Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Eur J Neurosci ; 59(4): 613-640, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37675803

RESUMEN

Closed-loop auditory stimulation (CLAS) is a brain modulation technique in which sounds are timed to enhance or disrupt endogenous neurophysiological events. CLAS of slow oscillation up-states in sleep is becoming a popular tool to study and enhance sleep's functions, as it increases slow oscillations, evokes sleep spindles and enhances memory consolidation of certain tasks. However, few studies have examined the specific neurophysiological mechanisms involved in CLAS, in part because of practical limitations to available tools. To evaluate evidence for possible models of how sound stimulation during brain up-states alters brain activity, we simultaneously recorded electro- and magnetoencephalography in human participants who received auditory stimulation across sleep stages. We conducted a series of analyses that test different models of pathways through which CLAS of slow oscillations may affect widespread neural activity that have been suggested in literature, using spatial information, timing and phase relationships in the source-localized magnetoencephalography data. The results suggest that auditory information reaches ventral frontal lobe areas via non-lemniscal pathways. From there, a slow oscillation is created and propagated. We demonstrate that while the state of excitability of tissue in auditory cortex and frontal ventral regions shows some synchrony with the electroencephalography (EEG)-recorded up-states that are commonly used for CLAS, it is the state of ventral frontal regions that is most critical for slow oscillation generation. Our findings advance models of how CLAS leads to enhancement of slow oscillations, sleep spindles and associated cognitive benefits and offer insight into how the effectiveness of brain stimulation techniques can be improved.


Asunto(s)
Magnetoencefalografía , Sueño , Humanos , Estimulación Acústica , Sueño/fisiología , Electroencefalografía/métodos , Encéfalo/fisiología
2.
J Neural Eng ; 20(5)2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37726002

RESUMEN

Objective.Healthy sleep plays a critical role in general well-being. Enhancement of slow-wave sleep by targeting acoustic stimuli to particular phases of delta (0.5-2 Hz) waves has shown promise as a non-invasive approach to improve sleep quality. Closed-loop stimulation during other sleep phases targeting oscillations at higher frequencies such as theta (4-7 Hz) or alpha (8-12 Hz) could be another approach to realize additional health benefits. However, systems to track and deliver stimulation relative to the instantaneous phase of electroencephalogram (EEG) signals at these higher frequencies have yet to be demonstrated outside of controlled laboratory settings.Approach.Here we examine the feasibility of using an endpoint-corrected version of the Hilbert transform (ecHT) algorithm implemented on a headband wearable device to measure alpha phase and deliver phase-locked auditory stimulation during the transition from wakefulness to sleep, during which alpha power is greatest. First, the ecHT algorithm is implementedin silicoto evaluate the performance characteristics of this algorithm across a range of sleep-related oscillatory frequencies. Secondly, a pilot sleep study tests feasibility to use the wearable device by users in the home setting for measurement of EEG activity during sleep and delivery of real-time phase-locked stimulation.Main results.The ecHT is capable of computing the instantaneous phase of oscillating signals with high precision, allowing auditory stimulation to be delivered at the intended phases of neural oscillations with low phase error. The wearable system was capable of measuring sleep-related neural activity with sufficient fidelity for sleep stage scoring during the at-home study, and phase-tracking performance matched simulated results. Users were able to successfully operate the system independently using the companion smartphone app to collect data and administer stimulation, and presentation of auditory stimuli during sleep initiation did not negatively impact sleep onset.Significance.This study demonstrates the feasibility of closed-loop real-time tracking and neuromodulation of a range of sleep-related oscillations using a wearable EEG device. Preliminary results suggest that this approach could be used to deliver non-invasive neuromodulation across all phases of sleep.


Asunto(s)
Electroencefalografía , Sueño de Onda Lenta , Electroencefalografía/métodos , Sueño/fisiología , Sueño de Onda Lenta/fisiología , Fases del Sueño/fisiología , Estimulación Acústica/métodos
3.
Sleep ; 46(6)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37039660

RESUMEN

Closed-loop acoustic stimulation (CLAS) during sleep has shown to boost slow wave (SW) amplitude and spindle power. Moreover, sleep SW have been classified based on different processes of neuronal synchronization. Thus, different types of SW events may have distinct functional roles and be differentially affected by external stimuli. However, the SW synchronization processes affected by CLAS are not well understood. Here, we studied the effect of CLAS on the dissociation of SW events based on two features of neuronal synchronization in the electroencephalogram (topological spread and wave slope). We evaluated and classified individual SW events of 14 healthy subjects during a CLAS stimulated (STM) and a control night (CNT). Three main categories of SW events were found denoting (C1) steep slope SW with global spread, (C2) flat-slope waves with localized spread and homeostatic decline, and (C3) multipeaked flat-slope events with global spread. Comparing between conditions, we found a consistent increase of event proportion and trough amplitudes for C1 events during the time of stimulation. Furthermore, we found similar increases in post-stimulus spectral power in θ, ß, and σ frequencies for CNT vs STIM condition independently of sleep stage or SW categories. However, topological analysis showed differentiated spatial dynamics in N2 and N3 for SW categories and the co-occurrence with spindle events. Our findings support the existence of multiple types of SW with differential response to external stimuli and possible distinct neuronal mechanisms.


Asunto(s)
Fases del Sueño , Sueño , Humanos , Estimulación Acústica , Sueño/fisiología , Fases del Sueño/fisiología , Electroencefalografía , Voluntarios Sanos
4.
J Sleep Res ; 32(4): e13846, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36806335

RESUMEN

Slow-wave sleep (SWS) is a fundamental physiological process, and its modulation is of interest for basic science and clinical applications. However, automatised protocols for the suppression of SWS are lacking. We describe the development of a novel protocol for the automated detection (based on the whole head topography of frontal slow waves) and suppression of SWS (through closed-loop modulated randomised pulsed noise), and assessed the feasibility, efficacy and functional relevance compared to sham stimulation in 15 healthy young adults in a repeated-measure sleep laboratory study. Auditory compared to sham stimulation resulted in a highly significant reduction of SWS by 30% without affecting total sleep time. The reduction of SWS was associated with an increase in lighter non-rapid eye movement sleep and a shift of slow-wave activity towards the end of the night, indicative of a homeostatic response and functional relevance. Still, cumulative slow-wave activity across the night was significantly reduced by 23%. Undisturbed sleep led to an evening to morning reduction of wake electroencephalographic theta activity, thought to reflect synaptic downscaling during SWS, while suppression of SWS inhibited this dissipation. We provide evidence for the feasibility, efficacy, and functional relevance of a novel fully automated protocol for SWS suppression based on auditory closed-loop stimulation. Future work is needed to further test for functional relevance and potential clinical applications.


Asunto(s)
Sueño de Onda Lenta , Adulto Joven , Humanos , Sueño de Onda Lenta/fisiología , Estudios de Factibilidad , Sueño/fisiología , Polisomnografía , Electroencefalografía/métodos , Estimulación Acústica/métodos
5.
Neuroimage ; 264: 119682, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36240988

RESUMEN

Slow-wave sleep is the deep non-rapid eye-movement (NREM) sleep stage that is most relevant for the recuperative function of sleep. Its defining property is the presence of slow oscillations (<2 Hz) in the scalp electroencephalogram (EEG). Slow oscillations are generated by a synchronous back and forth between highly active UP-states and silent DOWN-states in neocortical neurons. Growing evidence suggests that closed-loop sensory stimulation targeted at UP-states of EEG-defined slow oscillations can enhance the slow oscillatory activity, increase sleep depth, and boost sleep's recuperative functions. However, several studies failed to replicate such findings. Failed replications might be due to the use of conventional closed-loop stimulation algorithms that analyze the signal from one single electrode and thereby neglect the fact that slow oscillations vary with respect to their origins, distributions, and trajectories on the scalp. In particular, conventional algorithms nonspecifically target functionally heterogeneous UP-states of distinct origins. After all, slow oscillations at distinct sites of the scalp have been associated with distinct functions. Here we present a novel EEG-based closed-loop stimulation algorithm that allows targeting UP- and DOWN-states of distinct cerebral origins based on topographic analyses of the EEG: the topographic targeting of slow oscillations (TOPOSO) algorithm. We present evidence that the TOPOSO algorithm can detect and target local slow oscillations with specific, predefined voltage maps on the scalp in real-time. When compared to a more conventional, single-channel-based approach, TOPOSO leads to fewer but locally more specific stimulations in a simulation study. In a validation study with napping participants, TOPOSO targets auditory stimulation reliably at local UP-states over frontal, sensorimotor, and centro-parietal regions. Importantly, auditory stimulation temporarily enhanced the targeted local state. However, stimulation then elicited a standard frontal slow oscillation rather than local slow oscillations. The TOPOSO algorithm is suitable for the modulation and the study of the functions of local slow oscillations.


Asunto(s)
Sueño de Onda Lenta , Humanos , Sueño de Onda Lenta/fisiología , Electroencefalografía/métodos , Sueño/fisiología , Estimulación Acústica , Neuronas/fisiología
6.
J Sleep Res ; 31(6): e13555, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35124848

RESUMEN

Acoustic stimulation synchronized to slow oscillations in scalp electroencephalograms has been shown to enhance sleep features, which makes it promising in boosting cognitive functions as well as in the treatment of some sleep disturbances. Nevertheless, scalp electrode sensors are resource intensive and poorly tolerated by sleeping patients. The aim of this study was to investigate the potential usability of in-the-ear electroencephalography to implement auditory closed-loop stimulation during sleep. For this, we evaluated the agreement between slow oscillation recordings obtained through the in-ear sensor and those obtained simultaneously from standard scalp electrodes during naps of 13 healthy subjects. We found that in-ear activity provided enough information to automatically detect sleep slow oscillations in real-time. Based on this, we successfully enhanced scalp slow oscillations using auditory single-cycle closed-loop brain-state-dependent stimulation based on in-ear signals acquired in 11 further subjects. We conclude that in-ear sensors provide a feasible technology for the enhancement of sleep patterns, and could pave the way for new clinical applications in the near future.


Asunto(s)
Electroencefalografía , Sueño , Humanos , Estimulación Acústica , Sueño/fisiología , Encéfalo/fisiología , Cuero Cabelludo
7.
Arrhythm Electrophysiol Rev ; 10(4): 244-249, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35106176

RESUMEN

Cardiac pacing has been studied extensively in patients with reflex syncope over the past two decades. The heterogeneity of the forms and clinical manifestations of reflex syncope explain the controversial results of older randomised clinical trials. New evidence from recent trials has changed medical practice, now leading to clear indications for pacing in patients with asystolic syncope documented during carotid sinus massage, implantable cardiac monitoring or tilt testing. Given that recent trials in reflex syncope have been performed using the closed-loop stimulation algorithm, the authors will briefly discuss this pacing mode, review hypotheses about the mechanisms underlying its activation during syncope and provide practical instructions for programming and troubleshooting.

8.
Artículo en Inglés | MEDLINE | ID: mdl-32733860

RESUMEN

Neurotechnology such as brain-machine interfaces (BMI) are currently being investigated as training devices for neurorehabilitation, when active movements are no longer possible. When the hand is paralyzed following a stroke for example, a robotic orthosis, functional electrical stimulation (FES) or their combination may provide movement assistance; i.e., the corresponding sensory and proprioceptive neurofeedback is given contingent to the movement intention or imagination, thereby closing the sensorimotor loop. Controlling these devices may be challenging or even frustrating. Direct comparisons between these two feedback modalities (robotics vs. FES) with regard to the workload they pose for the user are, however, missing. Twenty healthy subjects controlled a BMI by kinesthetic motor imagery of finger extension. Motor imagery-related sensorimotor desynchronization in the EEG beta frequency-band (17-21 Hz) was turned into passive opening of the contralateral hand by a robotic orthosis or FES in a randomized, cross-over block design. Mental demand, physical demand, temporal demand, performance, effort, and frustration level were captured with the NASA Task Load Index (NASA-TLX) questionnaire by comparing these workload components to each other (weights), evaluating them individually (ratings), and estimating the respective combinations (adjusted workload ratings). The findings were compared to the task-related aspects of active hand movement with EMG feedback. Furthermore, both feedback modalities were compared with regard to their BMI performance. Robotic and FES feedback had similar workloads when weighting and rating the different components. For both robotics and FES, mental demand was the most relevant component, and higher than during active movement with EMG feedback. The FES task led to significantly more physical (p = 0.0368) and less temporal demand (p = 0.0403) than the robotic task in the adjusted workload ratings. Notably, the FES task showed a physical demand 2.67 times closer to the EMG task, but a mental demand 6.79 times closer to the robotic task. On average, significantly more onsets were reached during the robotic as compared to the FES task (17.22 onsets, SD = 3.02 vs. 16.46, SD = 2.94 out of 20 opportunities; p = 0.016), even though there were no significant differences between the BMI classification accuracies of the conditions (p = 0.806; CI = -0.027 to -0.034). These findings may inform the design of neurorehabilitation interfaces toward human-centered hardware for a more natural bidirectional interaction and acceptance by the user.

9.
Sleep ; 43(12)2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32562487

RESUMEN

STUDY OBJECTIVES: Cortical slow oscillations (SOs) and thalamocortical sleep spindles hallmark slow wave sleep and facilitate memory consolidation, both of which are reduced with age. Experiments utilizing auditory closed-loop stimulation to enhance these oscillations showed great potential in young and older subjects. However, the magnitude of responses has yet to be compared between these age groups. We examined the possibility of enhancing SOs and performance on different memory tasks in a healthy middle-aged population using this stimulation and contrast effects to younger adults. METHODS: In a within-subject design, 17 subjects (55.7 ± 1.0 years) received auditory stimulation in synchrony with SO up-states, which was compared to a no-stimulation sham condition. Overnight memory consolidation was assessed for declarative word-pairs and procedural finger-tapping skill. Post-sleep encoding capabilities were tested with a picture recognition task. Electrophysiological effects of stimulation were compared to a previous younger cohort (n = 11, 24.2 ± 0.9 years). RESULTS: Overnight retention and post-sleep encoding performance of the older cohort revealed no beneficial effect of stimulation, which contrasts with the enhancing effect the same stimulation protocol had in our younger cohort. Auditory stimulation prolonged endogenous SO trains and induced sleep spindles phase-locked to SO up-states in the older population. However, responses were markedly reduced compared to younger subjects. Additionally, the temporal dynamics of stimulation effects on SOs and spindles differed between age groups. CONCLUSIONS: Our findings suggest that the susceptibility to auditory stimulation during sleep drastically changes with age and reveal the difficulties of translating a functional protocol from younger to older populations.


Asunto(s)
Consolidación de la Memoria , Sueño de Onda Lenta , Estimulación Acústica , Adulto , Electroencefalografía , Humanos , Persona de Mediana Edad , Sueño
10.
Sleep ; 43(8)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32034912

RESUMEN

STUDY OBJECTIVES: Slow oscillations (SO) during slow-wave sleep foster the consolidation of declarative memory. Children with attention-deficit hyperactivity disorder (ADHD) display deficits in the sleep-associated consolidation of declarative memory, possibly due to an altered function of SO. The present study aimed at enhancing SO activity using closed-looped acoustic stimulation during slow-wave sleep in children with ADHD. METHODS: A total of 29 male children (14 with ADHD; aged 8-12 years) participated in a double-blind, placebo-controlled study trial. Children spent two experimental nights in a sleep lab, one stimulation night and one sham night. A declarative learning task (word-pair learning) with a reward condition was used as a primary outcome. Secondary outcome variables were a procedural memory (serial reaction time) and working memory (WM; n-back) task. Encoding of declarative and procedural memory took place in the evening before sleep. After sleep, the retrieval took place followed by the n-back task. RESULTS: The stimulation successfully induced SO activity during sleep in children with and without ADHD. After stimulation, only healthy children performed better on high-rewarded memory items (primary outcome). In contrast, there were indications that only children with ADHD benefitted from the stimulation with respect to procedural as well as WM performance (secondary outcome). CONCLUSIONS: We were able to show that the acoustic closed-loop stimulation can be applied to enhance SO activity in children with and without ADHD. Our data indicate that SO activity during sleep interacts with subsequent memory performance (primary outcome: rewarded declarative memory; secondary outcome: procedural and WM) in children with and without ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Consolidación de la Memoria , Estimulación Acústica , Acústica , Niño , Humanos , Masculino , Recompensa , Sueño
11.
Biol Cybern ; 114(1): 5-21, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32020368

RESUMEN

The aim of this paper is to integrate different bodies of research including brain traveling waves, brain neuromodulation, neural field modeling and post-stroke language disorders in order to explore the opportunity of implementing model-guided, cortical neuromodulation for the treatment of post-stroke aphasia. Worldwide according to WHO, strokes are the second leading cause of death and the third leading cause of disability. In ischemic stroke, there is not enough blood supply to provide enough oxygen and nutrients to parts of the brain, while in hemorrhagic stroke, there is bleeding within the enclosed cranial cavity. The present paper focuses on ischemic stroke. We first review accumulating observations of traveling waves occurring spontaneously or triggered by external stimuli in healthy subjects as well as in patients with brain disorders. We examine the putative functions of these waves and focus on post-stroke aphasia observed when brain language networks become fragmented and/or partly silent, thus perturbing the progression of traveling waves across perilesional areas. Secondly, we focus on a simplified model based on the current literature in the field and describe cortical traveling wave dynamics and their modulation. This model uses a biophysically realistic integro-differential equation describing spatially distributed and synaptically coupled neural networks producing traveling wave solutions. The model is used to calculate wave parameters (speed, amplitude and/or frequency) and to guide the reconstruction of the perturbed wave. A stimulation term is included in the model to restore wave propagation to a reasonably good level. Thirdly, we examine various issues related to the implementation model-guided neuromodulation in the treatment of post-stroke aphasia given that closed-loop invasive brain stimulation studies have recently produced encouraging results. Finally, we suggest that modulating traveling waves by acting selectively and dynamically across space and time to facilitate wave propagation is a promising therapeutic strategy especially at a time when a new generation of closed-loop cortical stimulation systems is about to arrive on the market.


Asunto(s)
Afasia/terapia , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Terapia por Estimulación Eléctrica/métodos , Accidente Cerebrovascular Isquémico/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Afasia/etiología , Afasia/fisiopatología , Terapia por Estimulación Eléctrica/instrumentación , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/fisiopatología , Rehabilitación de Accidente Cerebrovascular/instrumentación
12.
Brain Stimul ; 13(1): 47-59, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31439323

RESUMEN

BACKGROUND: Stress is associated with activation of the sympathetic nervous system, and can lead to lasting alterations in autonomic function and in extreme cases symptoms of posttraumatic stress disorder (PTSD). Vagal nerve stimulation (VNS) is a potentially useful tool as a modulator of autonomic nervous system function, however currently available implantable devices are limited by cost and inconvenience. OBJECTIVE: The purpose of this study was to assess the effects of transcutaneous cervical VNS (tcVNS) on autonomic responses to stress. METHODS: Using a double-blind approach, we investigated the effects of active or sham tcVNS on peripheral cardiovascular and autonomic responses to stress using wearable sensing devices in 24 healthy human participants with a history of exposure to psychological trauma. Participants were exposed to acute stressors over a three-day period, including personalized scripts of traumatic events, public speech, and mental arithmetic tasks. RESULTS: tcVNS relative to sham applied immediately after traumatic stress resulted in a decrease in sympathetic function and modulated parasympathetic/sympathetic autonomic tone as measured by increased pre-ejection period (PEP) of the heart (a marker of cardiac sympathetic function) of 4.2 ms (95% CI 1.6-6.8 ms, p < 0.01), decreased peripheral sympathetic function as measured by increased photoplethysmogram (PPG) amplitude (decreased vasoconstriction) by 47.9% (1.4-94.5%, p < 0.05), a 9% decrease in respiratory rate (-14.3 to -3.7%, p < 0.01). Similar effects were seen when tcVNS was applied after other stressors and in the absence of a stressor. CONCLUSION: Wearable sensing modalities are feasible to use in experiments in human participants, and tcVNS modulates cardiovascular and peripheral autonomic responses to stress.


Asunto(s)
Frecuencia Cardíaca/fisiología , Frecuencia Respiratoria/fisiología , Estrés Psicológico/terapia , Estimulación Eléctrica Transcutánea del Nervio/métodos , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología , Adolescente , Adulto , Anciano , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología , Adulto Joven
13.
J Neuroeng Rehabil ; 16(1): 126, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665058

RESUMEN

Epilepsy affects nearly 1% of the world's population. A third of epilepsy patients suffer from a kind of epilepsy that cannot be controlled by current medications. For those where surgery is not an option, neurostimulation may be the only alternative to bring relief, improve quality of life, and avoid secondary injury to these patients. Until recently, open loop neurostimulation was the only alternative for these patients. However, for those whose epilepsy is applicable, the medical approval of the responsive neural stimulation and the closed loop vagal nerve stimulation systems have been a step forward in the battle against uncontrolled epilepsy. Nonetheless, improvements can be made to the existing systems and alternative systems can be developed to further improve the quality of life of sufferers of the debilitating condition. In this paper, we first present a brief overview of epilepsy as a disease. Next, we look at the current state of biomarker research in respect to sensing and predicting epileptic seizures. Then, we present the current state of open loop neural stimulation systems. We follow this by investigating the currently approved, and some of the recent experimental, closed loop systems documented in the literature. Finally, we provide discussions on the current state of neural stimulation systems for controlling epilepsy, and directions for future studies.


Asunto(s)
Epilepsia Refractaria/terapia , Terapia por Estimulación Eléctrica/instrumentación , Terapia por Estimulación Eléctrica/métodos , Biomarcadores , Estimulación Encefálica Profunda , Epilepsia Refractaria/epidemiología , Humanos
14.
Neuroimage ; 195: 190-202, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30951847

RESUMEN

Volitional modulation and neurofeedback of sensorimotor oscillatory activity is currently being evaluated as a strategy to facilitate motor restoration following stroke. Knowledge on the interplay between this regional brain self-regulation, distributed network entrainment and handedness is, however, limited. In a randomized cross-over design, twenty-one healthy subjects (twelve right-handers [RH], nine left-handers [LH]) performed kinesthetic motor imagery of left (48 trials) and right finger extension (48 trials). A brain-machine interface turned event-related desynchronization in the beta frequency-band (16-22 Hz) during motor imagery into passive hand opening by a robotic orthosis. Thereby, every participant subsequently activated either the dominant (DH) or non-dominant hemisphere (NDH) to control contralateral hand opening. The task-related cortical networks were studied with electroencephalography. The magnitude of the induced oscillatory modulation range in the sensorimotor cortex was independent of both handedness (RH, LH) and hemispheric specialization (DH, NDH). However, the regional beta-band modulation was associated with different alpha-band networks in RH and LH: RH presented a stronger inter-hemispheric connectivity, while LH revealed a stronger intra-hemispheric interaction. Notably, these distinct network entrainments were independent of hemispheric specialization. In healthy subjects, sensorimotor beta-band activity can be robustly modulated by motor imagery and proprioceptive feedback in both hemispheres independent of handedness. However, right and left handers show different oscillatory entrainment of cortical alpha-band networks during neurofeedback. This finding may inform neurofeedback interventions in future to align them more precisely with the underlying physiology.


Asunto(s)
Lateralidad Funcional/fisiología , Imaginación/fisiología , Neurorretroalimentación/métodos , Corteza Sensoriomotora/fisiología , Adulto , Interfaces Cerebro-Computador , Femenino , Humanos , Masculino , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos
15.
J Neurosci Methods ; 316: 117-124, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30194953

RESUMEN

BACKGROUND: The consolidation of sleep-dependent memories is mediated by an interplay of cortical slow oscillations (SOs) and thalamo-cortical sleep spindles. Whereas an enhancement of SOs with auditory closed-loop stimulation has been proven highly successful, the feasibility to induce and boost sleep spindles with auditory stimulation remains unknown thus far. NEW METHOD: Here we tested the possibility to enhance spindle activity during endogenous SOs and thereby to promote memory consolidation. Performing a sleep study in healthy humans, we applied an auditory Spindle stimulation and compared it with an Arrhythmic stimulation and a control condition comprising no stimulation (Sham). RESULTS: With Spindle stimulation we were not able to directly entrain endogenous spindle activity during SO up-states. Instead, both Spindle and Arrhythmic stimulation evoked a resonant SO response accompanied by an increase in spindle power phase-locked to the SO up-state. Assessment of overnight retention of declarative word-pairs revealed no difference between all conditions. COMPARISON WITH EXISTING METHODS: Our Spindle stimulation produced oscillatory evoked responses (i.e., increases in SOs and spindle activity during SO up-states) quite similar to those observed after the auditory closed-loop stimulation of SOs in previous studies, lacking however the beneficial effects on memory retention. CONCLUSION: Our findings put the endeavour for a selective enhancement of spindle activity via auditory pathways into perspective and reveal central questions with regard to the stimulation efficacy on both an electrophysiological and a neurobehavioral level.


Asunto(s)
Corteza Cerebral/fisiología , Electroencefalografía , Potenciales Evocados Auditivos/fisiología , Consolidación de la Memoria/fisiología , Sueño de Onda Lenta/fisiología , Estimulación Acústica , Adulto , Ondas Encefálicas/fisiología , Femenino , Humanos , Masculino , Adulto Joven
16.
Neural Netw ; 98: 283-295, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29291546

RESUMEN

The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state.


Asunto(s)
Ganglios Basales , Estimulación Encefálica Profunda/tendencias , Redes Neurales de la Computación , Dinámicas no Lineales , Tálamo , Ganglios Basales/fisiología , Simulación por Computador , Predicción , Humanos , Neuronas/fisiología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Reproducibilidad de los Resultados , Tálamo/fisiología
17.
Seizure ; 44: 169-175, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27876408

RESUMEN

Brain stimulation is increasingly used in epilepsy patients with insufficient therapeutic response to pharmacological treatment. Whereas vagus nerve stimulation with implanted devices has been used in large and heterogeneous patient groups, new devices also enable targeted brain stimulation at the site of seizure generation (responsive neurostimulation) or at network hubs (thalamic stimulation). Both responsive neurostimulation systems targeting the epileptic focus and the latest vagus nerve stimulators are intended to stimulate during the ictal phase to disrupt clinical seizure manifestation of reduce seizure severity. Furthermore, transcutaneous stimulation approaches are now available, although their efficacy remains uncertain. This review explains the concepts underlying brain stimulation, provides an overview of efficacy and tolerability data and discusses the rational use of the growing spectrum of neuromodulatory strategies available.


Asunto(s)
Encéfalo/fisiología , Terapia por Estimulación Eléctrica/métodos , Epilepsia/terapia , Humanos
18.
Brain ; 140(1): 132-145, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007997

RESUMEN

SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Distonía/complicaciones , Temblor Esencial/terapia , Tálamo , Temblor/terapia , Acelerometría , Temblor Esencial/fisiopatología , Humanos , Temblor/etiología , Temblor/fisiopatología
19.
Clin Neurophysiol ; 127(8): 2882-2889, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27256308

RESUMEN

OBJECTIVE: EEG long-range temporal correlations (LRTCs) are a significant for both human cognition and brain disorders, but beyond suppression by sensory disruption, there are little means for influencing them non-invasively. We hypothesized that LRTCs could be controlled by engaging intrinsic neuroregulation through closed-loop neurofeedback stimulation. METHODS: We used a closed-loop-stimulation paradigm where supra-threshold α-waves trigger visual flash stimuli while the subject performs the standard eyes-closed resting-state task. As a "sham" control condition, we applied similar stimulus sequences without the neurofeedback. RESULTS: Over three sessions, a significant difference in the LRTCs of α-band oscillations (U=89, p<0.028, Wilcoxon rank sum test) and their scalp topography (T=-2.92, p<0.010, T-test) emerged between the neurofeedback and sham conditions so that the LRTCs were stronger during neurofeedback than sham. No changes (F=0.16, p>0.69, ANOVA test) in the scalp topography of α-band power were observed in either condition. CONCLUSIONS: This study provides proof-of-concept for that EEG LRTCs, and hence critical brain dynamics, can be modulated with closed-loop stimulation in an automatic, involuntary fashion. We suggest that this modulation is mediated by an excitation-inhibition balance change achieved by the closed-loop neuroregulation. SIGNIFICANCE: Automatic LRTC modulation opens novel avenues for both examining the functional roles of brain criticality in healthy subjects and for developing novel therapeutic approaches for brain disorders associated with abnormal LRTCs.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/fisiología , Neurorretroalimentación , Mapeo Encefálico , Electroencefalografía , Femenino , Humanos , Masculino , Estimulación Luminosa , Procesamiento de Señales Asistido por Computador , Adulto Joven
20.
Brain Res ; 1593: 117-25, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25451100

RESUMEN

This study investigated the effects of electrical stimulation with theta burst stimulation (eTBS) on seizure suppression. Optimal parameters of eTBS were determined through open-loop stimulation experiments and then implemented in a close-loop seizure control system. For the experiments, 4-aminopyridine (4-AP) was injected into the right hippocampus of Sprague-Dawley rats to induce an acute seizure. eTBS was applied on the ventral hippocampal commissure and the effects of eTBS with different combinations of burst frequency and number of pulses per burst were analyzed in terms of seizure suppression. A closed-loop seizure control system was then implemented based on optimal eTBS parameters. The efficiency of the closed-loop eTBS was evaluated and compared to that of high frequency stimulation. The results show that eTBS induced global suppression in the hippocampus and this was sustained even after the application of eTBS. The optimal parameter of eTBS in the open-loop stimulation experiments was a burst frequency at 100Hz with nine pulses in a burst. The eTBS integrated with the on-off control law yielded less actions and cumulative delivered charge, but induced longer after-effects of seizure suppression compared to continuous high frequency stimulation (cHFS). To conclude, eTBS has suppressive effects on 4-AP induced seizure. A closed-loop eTBS system provides a more effective way of suppressing seizure and requires less effort compared to cHFS. eTBS may be a novel stimulation protocol for effective seizure control.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Fórnix/fisiopatología , Convulsiones/fisiopatología , 4-Aminopiridina , Enfermedad Aguda , Animales , Modelos Animales de Enfermedad , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA