Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Pharmacol ; 14: 1210579, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502215

RESUMEN

The COVID-19 pandemic sparked the development of novel anti-viral drugs that have shown to be effective in reducing both fatality and hospitalization rates in patients with elevated risk for COVID-19 related morbidity or mortality. Currently, nirmatrelvir/ritonavir (Paxlovid™) fixed-dose combination is recommended by the World Health Organization for treatment of COVID-19. The ritonavir component is an inhibitor of cytochrome P450 (CYP) 3A, which is used in this combination to achieve needed therapeutic concentrations of nirmatrelvir. Because of the critical pharmacokinetic effect of this mechanism of action for Paxlovid™, co-administration with needed medications that inhibit or induce CYP3A is contraindicated, reflecting concern for interactions with the potential to alter the efficacy or safety of co-administered drugs that are also metabolized by CYP3A. Some herbal medicines are known to interact with drug metabolizing enzymes and transporters, including but not limited to inhibition or induction of CYP3A and P-glycoprotein. As access to these COVID-19 medications has increased in low- and middle-income countries (LMICs), understanding the potential for herb-drug interactions within these regions is important. Many studies have evaluated the utility of herbal medicines for COVID-19 treatments, yet information on potential herb-drug interactions involving Paxlovid™, specifically with herbal medicines commonly used in LMICs, is lacking. This review presents data on regionally-relevant herbal medicine use (particularly those promoted as treatments for COVID-19) and mechanism of action data on herbal medicines to highlight the potential for herbal medicine interaction Herb-drug interaction mediated by ritonavir-boosted antiviral protease inhibitors This work highlights potential areas for future experimental studies and data collection, identifies herbal medicines for inclusion in future listings of regionally diverse potential HDIs and underscores areas for LMIC-focused provider-patient communication. This overview is presented to support governments and health protection entities as they prepare for an increase of availability and use of Paxlovid™.

2.
Front Pharmacol ; 13: 1033667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386188

RESUMEN

Background: Combination of Polygonum capitatum Buch.-Ham. ex D. Don extract (PCE) and ciprofloxacin (CIP) was commonly prescribed in the treatment of urinary tract infections. Their pharmacokinetic herb-drug interactions (HDIs) were focused in this study to assess potential impact on the safety and effectiveness. Methods: A randomized, three-period, crossover trial was designed to study the pharmacokinetic HDI between PCE and CIP in healthy humans. Their pharmacokinetic- and tissue distribution-based HDIs were also evaluated in rats. Gallic acid (GA) and protocatechuic acid (PCA) were chosen as PK-markers of PCE in humans and rats. Potential drug interaction mechanisms were revealed by assessing the effects of PCE on the activity and expression of multiple transporters, including OAT1/3, OCT2, MDR1, and BCRP. Results: Concurrent use of PCE substantially reduced circulating CIP (approximately 40%-50%) in humans and rats, while CIP hardly changed circulating GA and PCA. PCE significantly increased the tissue distribution of CIP in the prostate and testis of rats, but decreased in liver and lungs. Meanwhile, CIP significantly increased the tissue distribution of GA or PCA in the prostate and testis of rats, but decreased in kidney and heart. In the transporter-mediated in vitro HDI, GA and PCA presented inhibitory effects on OAT1/3 and inductive effects on MDR1 and BCRP. Conclusion: Multiple transporter-mediated HDI contributes to effects of PCE on the reduced systemic exposure and altered tissue distribution of CIP. More attention should be paid on the potential for PCE-perpetrated interactions.

3.
Zhongguo Zhong Yao Za Zhi ; 45(4): 923-931, 2020 Feb.
Artículo en Chino | MEDLINE | ID: mdl-32237495

RESUMEN

With the widespread use of traditional Chinese medicine(TCM) and the integration of TCM and western medicine, drug-drug interaction(DDI) is considered as a major cause of therapeutic failures and side effects. Cytochrome P450 enzymes(CYPs) are responsible for large number of drug metabolism. CYP3 A4 and CYP2 D6, two important CYP isoforms, are responsible for about 80% drug metabolism of CYPs super family. The inhibition of CYPs is likely to be the most common factor leading to adverse DDI. Therefore, it is of great significance to predict potential CYP3 A4 and CYP2 D6 inhibitors to prevent the DDI. A fast and low-cost me-thod for calculating and predicting CYP inhibiting components was established in this paper, namely support vector machine(SVM) and molecular docking technology which are used to predict and screen drugs. Firstly, 12 qualitative models of two targets were established by using SVM, and the optimal model was selected to predict the compounds in traditional Chinese medicine database(TCMD). Then, molecular docking technology was used to establish docking model. By analyzing the key amino acids involved in drug-target interactions and combining with SVM model, potential inhibitors of CYP3 A4 and CYP2 D6 were found. From the computational results, astin D and epiberberine exhibited inhibition effect on CYP3 A4 and CYP2 D6, respectively. Astin D was only found in astins family from Aster tataricus, while epiberberine was considered to be the active constituent of Coptidis Rhizoma. Therefore, for the risk of DDI, extra attention should be paid to the source of these potential inhibitors, Asteris Radix et Rhizoma and Coptidis Rhizoma. This computational method provides technical support for discovering potential natural inhibitors of CYPs from Chinese herbs by using SVM and molecular docking model, and it is also helpful to recognize the CYPs-mediated DDI existing in TCM, providing research ideas for further pharmacovigilance of integrated therapy.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/análisis , Medicamentos Herbarios Chinos/química , Sistema Enzimático del Citocromo P-450 , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Plantas Medicinales/química
4.
Zhongguo Zhong Yao Za Zhi ; 44(18): 4043-4047, 2019 Sep.
Artículo en Chino | MEDLINE | ID: mdl-31872743

RESUMEN

The purpose of this study was to investigate the effect of apigenin on UGT1 A1 enzyme activity and to predict the potential drug-drug interaction of apigenin in clinical use. First,on the basis of previous experiments,the binding targets and binding strength of apigenin to UGT1 A1 enzyme were predicted by computer molecular docking method. Then the inhibitory effect of apigenin on UGT1 A1 enzyme was evaluated by in vitro human liver microsomal incubation system. Molecular docking results showed that apigenin was docked into the active region of UGT1 A1 enzyme protein F,consistent with the active region of bilirubin docking,with moderate affinity. Apigenin flavone mother nucleus mainly interacted with amino acid residues ILE343 and VAL345 to form hydrophobic binding Pi-Alkyl. At the same time,the hydroxyl group on the mother nucleus and the amino acid residue LYS346 formed an additional hydrogen bond,which increased the binding of the molecule to the protein. These results suggested that the flavonoid mother nucleus structure had a special structure binding to the enzyme protein UGT1 A1,and the introduction of hydroxyl groups into the mother nucleus can increase the binding ability. In vitro inhibition experiments showed that apigenin had a moderate inhibitory effect on UGT1 A1 enzyme in a way of competitive inhibition,which was consistent with the results of molecular docking. The results of two experiments showed that apigenin was the substrate of UGT1 A1 enzyme,which could inhibit the activity of UGT1 A1 enzyme competitively,and there was a risk of drug interaction between apigenin and UGT1 A1 enzyme substrate in clinical use.


Asunto(s)
Apigenina/química , Bilirrubina/química , Interacciones Farmacológicas , Microsomas Hepáticos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Glucuronosiltransferasa/metabolismo , Humanos , Enlace de Hidrógeno
5.
Molecules ; 24(20)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615114

RESUMEN

Silymarin, the extract of milk thistle, and its major active flavonolignan silybin, are common products widely used in the phytotherapy of liver diseases. They also have promising effects in protecting the pancreas, kidney, myocardium, and the central nervous system. However, inconsistent results are noted in the different clinical studies due to the low bioavailability of silymarin. Extensive studies were conducted to explore the metabolism and transport of silymarin/silybin as well as the impact of its consumption on the pharmacokinetics of other clinical drugs. Here, we aimed to summarize and highlight the current knowledge of the metabolism and transport of silymarin. It was concluded that the major efflux transporters of silybin are multidrug resistance-associated protein (MRP2) and breast cancer resistance protein (BCRP) based on results from the transporter-overexpressing cell lines and MRP2-deficient (TR-) rats. Nevertheless, compounds that inhibit the efflux transporters MRP2 and BCRP can enhance the absorption and activity of silybin. Although silymarin does inhibit certain drug-metabolizing enzymes and drug transporters, such effects are unlikely to manifest in clinical settings. Overall, silymarin is a safe and well-tolerated phytomedicine.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Hepatopatías/tratamiento farmacológico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas de Neoplasias/genética , Silimarina/uso terapéutico , Animales , Antioxidantes , Flavonolignanos/metabolismo , Humanos , Hepatopatías/genética , Hepatopatías/patología , Silybum marianum/química , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Fitoterapia , Ratas , Silibina/metabolismo
6.
J Clin Pharmacol ; 59(8): 1049-1060, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30924955

RESUMEN

The evaluation of potential of a new molecular entity (NME) to inhibit P-glycoprotein (P-gp) in vivo is an integral part of drug development and is recommended by regulatory agencies. In this study, we compared the performance of 5 prediction methods and their associated criteria (including those from the European Medicines Agency, the US Food and Drug Administration, and the Pharmaceuticals and Medical Devices Agency of Japan) for assessing the potential of an NME to inhibit P-gp in vivo based on in vitro assessment. We collected in vitro (eg, half-maximal inhibitory concentration [IC50 ], fraction unbound to plasma protein) and in vivo (eg, dose, maximum concentration, change in maximum concentration or area under the plasma concentration-time curve of the substrate digoxin) data for 50 Food and Drug Administration-approved, orally administered drug products containing 53 NMEs, from the University of Washington Metabolism and Transport Drug Interaction Database, Drugs@FDA, and PubMed. All methods yielded similar accuracy with small differences in false-negative (FN) and false-positive (FP) predictions. In addition, use of ratio of the theoretical maximum gastrointestinal concentration to IC50 is sufficient for a reasonable prediction for these orally administered drugs as potential P-gp inhibitors based on our dataset. The FN and FP rates varied depending on the cut-off value for the ratio of the theoretical maximum gastrointestinal concentration/IC50 . Possible reasons underlying FP and FN results from different methods should be taken into consideration to predict in vivo P-gp inhibition.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Bioensayo , Ensayos Clínicos como Asunto , Humanos
7.
J Ginseng Res ; 42(3): 370-378, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29989018

RESUMEN

BACKGROUND: Ginseng has been the subject of many experimental and clinical studies to uncover the diverse biological activities of its constituent compounds. It is a traditional medicine that has been used for its immunostimulatory, antithrombotic, antioxidative, anti-inflammatory, and anticancer effects. Ginseng may interact with concomitant medications and alter metabolism and/or drug transport, which may alter the known efficacy and safety of a drug; thus, the role of ginseng may be controversial when taken with other medications. METHODS: We extensively assessed the effects of Korean Red Ginseng (KRG) in rats on the expression of enzymes responsible for drug metabolism [cytochrome p450 (CYP)] and transporters [multiple drug resistance (MDR) and organic anion transporter (OAT)] in vitro and on the pharmacokinetics of two probe drugs, midazolam and fexofenadine, after a 2-wk repeated administration of KRG at different doses. RESULTS: The results showed that 30 mg/kg KRG significantly increased the expression level of CYP3A11 protein in the liver and 100 mg/kg KRG increased both the mRNA and protein expression of OAT1 in the kidney. Additionally, KRG significantly increased the mRNA and protein expression of OAT1, OAT3, and MDR1 in the liver. Although there were no significant changes in the metabolism of midazolam to its major metabolite, 1'-hydroxymidazolam, KRG significantly decreased the systemic exposure of fexofenadine in a dose-dependent manner. CONCLUSION: Because KRG is used as a health supplement, there is a risk of KRG overdose; thus, a clinical trial of high doses would be useful. The use of KRG in combination with P-glycoprotein substrate drugs should also be carefully monitored.

8.
Phytother Res ; 30(11): 1872-1878, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27534594

RESUMEN

Praeruptorin A (PA) and B (PB) are two important compounds isolated from Bai-hua Qian-hu and have been reported to exert multiple biochemical and pharmacological activities. The present study aims to determine the inhibition of PA and PB on the activity of important phase II drug-metabolizing enzymes uridine 5'-diphospho-glucuronosyltransferase (UGTs) isoforms. In vitro UGT incubation system was used to determine the inhibition potential of PA and PB on the activity of various UGT isoforms. In silico docking was performed to explain the inhibition difference between PA and PB towards the activity of UGT1A6. Inhibition behaviour was determined, and in vitro-in vivo extrapolation was performed by using the combination of in vitro inhibition kinetic parameter (Ki ) and in vivo exposure level of PA. Praeruptorin A (100 µM) exhibited the strongest inhibition on the activity of UGT1A6 and UGT2B7, with 97.8% and 90.1% activity inhibited by 100 µM of PA, respectively. In silico docking study indicates the significant contribution of hydrogen bond interaction towards the stronger inhibition of PA than PB towards UGT1A6. Praeruptorin A noncompetitively inhibited the activity of UGT1A6 and competitively inhibited the activity of UGT2B7. The inhibition kinetic parameter (Ki ) of PA towards UGT1A6 and UGT2B7 was calculated to be 1.2 and 3.3 µM, respectively. The [I]/Ki value was calculated to be 15.8 and 5.8 for the inhibition of PA on UGT1A6 and UGT2B7, indicating high inhibition potential of PA towards these two UGT isoforms in vivo. Therefore, closely monitoring the interaction between PA and drugs mainly undergoing UGT1A6 or UGT2B7-catalyzed metabolism is very necessary. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Cumarinas/química , Glucuronosiltransferasa/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Cumarinas/farmacología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA