Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Anim Nutr ; 74(4): 257-270, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31718315

RESUMEN

The study evaluated the effects of soybean oil (SO) and dietary copper levels on nutrient digestion, ruminal fermentation, enzyme activity, microflora and microbial protein synthesis in dairy bulls. Eight Holstein rumen-cannulated bulls (14 ± 0.2 months of age and 326 ± 8.9 kg of body weight) were allocated into a replicated 4 × 4 Latin square design in a 2 × 2 factorial arrangement with factors being 0 or 40 g/kg dietary dry matter (DM) of SO and 0 or 7.68 mg/kg DM of Cu from copper sulphate (CS). The basal diet contained per kg DM 500 g of corn silage, 500 g of concentrate, 28 g of ether extract (EE) and 7.5 mg of Cu. The SO × CS interaction was significant (p < 0.05) for ruminal propionate proportion and acetate to propionate ratio. Dietary SO addition increased (p < 0.05) intake and total tract digestibility of EE but did not affect average daily gain (ADG) of bulls. Dietary CS addition did not affect nutrient intake but increased (p < 0.05) ADG and total tract digestibility of DM, organic matter, crude protein and neutral detergent fibre. Ruminal pH was not affected by treatments. Dietary SO addition did not affect ruminal total volatile fatty acids (VFA) concentration, decreased (p < 0.05) acetate proportion and ammonia N and increased (p < 0.05) propionate proportion. Dietary CS addition did not affect ammonia N, increased (p < 0.05) total VFA concentration and acetate proportion and decreased (p < 0.05) propionate proportion. Acetate to propionate ratio decreased (p < 0.05) with SO addition and increased (p < 0.05) with CS addition. Dietary SO addition decreased (p < 0.05) activity of carboxymethyl cellulase, cellobiase and xylanase as well as population of fungi, protozoa, methanogens, Ruminococcus albus and R. flavefaciens but increased (p < 0.05) α-amylase activity and population of Prevotella ruminicola and Ruminobacter amylophilus. Dietary CS addition increased (p < 0.05) activity of cellulolytic enzyme and protease as well as population of total bacteria, fungi, protozoa, methanogens, primary cellulolytic and proteolytic bacteria. Microbial protein synthesis was unchanged with SO addition but increased (p < 0.05) with CS addition. The results indicated that the addition of CS promoted nutrient digestion and ruminal fermentation by stimulating microbial growth and enzyme activity but did not relieve the negative effects of SO addition on ruminal fermentation in dairy bulls.


Asunto(s)
Bacterias/metabolismo , Bovinos/fisiología , Sulfato de Cobre/metabolismo , Digestión , Rumen/enzimología , Rumen/microbiología , Aceite de Soja/metabolismo , Alimentación Animal/análisis , Animales , Proteínas Bacterianas/biosíntesis , Cobre/administración & dosificación , Cobre/metabolismo , Sulfato de Cobre/administración & dosificación , Industria Lechera , Dieta/veterinaria , Suplementos Dietéticos/análisis , Fermentación , Microbioma Gastrointestinal/fisiología , Masculino , Nutrientes/fisiología , Aceite de Soja/administración & dosificación
2.
J Anim Physiol Anim Nutr (Berl) ; 103(6): 1719-1726, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31441137

RESUMEN

Researches on sodium selenite (SS) mainly focus on production performance and rumen fermentation in ruminants, and the influence of dietary Se addition on ruminal microbial population and enzyme activity in dairy bulls is scarce. This study mainly evaluated the effects of SS on ruminal fermentation, microflora and urinary excretion of purine derivatives (PD) in dairy bulls. Eight ruminally cannulated dairy bulls were used in a replicated 4 × 4 Latin square design. Treatments were control, low SS (LSS), medium SS (MSS) and high SS (HSS) with 0, 0.1, 0.3 and 0.5 mg/kg of selenium (Se) from SS in dietary dry matter (DM), respectively. The supplement of SS (1.0 g/kg of Se) was mixed into the first third of the daily ration. Bulls were fed a total mixed ration with corn silage to concentrate ratio of 50:50 on a DM basis. Dry matter intake was not affected, average daily gain linearly increased, while feed conversion ratio quadratically decreased with increasing Se addition. The linearly increased digestibility of DM, organic matter, crude protein, ether extract, neutral detergent fibre and acid detergent fibre was observed. Both ruminal pH and ammonia-N concentration linearly decreased, whereas total volatile fatty acid concentration linearly increased. A lower acetate to propionate ratio was observed due to the unchanged acetate proportion and increased propionate proportion. Activity of cellobiase, xylanase, pectinase, α-amylase and protease, populations of total bacteria, fungi, protozoa, Ruminococcus (R.) albus, R. flavefaciens, Fibrobacter succinogenes, Butyrivibrio fibrisolvens and Ruminobacter amylophilus as well as urinary total PD excretion linearly increased, whereas populations of total methanogens and Prevotella ruminicola linearly decreased. The data indicated that dietary Se addition stimulated ruminal microbial growth and enzyme activity, and resulting in the increased nutrient digestion and growth performance, and the optimum supplementary dose of Se was 0.3 mg/kg dietary DM from SS in dairy bulls.


Asunto(s)
Bovinos , Purinas/orina , Rumen/efectos de los fármacos , Selenito de Sodio/farmacología , Alimentación Animal/análisis , Animales , Bacterias/efectos de los fármacos , Bacterias/enzimología , Bacterias/metabolismo , Suplementos Dietéticos , Fermentación/efectos de los fármacos , Masculino , Rumen/microbiología , Rumen/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA