Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38583875

RESUMEN

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Asunto(s)
Adenocarcinoma , Hipertermia Inducida , Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Células PC-3 , Especies Reactivas de Oxígeno/metabolismo , Microondas , Proteína p53 Supresora de Tumor/metabolismo , Hipertermia Inducida/métodos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , Reparación del ADN , Apoptosis , Estrés Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , ADN/metabolismo , Línea Celular Tumoral , Proliferación Celular
2.
Mol Neurobiol ; 61(10): 7369-7383, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38386135

RESUMEN

DNA damage is associated with hyperhomocysteinemia (HHcy) and neural tube defects (NTDs). Additionally, HHcy is a risk factor for NTDs. Therefore, this study examined whether DNA damage is involved in HHcy-induced NTDs and investigated the underlying pathological mechanisms involved. Embryonic day 9 (E9) mouse neuroectoderm cells (NE4C) and homocysteine-thiolactone (HTL, active metabolite of Hcy)-induced NTD chicken embryos were studied by Western blotting, immunofluorescence. RNA interference or gene overexpression techniques were employed to investigate the impact of Menin expression changes on the DNA damage. Chromatin immunoprecipitation-quantitative polymerase chain reaction was used to investigate the epigenetic regulation of histone modifications. An increase in γH2AX (a DNA damage indicator) was detected in HTL-induced NTD chicken embryos and HTL-treated NE4C, accompanied by dysregulation of phospho-Atr-Chk1-nucleotide excision repair (NER) pathway. Further investigation, based on previous research, revealed that disruption of NER was subject to the epigenetic regulation of low-expressed Menin-H3K4me3. Overexpression of Menin or supplementation with folic acid in HTL-treated NE4C reversed the adverse effects caused by high HTL. Additionally, by overexpressing the Mars gene, we tentatively propose a mechanism whereby HTL regulates Menin expression through H3K79hcy, which subsequently influences H3K4me3 modifications, reflecting an interaction between histone modifications. Finally, in 10 human fetal NTDs with HHcy, we detected a decrease in the expression of Menin-H3K4me3 and disorder in the NER pathway, which to some extent validated our proposed mechanism. The present study demonstrated that the decreased expression of Menin in high HTL downregulated H3K4me3 modifications, further weakening the Atr-Chk1-NER pathway, resulting in the occurrence of NTDs.


Asunto(s)
Daño del ADN , Histonas , Homocisteína , Defectos del Tubo Neural , Proteínas Proto-Oncogénicas , Animales , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Embrión de Pollo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Homocisteína/análogos & derivados , Ratones , Histonas/metabolismo , Epigénesis Genética/efectos de los fármacos , Reparación del ADN/efectos de los fármacos
3.
Int J Biochem Cell Biol ; 162: 106454, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37574041

RESUMEN

Cisplatin, a widely prescribed chemotherapeutic agent for treating solid tumors, induces DNA adducts and activates cellular defense mechanisms, including DNA repair, cell cycle checkpoint control, and apoptosis. Considering the circadian rhythmicity displayed by most chemotherapeutic agents and their varying therapeutic efficacy based on treatment timing, our study aimed to investigate whether the circadian clock system influences the DNA damage responses triggered by cisplatin in synchronized cells. We examined the DNA damage responses in circadian-synchronized wild-type mouse embryonic fibroblasts (WT-MEF; clock-proficient cells), cryptochrome1 and 2 double knock-out MEF (CRYDKO; clock-deficient cells), and mouse hepatocarcinoma Hepa1c1c7 cells. Varying the treatment time resulted in a significant difference in the rate of platinum-DNA adduct removal specifically in circadian-synchronized WT-MEF, while CRYDKO did not exhibit such variation. Moreover, diurnal variation in other DNA damage responses, such as cell cycle checkpoint activity indicated by p53 phosphorylation status and apoptosis measured by DNA break frequency, was observed only in circadian-synchronized WT-MEF, not in CRYDKO or mouse hepatocarcinoma Hepa1c1c7 cells. These findings highlight that the DNA damage responses triggered by cisplatin are indeed governed by circadian control exclusively in clock-proficient cells. This outcome bears potential implications for enhancing or devising chronotherapy approaches for cancer patients.


Asunto(s)
Relojes Circadianos , Neoplasias , Animales , Ratones , Cisplatino/farmacología , Cisplatino/uso terapéutico , Aductos de ADN/uso terapéutico , Daño del ADN , Fibroblastos/metabolismo , Reparación del ADN , Relojes Circadianos/genética , Neoplasias/genética , Apoptosis
4.
Front Oncol ; 13: 1117262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37409248

RESUMEN

Introduction: DNA double-strand breaks are the most toxic lesions repaired through the non-homologous and joining (NHEJ) or the homologous recombination (HR), which is dependent on the generation of single-strand tails, by the DNA end resection mechanism. The resolution of the HR intermediates leads to error-free repair (Gene Conversion) or the mutagenic pathways (Single Strand Annealing and Alternative End-Joining); the regulation of processes leading to the resolution of the HR intermediates is not fully understood. Methods: Here, we used a hydrophilic extract of a new tomato genotype (named DHO) in order to modulate the Camptothecin (CPT) DNA damage response. Results: We demonstrated increased phosphorylation of Replication Protein A 32 Serine 4/8 (RPA32 S4/8) protein in HeLa cells treated with the CPT in combination with DHO extract with respect to CPT alone. Moreover, we pointed out a change in HR intermediates resolution from Gene Conversion to Single Strand Annealing through the modified DNA repair protein RAD52 homolog (RAD52), DNA excision repair protein ERCC-1 (ERCC1) chromatin loading in response to DHO extract, and CPT co-treatment, with respect to the vehicle. Finally, we showed an increased sensitivity of HeLa cell lines to DHO extract and CPT co-treatment suggesting a possible mechanism for increasing the efficiency of cancer therapy. Discussion: We described the potential role of DHO extract in the modulation of DNA repair, in response to Camptothecin treatment (CPT), favoring an increased sensitivity of HeLa cell lines to topoisomerase inhibitor therapy.

5.
Cell Rep ; 42(4): 112400, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37071536

RESUMEN

Dysregulated amino acid increases the risk for heart failure (HF) via unclear mechanisms. Here, we find that increased plasma tyrosine and phenylalanine levels are associated with HF. Increasing tyrosine or phenylalanine by high-tyrosine or high-phenylalanine chow feeding exacerbates HF phenotypes in transverse aortic constriction and isoproterenol infusion mice models. Knocking down phenylalanine dehydrogenase abolishes the effect of phenylalanine, indicating that phenylalanine functions by converting to tyrosine. Mechanistically, tyrosyl-tRNA synthetase (YARS) binds to ataxia telangiectasia and Rad3-related gene (ATR), catalyzes lysine tyrosylation (K-Tyr) of ATR, and activates the DNA damage response (DDR) in the nucleus. Increased tyrosine inhibits the nuclear localization of YARS, inhibits the ATR-mediated DDR, accumulates DNA damage, and elevates cardiomyocyte apoptosis. Enhancing ATR K-Tyr by overexpressing YARS, restricting tyrosine, or supplementing tyrosinol, a structural analog of tyrosine, promotes YARS nuclear localization and alleviates HF in mice. Our findings implicate facilitating YARS nuclear translocation as a potential preventive and/or interfering measure against HF.


Asunto(s)
Insuficiencia Cardíaca , Tirosina-ARNt Ligasa , Animales , Ratones , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Lisina/genética , Fenilalanina , Tirosina/metabolismo , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo
6.
Phytomedicine ; 114: 154765, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004403

RESUMEN

BACKGROUD: Flavonoids have a variety of biological activities, such as anti-inflammation, anti-tumor, anti-thrombosis and so on. Morusinol, as a novel isoprene flavonoid extracted from Morus alba root barks, has the effects of anti-arterial thrombosis and anti-inflammatory in previous studies. However, the anti-cancer mechanism of morusinol remains unclear. PURPOSE: In present study, we mainly studied the anti-tumor effect of morusinol and its mode of action in melanoma. METHODS: The anti-cancer effect of morusinol on melanoma were evaluated by using the MTT, EdU, plate clone formation and soft agar assay. Flow cytometry was used for detecting cell cycle and apoptosis. The É£-H2AX immunofluorescence and the alkaline comet assay were used to detect DNA damage and the Western blotting analysis was used to investigate the expressions of DNA-damage related proteins. Ubiquitination and turnover of CHK1 were also detected by using the immunoprecipitation assay. The cell line-derived xenograft (CDX) mouse models were used in vivo to evaluate the effect of morusinol on tumorigenicity. RESULTS: We demonstrated that morusinol not only had the ability to inhibit cell proliferation, but also induced cell cycle arrest at G0/G1 phase, caspase-dependent apoptosis and DNA damage in human melanoma cells. In addition, morusinol effectively inhibited the growth of melanoma xenografts in vivo. More strikingly, CHK1, which played an important role in maintaining the integrity of cell cycle, genomic stability and cell viability, was down-regulated in a dose- and time-dependent manner after morusinol treatment. Further research showed that CHK1 was degraded by the ubiquitin-proteasome pathway. Whereafter, morusinol-induced cell cycle arrest, apoptosis and DNA damage were partially salvaged by overexpressing CHK1 in melanoma cell lines. Herein, further experiments demonstrated that morusinol increased the sensitivity of dacarbazine (DTIC) to chemotherapy for melanoma in vitro and in vivo. CONCLUSION: Morusinol induces CHK1 degradation through the ubiquitin-proteasome pathway, thereby inducing cell cycle arrest, apoptosis and DNA damage response in melanoma. Our study firstly provided a theoretical basis for morusinol to be a candidate drug for clinical treatment of cancer, such as melanoma, alone or combinated with dacarbazine.


Asunto(s)
Melanoma , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Apoptosis , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Dacarbazina/farmacología , Daño del ADN , Flavonoides/farmacología , Melanoma/metabolismo , Ubiquitinas/farmacología
7.
Phytomedicine ; 112: 154682, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36739636

RESUMEN

BACKGROUND: The immunosuppressive microenvironment of lung cancer serves as an important endogenous contributor to treatment failure. The present study aimed to demonstrate the promotive effect of DHA on immunogenic cell death (ICD) in lung cancer as well as the mechanism. METHODS: The lewis lung cancer cells (LLC), A549 cells and LLC-bearing mice were applied as the lung cancer model. The apoptosis, ferroptosis assay, western blotting, immunofluorescent staining, qPCR, comet assay, flow cytometry, confocal microscopy, transmission electron microscopy and immunohistochemistry were conducted to analyze the functions and the underlying mechanism. RESULTS: An increased apoptosis rate and immunogenicity were detected in DHA-treated LLC and tumor grafts. Further findings showed DHA caused lipid peroxide (LPO) accumulation, thereby initiating ferroptosis. DHA stimulated cellular endoplasmic reticulum (ER) stress and DNA damage simultaneously. However, the ER stress and DNA damage induced by DHA could be abolished by ferroptosis inhibitors, whose immunogenicity enhancement was synchronously attenuated. In contrast, the addition of exogenous iron ions further improved the immunogenicity induced by DHA accompanied by enhanced ER stress and DNA damage. The enhanced immunogenicity could be abated by ER stress and DNA damage inhibitors as well. Finally, DHA activated immunocytes and exhibited excellent anti-cancer efficacy in LLC-bearing mice. CONCLUSIONS: In summary, the current study demonstrates that DHA triggers ferroptosis, facilitating the ICD of lung cancer thereupon. This work reveals for the first time the effect and underlying mechanism by which DHA induces ICD of cancer cells, providing novel insights into the regulation of the immune microenvironment for cancer immunotherapy by Chinese medicine phytopharmaceuticals.


Asunto(s)
Carcinoma Pulmonar de Lewis , Ferroptosis , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Inmunoterapia , Daño del ADN , Microambiente Tumoral
8.
Clin Genitourin Cancer ; 21(2): 265-272, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710146

RESUMEN

INTRODUCTION: Cisplatin-based neoadjuvant chemotherapy (NAC) followed by cystectomy is the standard for muscle-invasive bladder cancer (MIBC), however, NAC confers only a small survival benefit and new strategies are needed to increase its efficacy. Pre-clinical data suggest that in response to DNA damage the tumor microenvironment (TME) adopts a paracrine secretory phenotype dependent on mTOR signaling which may provide an escape mechanism for tumor resistance, thus offering an opportunity to increase NAC effectiveness with mTOR blockade. PATIENTS & METHODS: We conducted a phase I/II clinical trial to assess the safety and efficacy of gemcitabine-cisplatin-rapamycin combination. Grapefruit juice was administered to enhance rapamycin pharmacokinetics by inhibiting intestinal enzymatic degradation. Phase I was a dose determination/safety study followed by a single arm Phase II study of NAC prior to radical cystectomy evaluating pathologic response with a 26% pCR rate target. RESULTS: In phase I, 6 patients enrolled, and the phase 2 dose of 35 mg rapamycin established. Fifteen patients enrolled in phase II; 13 were evaluable. Rapamycin was tolerated without serious adverse events. At the preplanned analysis, the complete response rate (23%) did not meet the prespecified level for continuing and the study was stopped due to futility. With immunohistochemistry, successful suppression of the mTOR signaling pathway in the tumor was achieved while limited mTOR activity was seen in the TME. CONCLUSION: Adding rapamycin to gemcitabine-cisplatin therapy for patients with MIBC was well tolerated but failed to improve therapeutic efficacy despite evidence of mTOR blockade in tumor cells. Further efforts to understand the role of the tumor microenvironment in chemotherapy resistance is needed.


Asunto(s)
Cisplatino , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/uso terapéutico , Gemcitabina , Sirolimus/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias de la Vejiga Urinaria/patología , Desoxicitidina , Terapia Neoadyuvante/efectos adversos , Cistectomía , Músculos/patología , Serina-Treonina Quinasas TOR , Invasividad Neoplásica , Microambiente Tumoral
9.
Mol Med ; 29(1): 15, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717782

RESUMEN

BACKGROUND: Osteosarcoma is a malignant bone tumor that usually affects adolescents aged 15-19 y. The DNA damage response (DDR) is significantly enhanced in osteosarcoma, impairing the effect of systemic chemotherapy. Targeting the DDR process was considered a feasible strategy benefitting osteosarcoma patients. However, the clinical application of DDR inhibitors is not impressive because of their side effects. Chinese herbal medicines with high anti-tumor effects and low toxicity in the human body have gradually gained attention. 2-Hydroxy-3-methylanthraquinone (HMA), a Chinese medicine monomer found in the extract of Oldenlandia diffusa, exerts significant inhibitory effects on various tumors. However, its anti-osteosarcoma effects and defined molecular mechanisms have not been reported. METHODS: After HMA treatment, the proliferation and metastasis capacity of osteosarcoma cells was detected by CCK-8, colony formation, transwell assays and Annexin V-fluorescein isothiocyanate/propidium iodide staining. RNA-sequence, plasmid infection, RNA interference, Western blotting and immunofluorescence assay were used to investigate the molecular mechanism and effects of HMA inhibiting osteosarcoma. Rescue assay and CHIP assay was used to further verified the relationship between MYC, CHK1 and RAD51. RESULTS: HMA regulate MYC to inhibit osteosarcoma proliferation and DNA damage repair through PI3K/AKT signaling pathway. The results of RNA-seq, IHC, Western boltting etc. showed relationship between MYC, CHK1 and RAD51. Rescue assay and CHIP assay further verified HMA can impair homologous recombination repair through the MYC-CHK1-RAD51 pathway. CONCLUSION: HMA significantly inhibits osteosarcoma proliferation and homologous recombination repair through the MYC-CHK1-RAD51 pathway, which is mediated by the PI3K-AKT signaling pathway. This study investigated the exact mechanism of the anti-osteosarcoma effect of HMA and provided a potential feasible strategy for the clinical treatment of human osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Adolescente , Reparación del ADN por Recombinación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Recombinasa Rad51/farmacología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Proliferación Celular
10.
J Ethnopharmacol ; 304: 116077, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36572327

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Baipuhuang Keli (BPH, constituted by Bai Tou Weng (Pulsatilla chinensis (Bunge) Regel), Pu Gong Ying (Taraxacum mongolicum Hand.-Mazz.), Huang Qin (Scutellaria baicalensis Georgi), Huang Bo (Phellodendron amurense Rupr.)) is a Chinese herbal formula with clearing heat and cooling blood, and removing toxin effects, which is suit for the case of breast cancer. AIM OF THE STUDY: Here, we aim to explore the effects of BPH on triple-negative breast cancer (TNBC) and its potential mechanisms. MATERIALS AND METHODS: In this study, cell viability assay, colony formation assay, soft agar assay, cell proliferation curve assay, and EdU assay were employed to determine the anti-proliferation effect induced by BPH. Cell cycle distribution was detected by flow cytometry. DNA damage in cells treated with BPH was indicated by comet assay, immunofluorescence, and Western Blot. Both the 4T1 orthotopic tumor model and the MDA-MB-231 subcutaneous tumor model were used to assess in vivo effect of BPH (312.5, and 625 mg/kg). The protein expression levels of the DNA damage response (DDR) pathway and the MAPK/ERK pathway were detected by Western Blot. RESULTS: Our results indicated that TNBC cells were more sensitive to BPH than mammary epithelial cells. Cell proliferation of TNBC cells was significantly inhibited by BPH in a dose-dependent manner. Moreover, BPH induced DNA damage in TNBC cells in a concentration and time-dependent manner. DDR of TNBC cells was inhibited by BPH. MAPK/ERK pathway was inhibited in cells treated with BPH, and DNA damage can be reversed while EGF was added to activate MAPK/ERK pathway. The 4T1 orthotopic tumor model and the MDA-MB-231 subcutaneous tumor model further confirmed that BPH inhibited TNBC proliferation via inhibition of DDR and MAPK/ERK pathway in vivo. CONCLUSIONS: Collectively, we proved that BPH is a potential anticancer Chinese herbal formula for TNBC in the manner of in vitro and in vivo experiments.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Daño del ADN , Sistema de Señalización de MAP Quinasas , Medicina Tradicional China , Neoplasias de la Mama Triple Negativas/patología , Femenino
11.
Biomater Adv ; 142: 213147, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36260957

RESUMEN

The chemo-therapeutic efficacy of Doxorubicin (Dox), a potent anti-cancer drug used in the treatment of several solid tumors, is severely compromised by its cardio-toxicity. To overcome this shortcoming and exploit the utmost theranostic potential of nano-formulations, magnetic nanoparticles co-encapsulated with Dox and indocyanine green (ICG) in a liposomal carrier and tagged with cyclic RGD peptide were rationally designed and synthesized. These magneto-liposomes (T-LMD) showed αvß3-integrin receptor targeting and higher cyto-toxicity in several cancer cell lines (i.e. lung, breast, skin, brain and liver cancer) in combination with or without gamma radiation or magnetic hyperthermia therapy as compared to clinical liposomal nano-formulation of Dox (Lippod™). Mechanism of chemo-radio-sensitization was found to involve activation of JNK mediated pro-apoptotic signaling axis and delayed repair of DNA double strand breaks. Real time imaging of ICG labeled T-LMD suggested ~6-18 fold higher tumor accumulation of T-LMD as compared to off-target organs (kidney, liver, spleen, intestine, lungs and heart) and resulted in its higher combinatorial (chemo-radio-hyperthermia) tumor therapy efficacy as compared to Lippod™. Moreover, T-LMD showed insignificant toxicity to the heart tissue as suggested by serum levels of CK-MB, histo-pathological analysis, anti-oxidant enzyme activities (Catalase and GST) and markers of cardiac fibrosis, suggesting its potential for targeted multi-modal therapy of cancer.


Asunto(s)
Nanopartículas de Magnetita , Fototerapia , Fototerapia/métodos , Medicina de Precisión , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Doxorrubicina/farmacología , Verde de Indocianina , Liposomas , Daño del ADN
12.
Radiat Oncol ; 17(1): 79, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440003

RESUMEN

BACKGROUND: Inherent resistance to radio/chemotherapy is one of the major reasons for early recurrence, treatment failure, and dismal prognosis of glioblastoma. Thus, the identification of resistance driving regulators as prognostic and/or predictive markers as well as potential vulnerabilities for combined modality treatment approaches is of pivotal importance. METHODS: We performed an integrative analysis of treatment resistance and DNA damage response regulator expression in a panel of human glioblastoma cell lines. mRNA expression levels of 38 DNA damage response regulators were analyzed by qRT-PCR. Inherent resistance to radiotherapy (single-shot and fractionated mode) and/or temozolomide treatment was assessed by clonogenic survival assays. Resistance scores were extracted by dimensionality reduction and subjected to correlation analyses with the mRNA expression data. Top-hit candidates with positive correlation coefficients were validated by pharmacological inhibition in clonogenic survival assays and DNA repair analyses via residual γH2AX/53BP1-foci staining. RESULTS: Inherent resistance to single-shot and similarly also to fractionated radiotherapy showed strong positive correlations with mRNA expression levels of known vulnerabilities of GBM, including PARP1, NBN, and BLM, as well as ATR and LIG4-two so far underestimated targets. Inhibition of ATR by AZD-6738 resulted in robust and dose-dependent radiosensitization of glioblastoma cells, whereas LIG4 inhibition by L189 had no noticeable impact. Resistance against temozolomide showed strong positive correlation with mRNA expression levels of MGMT as to be expected. Interestingly, it also correlated with mRNA expression levels of ATM, suggesting a potential role of ATM in the context of temozolomide resistance in glioblastoma cells. ATM inhibition exhibited slight sensitization effects towards temozolomide treatment in MGMT low expressing glioblastoma cells, thus encouraging further characterization. CONCLUSIONS: Here, we describe a systematic approach integrating clonogenic survival data with mRNA expression data of DNA damage response regulators in human glioblastoma cell lines to identify markers of inherent therapy resistance and potential vulnerabilities for targeted sensitization. Our results provide proof-of-concept for the feasibility of this approach, including its limitations. We consider this strategy to be adaptable to other cancer entities as well as other molecular data qualities, and its upscaling potential in terms of model systems and observational data levels deserves further investigation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Quimioradioterapia , Terapia Combinada , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Metilasas de Modificación del ADN/uso terapéutico , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/terapia , Humanos , ARN Mensajero/genética , Temozolomida/farmacología , Temozolomida/uso terapéutico , Transcriptoma
13.
Phytomedicine ; 99: 153977, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35305353

RESUMEN

BACKGROUND: Human enterovirus 68 (EV68) is a primary etiological agent for respiratory illnesses, while no effective drug has yet used in clinics largely because the pathogenesis of EV68 is not clear. DNA damage response (DDR) responds to cellular DNA breaks and is also involved in viral replication. Three DDR pathways includes ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK). Natural products proved to be an excellent source for the discovery and isolation of novel antivirals. Among them, tanshinone IIA, resveratrol, silibinin, rutin and quercetin are reported to target DDR, therefore their roles in anti-EV68 are investigated in this study. PURPOSE: This study investigated the anti-EV68 ability of various natural compounds related to DDR. STUDY DESIGN AND METHODS: The methods include cell counting, flow cytometry, western blot, Immunofluorescence staining, comet assays, quantitative real-time RT PCR and short interfering RNAs (siRNAs) for analysis of cell number, cell cycle, protein expression, protein location, DNA damage, mRNA level and knock down target gene, respectively. RESULTS: EV68 infection induced DDR. Down-regulation or inhibition of ATM or DNA-PK lowered DDR in EV68-infected cells and mitigated viral protein expression, however, down-regulation or inhibition of ATR unexpectedly up-regulated DDR, and promoted viral protein expression. Meanwhile tanshinone IIA, resveratrol, and silibinin inhibited ATM and/or DNA-PK activation and decreased viral proliferation, while rutin and quercetin inhibited ATR activation and promoted viral production. The role of them in ATM, DNA-PK and ATR activation was consistent with previous reports. CONCLUSION: Tanshinone IIA, resveratrol and silibinin inhibited EV68 proliferation through inhibiting ATM and/or DNA-PK activation, and they were effective anti-EV68 candidates.

14.
J Appl Toxicol ; 42(9): 1491-1502, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35261072

RESUMEN

Black cohosh extract (BCE) is one of the most popular botanical products for relieving menopausal symptoms. However, recent studies indicate that BCE is not only ineffective for menopausal therapy but also induces genotoxicity through an aneugenic mode of action (MoA). In this study, the cytotoxicity of five constituents of BCE was evaluated in human lymphoblastoid TK6 cells. Among the five constituents, actein (up to 50 µM) showed the highest cytotoxicity and was thus selected for further genotoxicity evaluations. Actein caused DNA damage proportionally to concentration as evidenced by the phosphorylation of the histone protein H2A.X (γH2A.X) and resulted in chromosomal damage as measured by the increased percentage of micronuclei (%MN) in cells. In addition, actein activated DNA damage response (DDR) pathway through induction of p-ATM, p-Chk1, and p-Chk2, which subsequently induced cell cycle changes and apoptosis. Moreover, both BCE and actein increased intracellular reactive oxygen species (ROS) production, decreased glutathione levels, and activated the mitogen-activated protein kinases (MAPK) signaling pathway. N-acetylcysteine, a ROS scavenger, attenuated BCE- and actein-induced ROS production, apoptosis, and DNA damage. These findings indicate that BCE- and actein-induced genotoxicity is mediated, at least partially, through oxidative stress. Taken together, our data show that actein is likely one of the major contributors to BCE-induced genotoxicity.


Asunto(s)
Cimicifuga , Cimicifuga/metabolismo , Cimicifuga/toxicidad , Daño del ADN , Humanos , Extractos Vegetales , Especies Reactivas de Oxígeno/metabolismo , Saponinas , Triterpenos
15.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35163765

RESUMEN

Pseudoxanthoma elasticum (PXE) is an intractable Mendelian disease characterized by ectopic calcification in skin, eyes and blood vessels. Recently, increased activation of the DNA damage response (DDR) was shown to be involved in PXE pathogenesis, while the DDR/PARP1 inhibitor minocycline was found to attenuate aberrant mineralization in PXE cells and zebrafish. In this proof-of-concept study, we evaluated the anticalcifying properties of minocycline in Abcc6-/- mice, an established mammalian PXE model. Abcc6-/- mice received oral minocycline supplementation (40 mg/kg/day) from 12 to 36 weeks of age and were compared to untreated Abcc6-/- and Abcc6+/+ siblings. Ectopic calcification was evaluated using X-ray microtomography with three-dimensional reconstruction of calcium deposits in muzzle skin and Yasue's calcium staining. Immunohistochemistry for the key DDR marker H2AX was also performed. Following minocycline treatment, ectopic calcification in Abcc6-/- mice was significantly reduced (-43.4%, p < 0.0001) compared to untreated Abcc6-/- littermates. H2AX immunostaining revealed activation of the DDR at sites of aberrant mineralization in untreated Abcc6-/- animals. In conclusion, we validated the anticalcifying effect of minocycline in Abcc6-/- mice for the first time. Considering its favorable safety profile in humans and low cost as a generic drug, minocycline may be a promising therapeutic compound for PXE patients.


Asunto(s)
Minociclina/administración & dosificación , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Seudoxantoma Elástico/diagnóstico por imagen , Seudoxantoma Elástico/tratamiento farmacológico , Administración Oral , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Masculino , Ratones , Minociclina/farmacología , Prueba de Estudio Conceptual , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/metabolismo , Resultado del Tratamiento , Microtomografía por Rayos X
16.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575923

RESUMEN

Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Daño del ADN/efectos de los fármacos , Flavonoides/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Medicamentos Herbarios Chinos , Regulación de la Expresión Génica , Recombinación Homóloga/efectos de los fármacos , Humanos , Ratones , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
17.
Biomolecules ; 11(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064641

RESUMEN

Genomic integrity is constantly insulted by solar ultraviolet (UV) radiation. Adaptative cellular mechanisms called DNA damage responses comprising DNA repair, cell cycle checkpoint, and apoptosis, are believed to be evolved to limit genomic instability according to the photoperiod during a day. As seen in many other key cellular metabolisms, genome surveillance mechanisms against genotoxic UV radiation are under the control of circadian clock systems, thereby exhibiting daily oscillations in their catalytic activities. Indeed, it has been demonstrated that nucleotide excision repair (NER), the sole DNA repair mechanism correcting UV-induced DNA photolesions, and ataxia-telangiectasia-mutated and Rad3-related (ATR)-mediated cell cycle checkpoint kinase are subjected to the robust control of the circadian clock. The molecular foundation for the circadian rhythm of UV-induced DNA damage responses in mammalian cells will be discussed.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ritmo Circadiano , Daño del ADN , Reparación del ADN , Animales , Humanos , Rayos Ultravioleta
18.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066057

RESUMEN

Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.


Asunto(s)
Proteínas de Ciclo Celular/química , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasas/química , Regulación Alostérica/efectos de los fármacos , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dominios Proteicos/efectos de los fármacos
19.
Toxicol Sci ; 182(1): 96-106, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33856461

RESUMEN

Black cohosh extract (BCE) is marketed to women as an alternative to hormone replacement therapy for alleviating menopausal symptoms. Previous studies by the National Toxicology Program revealed that BCE induced micronuclei (MN) and a nonregenerative macrocytic anemia in rats and mice, likely caused by disruption of the folate metabolism pathway. Additional work using TK6 cells showed that BCE induced aneugenicity by destabilizing microtubules. In the present study, BCE-induced MN were confirmed in TK6 and HepG2 cells. We then evaluated BCE-induced DNA damage using the comet assay at multiple time points (0.5-24 h). Following a 0.5-h exposure, BCE induced significant, concentration-dependent increases in %tail DNA in TK6 cells only. Although DNA damage decreased in TK6 cells over time, likely due to repair, small but statistically significant levels of DNA damage were observed after 2 and 4 h exposures to 250 µg/ml BCE. A G1/S arrest in TK6 cells exposed to 125 µg/ml BCE (24 h) was accompanied by apoptosis and increased expression of γH2A.X, p-Chk1, p-Chk2, p53, and p21. Conditioning TK6 cells to physiological levels of folic acid (120 nM) did not increase the sensitivity of cells to BCE-induced DNA damage. BCE did not alter global DNA methylation in TK6 and HepG2 cells cultured in standard medium. Our results suggest that BCE induces acute DNA strand breaks which are quickly repaired in TK6 cells, whereas DNA damage seen at 4 and 24 h may reflect apoptosis. The present study supports that BCE is genotoxic mainly by inducing MN with an aneugenic mode of action.


Asunto(s)
Cimicifuga , Animales , Línea Celular , Ensayo Cometa , Daño del ADN , Humanos , Ratones , Mutágenos , Extractos Vegetales , Ratas
20.
Cell Rep ; 35(1): 108940, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33784499

RESUMEN

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Daño del ADN , Isoxazoles/farmacología , Pirazinas/farmacología , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , Células A549 , Animales , COVID-19/metabolismo , COVID-19/patología , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Células HEK293 , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA