomasses is being widely investigated. However, little or almost no research has paid attention to the exploitation of unsorted fishery biomasses. This work is part of a larger study, Part I of which has already been published, and focuses on an extensive characterization of two collagenous samples, namely gelatin (G) and hydrolyzed gelatin peptides (HGPs), extracted from a dehydrated fish biomass coming from unsorted canned yellowfin tuna side streams. The results indicate crude protein fractions of 90-93%, pH values between 3 and 5, white-yellow colors, collagen-like FTIR spectra, and 17% in terms of total amino acid content. Viscosity and the study of dynamic viscous-elastic behavior were analyzed. Thermo-gravimetric analysis was performed to assess the residual ashes. Both samples were investigated to determine their molecular weight distribution via size-exclusion chromatography, with a higher total average molecular weight for G compared to HGPs, with values of 17,265.5 Da and 2637.5 Da, respectively. G demonstrated technological properties similar to analogous marine gelatins. HGPs demonstrated antioxidant activity as per FRAP assay. All the results open up new perspectives for the potential use of these substances in biodegradable packaging, dietary supplements, and skin care cosmetics.

3.
Sci Total Environ ; 927: 171982, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575013

RESUMEN

In this research, we developed a biochar-based fertilizer using biogas slurry and biochar derived from lignocellulosic agro-residues. Biogas slurry was obtained through the anaerobic digestion of the organic fraction of municipal solid waste (fresh vegetable biomass and/or prepared food), while biochars were derived from residues from quinoa, maize, rice, and sugarcane. The biochar-based fertilizers were prepared using an impregnation process, where the biogas slurry was mixed with each of the raw biochars. Subsequently, we characterized the N, P and K concentrations of the obtained biochar-based fertilizers. Additionally, we analyzed their surface properties using SEM/EDS and FTIR and conducted a slow-release test on these biochar-based fertilizers to assess their capability to gradually release nutrients. Lastly, a bioassay using cucumber plants was conducted to determine the N, P, and K bioavailability. Our findings revealed a significant correlation (r > 0.67) between the atomic O/C ratio, H/C ratio, cation exchange capacity, surface area, and the base cations concentration with N, P, and/or K adsorption on biochar. These properties, in turn, were linked to the capability of the biochar-based fertilizer to release nutrients in a controlled manner. The biochar-based fertilizer derived from corn residues showed <15 % release of N, P and K at 24 h. Utilization of these biochar-based fertilizers had a positive impact on the mineral nutrition of cucumber plants, resulting in an average increase of 61 % in N, 32 % in P, and 19 % in K concentrations. Our results underscore the potential of biochar-based fertilizers in controlled nutrient release and enhanced plant nutrition. Integration of biochar and biogas slurry offers a promising and sustainable approach for NPK recovery and fertilizer production in agriculture. This study presents an innovative and sustainable approach combining the use of biochar for NPK recovery from biogas slurry and its use as a biochar-based fertilizer in agriculture.


Asunto(s)
Carbón Orgánico , Fertilizantes , Fertilizantes/análisis , Carbón Orgánico/química , Anaerobiosis , Agricultura/métodos , Nitrógeno/análisis , Potasio/análisis , Fósforo/análisis , Biocombustibles
4.
Foods ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611351

RESUMEN

The increasing population, food demand, waste management concerns, and the search for sustainable alternatives to plastic polymers have led researchers to explore the potential of waste materials. This study focused on a waste of pine nut processing referred to in this paper as pine nut skin. For the first time, its nutritional profile, potential bioactive peptide, contaminants, and morphological structure were assessed. Pine nut skin was composed mainly of carbohydrates (56.2%) and fiber (27.5%). The fat (9.8%) was about 45%, 35%, and 20% saturated, monounsaturated, and polyunsaturated fatty acid, respectively, and Omega-9,-6, and -3 were detected. Notably, oleic acid, known for its health benefits, was found in significant quantities, resembling its presence in pine nut oil. The presence of bioactive compounds such as eicosapentaenoic acid (EPA) and phytosterols further adds to its nutritional value. Some essential elements were reported, whereas most of the contaminants such as heavy metals, polycyclic aromatic hydrocarbons, rare earth elements, and pesticides were below the limit of quantification. Furthermore, the in silico analysis showed the occurrence of potential precursor peptides of bioactive compounds, indicating health-promoting attributes. Lastly, the morphological structural characterization of the pine nut skin was followed by Fourier Transform Infrared and solid-state NMR spectroscopy to identify the major components, such as lignin, cellulose, and hemicellulose. The thermostability of the pine nut skin was monitored via thermogravimetric analysis, and the surface of the integument was analyzed via scanning electron microscopy and volumetric nitrogen adsorption. This information provides a more comprehensive view of the potential uses of pine nut skin as a filler material for biocomposite materials. A full characterization of the by-products of the food chain is essential for their more appropriate reuse.

5.
Food Res Int ; 182: 114160, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519185

RESUMEN

Aqueous enzymatic extraction (AEE) of macauba pulp oil (MPO) was performed in this study with five commercial enzymatic pools. The chemical, nutritional, and thermal properties of the oils with high oil efficiency by AEE were evaluated and compared with mechanical pressing (MP) and organic solvent extraction (SE). Among the AEE processes, the pectinase pool (at pH 5.5 and 50 °C) exhibited the highest process efficiency (88.6 %). The oils presented low acidity values (0.4-3.1 %) and low molar absorptivities, indicating minimal oil degradation. Bioactive compounds, such as carotenoids, were found in MPO. The iodine index and the fatty acid profile of the oils revealed a high content of unsaturated fatty acids, particularly oleic and linoleic acids, with excellent nutritional scores, as evidenced by anti-atherogenicity and anti-thrombogenicity indices. These findings emphasized that AEE is an eco-friendly approach for extracting high-quality MPO with beneficial health compounds for food products.


Asunto(s)
Ácidos Grasos , Aceites de Plantas , Aceites de Plantas/química , Ácidos Grasos/análisis , Ácidos Grasos Insaturados/análisis , Antioxidantes/análisis , Semillas/química , Agua/análisis
6.
Chemosphere ; 354: 141700, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490615

RESUMEN

Wastewater treatment plants play a crucial role in water security and sanitation, ensuring ecosystems balance and avoiding significant negative effects on humans and environment. However, they determine also negative pressures, including greenhouse gas and odourous emissions, which should be minimized to mitigate climate changes besides avoiding complaints. The research has been focused on the validation of an innovative integrated biological system for the sustainable treatment of complex gaseous emissions from wastewater treatment plants. The proposed system consists of a moving bed biofilm reactor coupled with an algal photobioreactor, with the dual objective of: i) reducing the inlet concentration of the odourous contaminants (in this case, hydrogen sulphide, toluene and p-xylene); ii) capturing and converting the carbon dioxide emissions produced by the degradation process into exploitable algal biomass. The first reactor promoted the degradation of chemical compounds up to 99.57% for an inlet load (IL) of 22.97 g m-3 d-1 while the second allowed the capture of the CO2 resulting from the degradation of gaseous compounds, with biofixation rate up to 81.55%. The absorbed CO2 was converted in valuable feedstocks, with a maximum algal biomass productivity in aPBR of 0.22 g L-1 d-1. Dairy wastewater has been used as alternative nutrient source for both reactors, with a view of reusing wastewater while cultivating biomass, framing the proposed technology in a context of a biorefinery within a circular economy perspective. The biomass produced in the algal photobioreactor was indeed characterized by a high lipid content, with a maximum percentage of lipids per dry weight biomass of 35%. The biomass can therefore be exploited for the production of alternative and clean energy carrier. The proposed biotechnology represents an effective tool for shifiting the conventional plants in carbon neutral platform for implementing principles of ecological transition while achieving high levels of environmental protection.


Asunto(s)
Microalgas , Purificación del Agua , Humanos , Aguas Residuales , Dióxido de Carbono/metabolismo , Ecosistema , Odorantes , Microalgas/metabolismo , Biotecnología , Purificación del Agua/métodos , Biomasa , Nutrientes
7.
Molecules ; 29(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474449

RESUMEN

In this work, a novel sustainable approach was proposed for the integral valorisation of Arctium lappa (burdock) seeds and roots. Firstly, a preliminary recovery of bioactive compounds, including unsaturated fatty acids, was performed. Then, simple sugars (i.e., fructose and sucrose) and phenolic compounds were extracted by using compressed fluids (supercritical CO2 and propane). Consequently, a complete characterisation of raw biomass and extraction residues was carried out to determine the starting chemical composition in terms of residual lipids, proteins, hemicellulose, cellulose, lignin, and ash content. Subsequently, three alternative ways to utilise extraction residues were proposed and successfully tested: (i) enzymatic hydrolysis operated by Cellulases (Thricoderma resei) of raw and residual biomass to glucose, (ii) direct ethanolysis to produce ethyl levulinate; and (iii) pyrolysis to obtain biochar to be used as supports for the synthesis of sulfonated magnetic iron-carbon catalysts (Fe-SMCC) to be applied in the dehydration of fructose for the synthesis of 5-hydroxymethylfurfural (5-HMF). The development of these advanced approaches enabled the full utilisation of this resource through the production of fine chemicals and value-added compounds in line with the principles of the circular economy.


Asunto(s)
Arctium , Arctium/química , Lignina/química , Extractos Vegetales/química , Celulosa , Fructosa
8.
Waste Manag ; 179: 32-43, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38447257

RESUMEN

The impact of food loss and waste (FLW) generation on food supply chains' (FSC) sustainability represents a challenge embodied in the Sustainable Development Goal (SDG) 12.3. This problem requires a methodology to measure such an impact in a rigorous, holistic, and standardized way that can be applied to any FSC. This paper aims to develop and validate a single index to assess the readiness of FSCs to implement FLW prevention strategies and measure their impact: the so-called FOODRUS index. The co-creation methodology followed incorporates experts and FSC stakeholders feedback. The index has been validated in 3 FSCs: The Slovak pilot scored 74.35%, the Spanish pilot reached 68.79%, and the Danish pilot was rated 61.14%. Its calculation, eased by the FOODRUS index self-assessment tool (described in the Appendix), allows quick diagnosis of the FSC capability to implement FLW prevention strategies considering both the knowledge provided by experts and the experience of the FSC stakeholders that participated in its co-creation process. In this way the FSC can assess its FLW prevention performance at a strategic and management level, with the aim of improving its sustainability impact.


Asunto(s)
Alimento Perdido y Desperdiciado , Administración de Residuos , Alimentos , Abastecimiento de Alimentos
9.
Environ Sci Pollut Res Int ; 31(11): 16725-16734, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326678

RESUMEN

Eisenia andrei is considered in OECD and ISO guidelines to be a suitable replacement for Eisenia fetida in ecotoxicological assays. This suggests that other alternative materials and methods could also be used in standard procedures for toxicity testing. The guidelines also favor using less time-consuming procedures and reducing costs and other limitations to ecotoxicological assessments. In recent years, spent coffee grounds (SCG) have been used to produce vermicompost and biochar and as an additive to organic fertilizers. In addition, the physicochemical characteristics of SCG indicate that the material is a suitable substrate for earthworms, with the organisms performing as well as in natural soil. In the present study, a battery of ecotoxicological tests was established with unwashed and washed SCG and a natural reference soil (LUFA 2.2). The test substrates were spiked with different concentrations of silver nitrate. Survival and reproduction of the earthworm E. andrei were assessed under different conditions, along with substrate basal respiration (SBR) as a proxy for microbial activity. Seedling emergence and the germination index of Lepidium sativum were also determined, following standard guidelines. Exposure to silver nitrate had similar effects on earthworm survival and reproduction, as the estimated effective concentrations (EC10 and EC50) in unwashed SCG and LUFA 2.2 overlapped. A hormetic effect was observed for SBR in LUFA 2.2 spiked with 12.8 mg/kg but not in unwashed SCG. Both SBR and root development were inhibited by similar concentrations of silver nitrate in washed SCG. The findings indicate that unwashed SCG could potentially be used as a substrate in E. andrei toxicity tests and support the eventual inclusion of this material in the standard guidelines.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Suelo/química , Café , Nitrato de Plata/farmacología , Contaminantes del Suelo/análisis , Ecotoxicología
10.
Molecules ; 29(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398623

RESUMEN

Zingiber officinale Roscoe (ginger) is a plant from the Zingiberaceae family, and its extracts have been found to contain several compounds with beneficial bioactivities. Nowadays, the use of environmentally friendly and sustainable extraction methods has attracted considerable interest. The main objective of this study was to evaluate subcritical propane (scPropane), supercritical CO2 (scCO2), and supercritical CO2 with ethanol (scCO2 + EtOH) as co-solvent methods for the extraction of high value products from ginger. In addition, the reuse/recycling of the secondary biomass in a second extraction as a part of the circular economy was evaluated. Both the primary and the secondary biomass led to high yield percentages, ranging from 1.23% to 6.42%. The highest yield was observed in the scCO2 + EtOH, with biomass prior used to scCO2 extraction. All extracts presented with high similarities as far as their total phenolic contents, antioxidant capacity, and chemical composition. The most abundant compounds, identified by the two different gas chromatography-mass spectrometry (GC-MS) systems present, were a-zingiberene, ß- sesquiphellandrene, a-farnesene, ß-bisabolene, zingerone, gingerol, a-curcumene, and γ-muurolene. Interestingly, the reuse/recycling of the secondary biomass was found to be promising, as the extracts showed high antioxidant capacity and consisted of significant amounts of compounds with beneficial properties.


Asunto(s)
Sesquiterpenos , Zingiber officinale , Antioxidantes/farmacología , Biomasa , Dióxido de Carbono/análisis , Extractos Vegetales/química
11.
J Environ Manage ; 352: 120079, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38242028

RESUMEN

Concerns over supply risks of critical metals used in electric vehicle (EV) batteries are frequently underscored as impediments to the widespread development of EVs. With the progress to achieve carbon neutrality by 2060 for China, projecting the critical metals demand for EV batteries and formulating strategies, especially circular economy strategies, to mitigate the risks of demand-supply imbalance in response to potential obstacles are necessary. However, the development scale of EVs in the transport sector to achieve China's carbon neutrality is unclear, and it remains uncertain to what extent circular economy strategies might contribute to the reduction of primary raw materials extraction. Consequently, we explore the future quantity of EVs in China required to achieve carbon neutrality and quantify the primary supply security levels of critical metals with the effort of battery cascade utilization, technology substitutions, recycling efficiency improvement, and novel business models, by integrating dynamic material flow analysis and national energy technology model. This study reveals that although 18%-30% of lithium and 20%-41% of cobalt, nickel, and manganese can be supplied to EVs through the reuse and recycling of end-of-life batteries, sustainable circular economy strategies alone are insufficient to obviate critical metals shortages for China's EV development. However, the supplementary capacity offered by second-life EV batteries, which refers to the use of batteries after they have reached the end of their first intended life, may prove adequate for China's prospective novel energy storage applications. The cumulative primary demand for lithium, cobalt, and nickel from 2021 to 2060 would reach 5-7 times, 23-114 times, and 4-19 times the corresponding mineral reserves in China. Substantial reduction of metals supply risks apart from lithium can be achieved by the cobalt-free battery technology developments combined with efficient recycling systems, where secondary supply can satisfy the demand as early as 2054.


Asunto(s)
Litio , Níquel , Carbono , Estudios Prospectivos , Metales , Reciclaje , Cobalto , Suministros de Energía Eléctrica , China
12.
J Sci Food Agric ; 104(3): 1833-1842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37884474

RESUMEN

BACKGROUND: The large quantities of by-products generated in the coffee industry are a problem. Studies related to the biological potential of organic coffee husks are still limited. The aim of this work was to investigate the occurrence of phenolic compounds in organic coffee husks and to evaluate their potential as a source of bioactive dietary components. RESULTS: To achieve this objective, three extracts were prepared, namely extractable polyphenols (EPs), hydrolyzable non-extractable polyphenols (H-NEPs), and non-extractable polyphenols (NEPs). These extracts were characterized and evaluated for their bioactive properties after simulated gastrointestinal digestion. The results show that the extraction process affected the occurrence of phenols from coffee peels, especially for caffeic acid, gallic acid, and chlorogenic acid. The free and bound polyphenols found in the extracts and digests not only showed antioxidant properties against 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals but were also strongly bioavailable and had good anticoagulant potential. CONCLUSION: These results highlight the potential health benefits of phytochemicals from coffee husks and open new perspectives for the use of such compounds in dietary supplements. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Antioxidantes , Coffea , Antioxidantes/química , Coffea/metabolismo , Fenoles/química , Polifenoles , Digestión , Extractos Vegetales/química
13.
Int J Biol Macromol ; 254(Pt 1): 127658, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898241

RESUMEN

Pectin yield of 22.22 ± 0.98 % (dry basis) was achieved from prematurely dropped Golden Delicious apples, having a light orange hue (hue value: 78.08 ± 0.04) and an overall color difference (ΔE) of 9.92 ± 0.01 compared to commercial pectin (CP). Extracted AP exhibited a lower equivalent weight (725.24 ± 29.73) and higher methoxy content (8.36 ± 0.28 %) in contrast to CP. However, a similar degree of esterification of 71.57 ± 0.79 and 70.55 ± 0.59 %, was observed in AP and CP respectively. Apple pectin demonstrated slight lower galacturonic acid (GalA) content of 68.10 ± 3.94 % in comparison to 72.31 ± 4.62 % of CP, which was further corroborated by reduced intensity in FTIR fingerprint region (912-1025 cm-1). Morphology revealed a sheet-like cloudy appearance indicating a significant presence of associated sugars whereas X-ray diffraction highlighted the highly amorphous nature of AP. AP and CP solutions (3-9 %) displayed a shear-thinning flow and viscoelastic behavior where the loss (G') moduli dominated over the storage moduli (G"). Owing to high degree of esterification, galacturonic acid content (>65 %) that aligns with commercial standards and viscoelastic behavior, the extracted AP holds promise for potential utilization in commercial applications. This study underscores the potential for sustainable utilization of prematurely dropped apples through pectin extraction, contributing to valorization of the wasted bioresource.


Asunto(s)
Malus , Pectinas , Pectinas/química , Malus/química , Ácidos Hexurónicos
14.
Waste Manag ; 174: 114-125, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38041980

RESUMEN

The objective of this paper is to present the technical and feasibility analysis of an innovative mechanical recycling system for exhausted coffee capsules. This recycling process involved the sorting of spent coffee grounds (SGC) and the subsequent drying and melt-mixing of a portion of these grounds with the remaining capsule components, mainly composed of polypropylene (PP), along with optional virgin PP. These newly developed composite materials exhibited mechanical and rheological properties comparable or even surpassing those of virgin PP. They were also successfully utilized for the injection of new capsule shells, thus alignin with the principles of the circular economy. In addition to the technical aspects, this paper present a comprehensive Techno-Economic Analysis (TEA) of the proposed recycling processes, considering the inclusion of virgin PP (0-20 %) and the initial moisture content (MSGC) of SGC(5-55 %) as varying factors. An industrial plant, designed to handle up to 190 million exhausted coffee capsules and produce up to 1500 tons of recycled compund was appropriately sized. The analysis revealed that processes are profitable across all examined scenarios and that the Net Present Value ranged between 800 k€ (for vPP = 20 % and MSGC = 55 %) and 2000 k€ (for vPP = 0 % and MSGC = 5 %).


Asunto(s)
Café , Reciclaje , Polipropilenos , Instalaciones Industriales y de Fabricación
15.
Environ Res ; 243: 117840, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38081342

RESUMEN

Since the establishment of the first global refinery in 1856, crude oil has remained one of the most lucrative natural resources worldwide. However, during the extraction process from reservoirs, crude oil gets contaminated with sediments, water, and other impurities. The presence of pressure, shear forces, and surface-active compounds in crude oil leads to the formation of unwanted oil/water emulsions. These emulsions can take the form of water-in-oil (W/O) emulsions, where water droplets disperse continuously in crude oil, or oil-in-water (O/W) emulsions, where crude oil droplets are suspended in water. To prevent the spread of water and inorganic salts, these emulsions need to be treated and eliminated. In existing literature, different demulsification procedures have shown varying outcomes in effectively treating oil/water emulsions. The observed discrepancies have been attributed to various factors such as temperature, salinity, pH, droplet size, and emulsifier concentrations. It is crucial to identify the most effective demulsification approach for oil/water separation while adhering to environmental regulations and minimizing costs for the petroleum sector. Therefore, this study aims to explore and review recent advancements in two popular demulsification techniques: chemical demulsification and magnetic nanoparticles-based (MNP) demulsification. The advantages and disadvantages of each technique are assessed, with the magnetic approach emerging as the most promising due to its desirable efficiency and compliance with environmental and economic concerns. The findings of this report are expected to have a significant impact on the overall process of separating oil and water, benefiting the oil and gas industry, as well as other relevant sectors in achieving the circular economy.


Asunto(s)
Nanopartículas , Petróleo , Emulsiones/química , Emulsionantes , Recursos Naturales
16.
Sci Total Environ ; 912: 168934, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38048999

RESUMEN

In Europe, the general obligation to recycle drives for increased reuse of residues containing Naturally Occurring Radioactive Material (NORM). In agriculture, this has led to the reuse of sludge produced by groundwater filtration facilities as a means of fertilization. In the frame of the RadoNorm project, a methodology was developed for dose assessment of agricultural workers and other members of the public living near agricultural fields in which NORM-containing sludge is applied. Appropriate exposure scenarios were identified and modelled for each relevant NORM decay segment of both U-238 and Th-232 series, as well as for K-40. Dose assessments were performed using the software RESRAD-ONSITE with dose coefficients for external and internal exposure taken from the latest publications from the International Commission on Radiological Protection (ICRP). The objective was to develop a generic methodology to quantify exposure and to obtain screening values - so-called Operational Levels (OLs). These OLs pertain to the activity concentration of natural radionuclides (in terms of kBq kg-1) present in sludge that is reused in agriculture, for which dose criterion of 1 mSv year-1 is complied with. OLs can be used as screening tools by an authority/operator, even non-experts in the field of radiation protection. Results showed that the most critical decay segments are Ra-226+ and Ra-228+, for which OLs of the order of 1 kBq kg-1 were estimated. For all the other radionuclides, the calculated OLs are much higher than the activity concentrations typically found in sludge from water treatment facilities, and the radiological impact expected is well-below 1 mSv year-1. The methodology and results of this study could contribute to the update of the Clearance Levels and discharge levels reported in the European guidelines RP 122 Part II and RP 135, respectively.


Asunto(s)
Monitoreo de Radiación , Uranio , Humanos , Aguas del Alcantarillado , Fertilizantes , Radioisótopos/análisis , Monitoreo de Radiación/métodos
17.
Sci Total Environ ; 912: 169369, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104821

RESUMEN

Wastewater generated within agricultural sectors such as dairies, piggeries, poultry farms, and cattle meat processing plants is expected to reach 600 million m3 yr-1 globally. Currently, the wastewater produced by these industries are primarily treated by aerobic and anaerobic methods. However, the treated effluent maintains a significant concentration of nutrients, particularly nitrogen and phosphorus. On the other hand, the valorisation of conventional microalgae biomass into bioproducts with high market value still requires expensive processing pathways such as dewatering and extraction. Consequently, cultivating microalgae using agricultural effluents shows the potential as a future technology for producing value-added products and treated water with low nutrient content. This review explores the feasibility of growing microalgae on agricultural effluents and their ability to remove nutrients, specifically nitrogen and phosphorus. In addition to evaluating the market size and value of products from wastewater-grown microalgae, we also analysed their biochemical characteristics including protein, carbohydrate, lipid, and pigment content. Furthermore, we assessed the costs of both upstream and downstream processing of biomass to gain a comprehensive understanding of the economic potential of the process. The findings from this study are expected to facilitate further techno-economic and feasibility assessments by providing insights into optimized processing pathways and ultimately leading to the reduction of costs.


Asunto(s)
Microalgas , Aguas Residuales , Animales , Bovinos , Agricultura , Biomasa , Nitrógeno , Fósforo
18.
Int J Biol Macromol ; 258(Pt 2): 128989, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154717

RESUMEN

Pectin is a polysaccharide mainly used in food processing industries as an emulsifier, thickener, stabilizer and in pharmaceuticals as an excipient, wall material and bio adhesive for improving delivery and efficiency. Raising demand for pectin, pushes to explore unconventional plant-based sources for the extraction of pectin. This work is aimed to explore the possibility of extracting pectin from the peel of banana varieties and to decipher the chemical and techno-functional properties. Among the varieties, Nendran, a plantain banana recorded higher pectin recovery (23.42 %), swelling power (23.10 gg-1), anhydrouronic acid (AUA) content (72.86 %) and emulsifying activity (46.19 %). Pectin from the banana peels exhibited the equivalent weight (g/mol) ranging from 943.40 (var. Bhimkol) to 1282.05 (var. Nendran). Morphological observations revealed that the extracted pectin has fragments with uneven sizes and inter-particle voids in the structure. Banana pectin behaved similar to commercial pectin in terms of rheological, textural and structural profiles. HPLC analysis and NMR spectra confirmed the dominance of galacturonic acid in the banana peel pectins. The study unveiled and opened up the avenues of utilizing banana peel as a complementary biomass for the extraction of pectin which could be used in different industrial applications.


Asunto(s)
Musa , Pectinas , Pectinas/química , Musa/química , Polisacáridos , Emulsionantes/química
19.
Prev Vet Med ; 221: 106078, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38039933

RESUMEN

Today's level of anthelmintic use in livestock production is a major threat to both the livestock industry and the environment. In this context, the research community is looking for ways to equip farmers with preventive and treatment strategies that can decrease livestock-industry dependence on anthelmintics. Production practices for a sustainable control of parasites have been advocated for almost forty years, but farmers' uptake of these practices has been too slow to address the issues at stake. In this paper, we examine the rationales behind the under-adoption of sustainable worm control practices in grassland-based livestock systems. This research builds on 25 semi-structured interviews with dairy sheep farmers in southwestern France. The interview material was analysed via qualitative discourse analysis. We highlight farmers' social representations and rationales underpinning adoption or non-adoption of the 'low anthelmintics use' strategy. We identify six profiles for nematode control according to the way each farmer included treatment and coprology in their on-farm practice. We identify that the low-use strategy has low adoption potential due to its low perceived relative advantage; low perceived trialability; unclear compatibility with previous experiences, needs, and values; and higher complexity than the status quo option. We show that holistic, pro-environmental, and collaborative attitudes are associated with adoption of the low-use strategy. We then discuss ways to improve uptake, such as increased communication, trainings, and farm visits involving farmers, extension agents and veterinarians.


Asunto(s)
Antihelmínticos , Agricultores , Animales , Ovinos , Humanos , Ganado , Rumiantes , Antihelmínticos/uso terapéutico , Granjas
20.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4545-4551, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802795

RESUMEN

It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.


Asunto(s)
Equipo Reutilizado , Medicina Tradicional China , Objetivos , Contaminación Ambiental , Desarrollo Económico , Carbono , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA