Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Microsc Res Tech ; 87(6): 1201-1209, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38299712

RESUMEN

Microscopic techniques can be applied to solve taxonomic problems in the field of plant systematic and are extremely versatile in nature. This study was focused on the new approaches to visualizing the imaging, tool to cover the micro-structural techniques applied to the pollen study of flowers. The current research was proposed to evaluate microscopic pollen morphological attributes using light and scanning electron microscopy of herbaceous flora from Samarkand, Uzbekistan. A total of 13 herbaceous species, classified into 11 different families were collected, pressed, and identified, and then acetolyzed their pollen to visualize under light and scanning electron microscopy. Herbaceous flora can be characterized by small to very large-sized pollen morphotypes presenting four types of pollen shapes, prolate spheroidal (six species), spheroidal (three species) and prolate and oblate (two species each). The polar diameter and equatorial distance were calculated maximum in Hibiscus syriacus 110.55 and 111.2 µm respectively. Pollen of six different types was found namely tricolporate pollen observed in seven species, tricolpate and pantoporate in two species each, sulcate in Gagea olgae and hexacolpate pollen was examined in Salvia rosmarinus. Exine ornamentation of pollen was examined tectate perforate, verrucate-reticulate, micro-reticulate, reticulate, reticulate-cristatum, gemmate-echinate, echinate-perforate, perforate-striate, rugulate, rugulate-striate, bi-reticulate, reticulate-perforate and perforate-micro-reticulate showing great variations. Exine thickness was noted highest for Rosa canina 2.9 µm and minimum in Punica granatum 0.65 µm. This study of pollen imaging visualization of herbaceous flora contributes to the opportunity for the taxonomic evaluation of and fills knowledge gaps in studies of herbaceous flora identification using classical microscopic taxonomic tools for their accurate identification. RESEARCH HIGHLIGHTS: Pollen in unexplored herbaceous flora of the Samarkand region was studied with light and scanning electron microscopic pollen study. There is a high variation in observed pollen micromorphological characters. Pollen microscopic morphology has important taxonomic value for the identification of herbaceous species.


Asunto(s)
Fosmet , Humanos , Microscopía Electrónica de Rastreo , Polen/ultraestructura , Flores
2.
Microsc Res Tech ; 87(6): 1306-1317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38353310

RESUMEN

Apart from its role in plant taxonomy, the understanding of pollen morphology is considered an essential interdisciplinary tool in diverse applied fields, including plant systematics, melissopalynology, aeropalynology, forensic palynology, paleopalynology, and copropalynology. In palynotaxonomy, it is frequently employed to classify and validate natural groups across a range of hierarchical levels, from higher categories down to the infrageneric level. The subfamily Acanthoideae, within the Acanthaceae family, consists of a diverse group of flowering plants that are distributed globally. The present study attempted a comprehensive analysis of the pollen morphology, employing both light microscopy (LM) and scanning electron microscopy (SEM), for a total of 13 Acanthoideae species from the Shivalik Foothills in Rajaji National Park (located in the northern Indian state of Uttarakhand, Western Himalaya). The findings indicated that the Acanthoideae is characterized by eurypalynous features, and the studied species exhibited pollen grains that were monads, radially symmetrical, and varied in size from small to large. The pollen grains were predominantly tricolporate or heteroaperturate, with porate occurrences being rare. The significant variation in exine sculpturing, including reticulate, coarsely reticulate, and bireticulate patterns, holds substantial taxonomic significance. The detailed presentation encompasses pollen morphological characters described with LM and SEM micrographs, along with a species-level identification key. RESEARCH HIGHLIGHTS: This article provides a thorough analysis of the pollen morphology of Acanthoideae taxa using both light microscopy and scanning electron microscopy, covering 13 species across 10 genera and revealing a broad spectrum of pollen characteristics, including size, shape, aperture type, and exine sculpturing. The microscopic investigation of these Acanthoideae species not only enhances our understanding of their pollen morphology but also aids in species identification through the development of a pollen-based key.


Asunto(s)
Acanthaceae , Parques Recreativos , Microscopía Electrónica de Rastreo , Polen/ultraestructura , India
3.
Mol Plant ; 16(8): 1321-1338, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37501369

RESUMEN

Because of its significance for plant male fertility and, hence, direct impact on crop yield, pollen exine development has inspired decades of scientific inquiry. However, the molecular mechanism underlying exine formation and thickness remains elusive. In this study, we identified that a previously unrecognized repressor, ZmMS1/ZmLBD30, controls proper pollen exine development in maize. Using an ms1 mutant with aberrantly thickened exine, we cloned a male-sterility gene, ZmMs1, which encodes a tapetum-specific lateral organ boundary domain transcription factor, ZmLBD30. We showed that ZmMs1/ZmLBD30 is initially turned on by a transcriptional activation cascade of ZmbHLH51-ZmMYB84-ZmMS7, and then it serves as a repressor to shut down this cascade via feedback repression to ensure timely tapetal degeneration and proper level of exine. This activation-feedback repression loop regulating male fertility is conserved in maize and sorghum, and similar regulatory mechanism may also exist in other flowering plants such as rice and Arabidopsis. Collectively, these findings reveal a novel regulatory mechanism of pollen exine development by which a long-sought master repressor of upstream activators prevents excessive exine formation.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/fisiología , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Mutación
4.
Int J Pharm ; 643: 123278, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37516214

RESUMEN

Oral drug delivery of microparticles demonstrates shortcomings like aggregation, decreased loading capacity and batch-to-batch variation, which limits its scale-up. Later, porous structures gained attention because of their large surface-to-volume ratio, high loading capacity and ability to carry biomacromolecules, which undergo degradation in GIT. But there are pitfalls like non-uniform particle size distribution, the impact of porogen properties, and harsh chemicals. To circumvent these drawbacks, natural carriers like pollen are explored in drug delivery, which withstands harsh environments. This property helps to subdue the acid-sensitive drug in GIT. It shows uniform particle size distribution within the species. On the other side, they contain phytoconstituents like flavonoids and polysaccharides, which possess various pharmacological applications. Therefore, pollen has the capability as a carrier system and therapeutic agent. This review focuses on pollen's microstructure, composition and utility in cancer management. The extraction strategies, characterisation techniques and chemical structure of sporopollenin exine capsule, its use in the oral delivery of antineoplastic drugs, and emerging cancer treatments like photothermal therapy, immunotherapy and microrobots have been highlighted. We have mentioned a note on the anticancer activity of pollen extract. Further, we have summarised the regulatory perspective, bottlenecks and way forward associated with pollen.


Asunto(s)
Neoplasias , Polen , Polen/química , Biopolímeros/química , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico
5.
Plant Sci ; 335: 111792, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37454819

RESUMEN

Fatty acid derivatives are key components of rice pollen exine. The synthesis of aliphatic sporopollenin precursors are initiated in the plastids of the tapetal cells, followed by multiple-step reactions conducted in the endoplasmic reticulum (ER). However, the relative contribution of different precursors to the precise structure of sporopollenin remains largely elusive, let alone the underlying mechanism. Here, we report that two complete male sterile mutants ostkpr1-3 (Tetraketide α-pyrone reductase 1-3, with OsTKPR1P124S substitution) and ostkpr1-4 (with truncated OsTKPR1stop) are defective in pollen exine, Ubisch body and anther cuticle development where ostkpr1-4 display severer phenotypes. Remarkably, OsTKPR1 could produce reduced hydroxylated tetraketide α-pyrone and reduced tetraketide α-pyrone, whereas OsTKPR1P124S fails to produce the latter. Pairwise interaction assays show that mutated OsTKPR1P124S is able to integrate into a recently characterized metabolon, thus its altered catalytic activity is not due to dis-integrity of the metabolon. In short, we find that reduced tetraketide α-pyrone is a key sporopollenin precursor required for normal exine formation, and the conserved 124th proline of OsTKPR1 is essential for the reduction activity. Therefore, this study provided new insights into the sporopollenin precursor constitution critical for exine formation.


Asunto(s)
Oryza , Oryza/metabolismo , Sustitución de Aminoácidos , Pironas/metabolismo , Polen , Regulación de la Expresión Génica de las Plantas
6.
New Phytol ; 239(1): 102-115, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36994607

RESUMEN

Sporopollenin is one of the most structurally sophisticated and chemically recalcitrant biopolymers. In higher plants, sporopollenin is the dominant component of exine, the outer wall of pollen grains, and contains covalently linked phenolics that protect the male gametes from harsh environments. Although much has been learned about the biosynthesis of sporopollenin precursors in the tapetum, the nutritive cell layer surrounding developing microspores, little is known about how the biopolymer is assembled on the microspore surface. We identified SCULP1 (SKS clade universal in pollen) as a seed plant conserved clade of the multicopper oxidase family. We showed that SCULP1 in common wheat (Triticum aestivum) is specifically expressed in the microspore when sporopollenin assembly takes place, localized to the developing exine, and binds p-coumaric acid in vitro. Through genetic, biochemical, and 3D reconstruction analyses, we demonstrated that SCULP1 is required for p-coumaroylation of sporopollenin, exine integrity, and pollen viability. Moreover, we found that SCULP1 accumulation is compromised in thermosensitive genic male sterile wheat lines and its expression partially restored exine integrity and male fertility. These findings identified a key microspore protein in autonomous sporopollenin polymer assembly, thereby laying the foundation for elucidating and engineering sporopollenin biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Triticum/genética , Triticum/metabolismo , Biopolímeros/metabolismo , Polen/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Plant Biotechnol J ; 20(12): 2342-2356, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36070225

RESUMEN

Anther cuticle and pollen exine are two crucial lipid layers that ensure normal pollen development and pollen-stigma interaction for successful fertilization and seed production in plants. Their formation processes share certain common pathways of lipid biosynthesis and transport across four anther wall layers. However, molecular mechanism underlying a trade-off of lipid-metabolic products to promote the proper formation of the two lipid layers remains elusive. Here, we identified and characterized a maize male-sterility mutant pksb, which displayed denser anther cuticle but thinner pollen exine as well as delayed tapetal degeneration compared with its wild type. Based on map-based cloning and CRISPR/Cas9 mutagenesis, we found that the causal gene (ZmPKSB) of pksb mutant encoded an endoplasmic reticulum (ER)-localized polyketide synthase (PKS) with catalytic activities to malonyl-CoA and midchain-fatty acyl-CoA to generate triketide and tetraketide α-pyrone. A conserved catalytic triad (C171, H320 and N353) was essential for its enzymatic activity. ZmPKSB was specifically expressed in maize anthers from stages S8b to S9-10 with its peak at S9 and was directly activated by a transcription factor ZmMYB84. Moreover, loss function of ZmMYB84 resulted in denser anther cuticle but thinner pollen exine similar to the pksb mutant. The ZmMYB84-ZmPKSB regulatory module controlled a trade-off between anther cuticle and pollen exine formation by altering expression of a series of genes related to biosynthesis and transport of sporopollenin, cutin and wax. These findings provide new insights into the fine-tuning regulation of lipid-metabolic balance to precisely promote anther cuticle and pollen exine formation in plants.


Asunto(s)
Polen , Zea mays , Zea mays/genética , Polen/genética , Fertilidad , Lípidos , Coenzima A , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Flores/genética , Mutación
8.
J Exp Bot ; 73(19): 6800-6815, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35922377

RESUMEN

Desiccation tolerance is a remarkable feature of pollen, seeds, and resurrection-type plants. Exposure to desiccation stress can cause sporophytic defects, resulting in male sterility. Here, we report the novel maize sterility gene DRP1 (Desiccation-Related Protein 1), which was identified by bulked-segregant analysis sequencing and encodes a desiccation-related protein. Loss of function of DRP1 results in abnormal Ubisch bodies, defective tectum of the pollen exine, and complete male sterility. Our results suggest that DRP1 may facilitate anther dehydration to maintain appropriate water status. DRP1 is a secretory protein that is specifically expressed in the tapetum and microspore from the tetrad to the uninucleate microspore stage. Differentially expressed genes in drp1 are enriched in Gene Ontology terms for pollen exine formation, polysaccharide catabolic process, extracellular region, and response to heat. In addition, DRP1 is a target of selection that appears to have played an important role in the spread of maize from tropical/subtropical to temperate regions. Taken together, our results suggest that DRP1 encodes a desiccation-related protein whose loss of function causes male sterility. Our findings provide a potential genetic resource that may be used to design crops for heterosis utilization.


Asunto(s)
Infertilidad Vegetal , Polen , Zea mays , Desecación , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Polen/crecimiento & desarrollo , Zea mays/genética , Zea mays/fisiología , Genes de Plantas
9.
Plant J ; 111(6): 1509-1526, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35883135

RESUMEN

Pollen development includes a series of biological events that require precise gene regulation. Although several transcription factors (TFs) have been shown to play roles in maintaining pollen fertility, the major regulatory networks underlying tapetum development and pollen wall formation are largely unknown. Herein, we report that ABERRANT MICROSPORE DEVELOPMENT1 (AMD1), a protein annotated previously as unknown protein, is required for tapetum development and pollen exine patterning in rice (Oryza sativa L.). AMD1 encodes a grass-specific protein exhibiting transactivation activity in the nucleus and is spatiotemporally expressed in the tapetum and microspores during pollen development. Further biochemical assays indicate that AMD1 directly activates the transcription of DEFECTIVE POLLEN WALL (DPW) and POLYKETIDE SYNTHASE2 (OsPKS2), which are both implicated in sporopollenin biosynthesis during exine formation. Additionally, AMD1 directly interacts with TAPETUM DEGENERATION RETARDATION (TDR), a key TF involved in the regulation of tapetum degradation and exine formation. Taken together, we demonstrate that AMD1 is an important regulatory component involved in the TDR-mediated regulatory pathway to regulate sporopollenin biosynthesis, tapetum degradation, and exine formation for pollen development. Our work provides insights into the regulatory network of rice sexual reproduction and a useful target for genetic engineering of new male-sterile lines for hybrid rice breeding.


Asunto(s)
Oryza , Policétidos , Biopolímeros , Carotenoides , Fertilidad , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Polen/metabolismo , Policétidos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Microsc Res Tech ; 85(10): 3325-3338, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35751607

RESUMEN

Microscopic visualization of micro-morphological characters were analyzed using a scanning electron microscopic (SEM) tool, which has proven to be very successful to analyze the pollen surface peculiarities. The significant goal of this research was to perform microscopic examination of pollen of some of the most frequently visited honeybee floral species around apiaries. Micro-morphological characterization of frequented honeybees foraged plants were discussed. A total of 15 species, belonging to 11 different families were identified for the foraging activities of honeybees, namely, Lantana camara, Jatropha integerrima, Helianthus annuus, Tecoma stans, Lagerstroemia indica, Duranta erecta, Cosmos sulphureus, Hymenocollis littoralis, Moringa oleifera, Cestrum nocturnum, Parthenium hysterophorus, Volkameria inermis, Catharanthus roseus, Malvastrum coromandelianum, and Citharexylum spinosum. The microscopic slides were prepared using the acetolysis method, and the qualitative and quantitative features were measured and described using microscopic tools. The pollen type sculpture varies from psilate scabrate to echinate and colpi from tricolpate to tetracolpate. Quantitative parameters such as polar diameter, mesocolpium distance, equatorial dimensions, aperture size, spine diameter, and exine thickness were calculated using IBM SPSS Statistics 20. The exine thickness was measured at its maximum in C. roseus (3.85 µm), whereas it was at its minimum of 0.90 µm in L. indica and D. erecta. Pollen fertility was estimated to be highest in H. annus (88%). The current research validates scanning microscopic features of pollen of the honeybee floral species, which is helpful for the accurate identification and commercializing of honey production to generate revenue for beekeepers through the exploration of bee floral diversity. RESEARCH HIGHLIGHTS: Pollen spectrum examination using microscopic imaging techniques. Variations examined through scanning microscopy in pollen ultrastructure. Micro-morphology has taxonomic value for accurate identification of honeybee flora. Authentication of Honeybee floral species for sustainable beekeeping.


Asunto(s)
Asteraceae , Polen , Animales , Abejas , Microscopía Electrónica de Rastreo , Plantas , Polen/ultraestructura
11.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682638

RESUMEN

Fertilization is a key event for sexually reproducing plants. Pollen-stigma adhesion, which is the first step in male-female interaction during fertilization, requires proper pollen wall patterning. Callose, which is a ß-1.3-glucan, is an essential polysaccharide that is required for pollen development and pollen wall formation. Mutations in CALLOSE SYNTHASE 5 (CalS5) disrupt male meiotic callose accumulation; however, how CalS5 activity and callose synthesis are regulated is not fully understood. In this paper, we report the isolation of a kompeito-1 (kom-1) mutant defective in pollen wall patterning and pollen-stigma adhesion in Arabidopsis thaliana. Callose was not accumulated in kom-1 meiocytes or microspores, which was very similar to the cals5 mutant. The KOM gene encoded a member of a subclass of Rhomboid serine protease proteins that lacked active site residues. KOM was localized to the Golgi apparatus, and both KOM and CalS5 genes were highly expressed in meiocytes. A 220 kDa CalS5 protein was detected in wild-type (Col-0) floral buds but was dramatically reduced in kom-1. These results suggested that KOM was required for CalS5 protein accumulation, leading to the regulation of meiocyte-specific callose accumulation and pollen wall formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Mutación , Polen/metabolismo
12.
Plant J ; 111(5): 1283-1295, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35765221

RESUMEN

Pollen exine is composed of finely-organized nexine, bacula and tectum, and is crucial for pollen viability and function. Pollen exine development involves a complicated molecular network that coordinates the interaction between pollen and tapetal cells, as well as the biosynthesis, transport and assembly of sporopollenin precursors; however, our understanding of this network is very limited. Here, we report the roles of PEM1, a member of methyl-CpG-binding domain family, in rice pollen development. PEM1 expressed constitutively and, in anthers, its expression was detectable in tapetal cells and pollen. This predicted PEM1 protein of 240 kDa had multiple epigenetic-related domains. pem1 mutants exhibited abnormal Ubisch bodies, delayed exine occurrence and, finally, defective exine, including invisible bacula, amorphous and thickened nexine and tectum layer structures, and also had the phenotype of increased anther cuticle. The mutation in PEM1 did not affect the timely degradation of tapetum. Lipidomics revealed much higher wax and cutin contents in mutant anthers than in wild-type. Accordingly, this mutation up-regulated the expression of a set of genes implicated in transcriptional repression, signaling and diverse metabolic pathways. These results indicate that PEM1 mediates Ubisch body formation and pollen exine development mainly by negatively modulating the expression of genes. Thus, the PEM1-mediated molecular network represents a route for insights into mechanisms underlying pollen development. PEM1 may be a master regulator of pollen exine development.


Asunto(s)
Oryza , Familia , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/metabolismo
13.
Microsc Res Tech ; 85(8): 2826-2834, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35411990

RESUMEN

Pollen studies can assist in distinguishing different plant taxa on the basis of pollen diameter, exine thickness, spines length, spine shape, number of rows of spines between colpi, shape of pollen, P/E ratio, pollen class and aperture type. Light microscopy (LM) and scanning electron microscopy (SEM) was used to compare and differentiate two Malva species on the basis of different pollen characteristics. Pollen in Malva neglecta and Malva parviflora had punctate and subpsilate, and, granulate and verrucate sculpturing between spines respectively. Both species pollen had bulbous spine base, but were more swollen in M. parviflora. M. neglecta had more pollen size, spine length and distance between spine base and spine apex, except spine base and pore diameter. The scatterplot matrix showed a wide variation among sculpturing types and other pollen attributes of both species. In PCA biplot, pore diameter and spine length were linked to M. parviflora while other pollen attributes were clearly linked to M. neglecta, indicating the taxonomic significance of the observed characters. It was concluded that the palynological studies can act as an identification tool and are of great significance in delimiting Malva and different plant taxa. RESEARCH HIGHLIGHTS: Taxonomic identifications is a big problem in morphologically identical Malva neglecta and Malva parviflora. The usefulness of pollen morphology (pollen diameter and exine thickness) and wall ornamentation in identification through light microscopy (LM) and scanning electron microscopy (SEM) was confirmed. Pollen of M. neglecta can be differentiated from M. parviflora by its sculpturing patterns. Spine base and pore diameter of M. parviflora is a taxonomically important feature.


Asunto(s)
Malva , Microscopía Electrónica de Rastreo , Raíces de Plantas , Polen/anatomía & histología
14.
BMC Plant Biol ; 22(1): 165, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366814

RESUMEN

BACKGROUND: Sesame is a great reservoir of bioactive constituents and unique antioxidant components. It is widely used for its nutritional and medicinal value. The expanding demand for sesame seeds is putting pressure on sesame breeders to develop high-yielding varieties. A hybrid breeding strategy based on male sterility is one of the most effective ways to increase the crop yield. To date, little is known about the genes and mechanism underlying sesame male fertility. Therefore, studies are being conducted to identify and functionally characterize key candidate genes involved in sesame pollen development. Polyketide synthases (PKSs) are critical enzymes involved in the biosynthesis of sporopollenin, the primary component of pollen exine. Their in planta functions are being investigated for applications in crop breeding. RESULTS: In this study, we cloned the sesame POLYKETIDE SYNTHASE A (SiPKSA) and examined its function in male sterility. SiPKSA was specifically expressed in sesame flower buds, and its expression was significantly higher in sterile sesame anthers than in fertile anthers during the tetrad and microspore development stages. Furthermore, overexpression of SiPKSA in Arabidopsis caused male sterility in transgenic plants. Ultrastructural observation showed that the pollen grains of SiPKSA-overexpressing plants contained few cytoplasmic inclusions and exhibited an abnormal pollen wall structure, with a thicker exine layer compared to the wild type. In agreement with this, the expression of a set of sporopollenin biosynthesis-related genes and the contents of their fatty acids and phenolics were significantly altered in anthers of SiPKSA-overexpressing plants compared with wild type during anther development. CONCLUSION: These findings highlighted that overexpression of SiPKSA in Arabidopsis might cause male sterility through defective pollen wall formation. Moreover, they suggested that SiPKSA modulates vibrant pollen development via sporopollenin biosynthesis, and a defect in its regulation may induce male sterility. Therefore, genetic manipulation of SiPKSA might promote hybrid breeding in sesame and other crop species.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sesamum , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Fitomejoramiento , Polen , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Sesamum/genética , Sesamum/metabolismo
15.
Am J Bot ; 109(4): 500-513, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35244214

RESUMEN

PREMISE: The sporoderm of seed-plant pollen grains typically has apertures in which the outer sporopollenin-bearing layer is relatively sparse. The apertures allow regulation of the internal volume of the pollen grain during desiccation and rehydration (harmomegathy) and also serve as sites of pollen germination. A small fraction of angiosperms undergo pollination in water or at the water surface, where desiccation is unlikely. Their pollen grains commonly lack apertures, though with some notable exceptions. We tested a hypothesis that in some angiosperm aquatics that inhabit water of unstable salinity, the pollen apertures accommodate osmotic effects that occur during pollination in such conditions. METHODS: Pollen grains of the tepaloid clade of the monocot order Alismatales, which contains ecologically diverse aquatic and marshy plants, were examined using light microscopy and scanning electron microscopy. We used Ruppia as a model to test pollen grain response in water of various salinities. Pollen aperture evolution was also analyzed using molecular tree topologies. RESULTS: Phylogenetic optimizations demonstrated an evolutionary loss and two subsequent regains of the aperturate condition in the tepaloid clade of Alismatales. Both of the taxa that have reverted to aperturate pollen (Ruppia, Ruppiaceae; Althenia, Potamogetonaceae) are adapted to changeable water salinity. Direct experiments with Ruppia showed that the pollen apertures have a role in a harmomegathic response to differences in water salinity. CONCLUSIONS: Our results showed that the inferred regain of pollen apertures represents an adaptation to changeable water salinity. We invoke a loss-and-regain scenario, prompting questions that are testable using developmental genetics and plant physiology.


Asunto(s)
Magnoliopsida , Salinidad , Microscopía Electrónica de Rastreo , Filogenia , Polen/fisiología , Agua
16.
Plant Biotechnol J ; 20(6): 1054-1068, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35114063

RESUMEN

The pollen wall exine provides a protective layer for the male gametophyte and is largely composed of sporopollenin, which comprises fatty acid derivatives and phenolics. However, the biochemical nature of the external exine is poorly understood. Here, we show that the male sterile line 1355A of cotton mutated in NO SPINE POLLEN (GhNSP) leads to defective exine formation. The GhNSP locus was identified through map-based cloning and confirmed by genetic analysis (co-segregation test and allele prediction using the CRISPR/Cas9 system). In situ hybridization showed that GhNSP is highly expressed in tapetum. GhNSP encodes a polygalacturonase protein homologous to AtQRT3, which suggests a function for polygalacturonase in pollen exine formation. These results indicate that GhNSP is functionally different from AtQRT3, the latter has the function of microspore separation. Biochemical analysis showed that the percentage of de-esterified pectin was significantly increased in the 1355A anthers at developmental stage 8. Furthermore, immunofluorescence studies using antibodies to the de-esterified and esterified homogalacturonan (JIM5 and JIM7) showed that the Ghnsp mutant exhibits abundant of de-esterified homogalacturonan in the tapetum and exine, coupled with defective exine formation. The characterization of GhNSP provides new understanding of the role of polygalacturonase and de-esterified homogalacturonan in pollen exine formation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Poligalacturonasa , Fertilidad , Pectinas/metabolismo , Polen/genética , Polen/metabolismo , Poligalacturonasa/genética , Poligalacturonasa/metabolismo
17.
J Plant Physiol ; 260: 153388, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33706055

RESUMEN

In angiosperms, mature pollen is wrapped by a pollen wall, which is important for maintaining pollen structure and function. Pollen walls provide protection from various environmental stresses and preserve pollen germination and pollen tube growth. The pollen wall structure has been described since pollen ultrastructure investigations began in the 1960s. Pollen walls, which are the most intricate cell walls in plants, are composed of two layers: the exine layer and intine layer. Pollen wall formation is a complex process that occurs via a series of biological events that involve a large number of genes. In recent years, many reports have described the molecular mechanisms of pollen exine development. The formation process includes the development of the callose wall, the wavy morphology of primexine, the biosynthesis and transport of sporopollenin in the tapetum, and the deposition of the pollen coat. The formation mechanism of the intine layer is different from that of the exine layer. However, few studies have focused on the regulatory mechanisms of intine development. The primary component of the intine layer is pectin, which plays an essential role in the polar growth of pollen tubes. Demethylesterified pectin is mainly distributed in the shank region of the pollen tube, which can maintain the hardness of the pollen tube wall. Methylesterified pectin is mainly located in the top region, which is beneficial for improving the plasticity of the pollen tube top. In this review, we summarize the developmental process of the anther, pollen and pollen wall in Arabidopsis; furthermore, we describe the research progress on the pollen wall formation pattern and its molecular mechanisms in detail.


Asunto(s)
Arabidopsis/genética , Pared Celular/metabolismo , Polen/crecimiento & desarrollo , Arabidopsis/citología
18.
Plant Mol Biol ; 105(6): 625-635, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33481140

RESUMEN

KEY MESSAGE: IEF, a novel plasma plasma membrane protein, is important for exine formation in Arabidopsis. Exine, an important part of pollen wall, is crucial for male fertility. The major component of exine is sporopollenin which are synthesized and secreted by tapetum. Although sporopollenin synthesis has been well studied, the transportation of it remains elusive. To understand it, we analyzed the gene expression pattern in tapetal microdissection data, and investigated the potential transporter genes that are putatively regulated by ABORTED MICROSPORES (AMS). Among these genes, we identified IMPERFECTIVE EXINE FORMATION (IEF) that is important for exine formation. Compared to the wild type, ief mutants exhibit severe male sterility and pollen abortion, suggesting IEF is crucial for pollen development and male fertility. Using both scanning and transmission electron microscopes, we showed that exine structure was not well defined in ief mutant. The transient expression of IEF-GFP driven by the 35S promoter indicated that IEF-GFP was localized in plasma membrane. Furthermore, AMS can specifically activate the expression of promoterIEF:LUC in vitro, which suggesting AMS regulates IEF for exine formation. The expression of ATP-BINDING CASSETTE TRANSPORTER G26 (AGCB26) was not affected in ief mutants. In addition, SEM and TEM data showed that the sporopollenin deposition is more defective in abcg26/ief-2 than that of in abcg26, which suggesting that IEF is involved in an independent sporopollenin transportation pathway. This work reveal a novel gene, IEF regulated by AMS that is essential for exine formation.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fertilidad/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/crecimiento & desarrollo , Transporte Biológico , Biopolímeros/biosíntesis , Carotenoides/metabolismo , Fertilidad/genética , Regulación de la Expresión Génica de las Plantas , Polen , Nicotiana
19.
J Exp Zool B Mol Dev Evol ; 336(8): 629-641, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32991047

RESUMEN

We are still far from being able to predict organisms' shapes purely from their genetic codes. While it is imperative to identify which encoded macromolecules contribute to a phenotype, determining how macromolecules self-assemble independently of the genetic code may be equally crucial for understanding shape development. Pollen grains are typically single-celled microgametophytes that have decorated walls of various shapes and patterns. The accumulation of morphological data and a comprehensive understanding of the wall development makes this system ripe for mathematical and physical modeling. Therefore, pollen walls are an excellent system for identifying both the genetic products and the physical processes that result in a huge diversity of extracellular morphologies. In this piece, I highlight the current understanding of pollen wall biology relevant for quantification studies and enumerate the modellable aspects of pollen wall patterning and specific approaches that one may take to elucidate how pollen grains build their beautifully patterned walls.


Asunto(s)
Pared Celular , Polen , Fenotipo
20.
Microsc Res Tech ; 84(5): 850-859, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33206436

RESUMEN

The present study was carried out on scanning electron microscopic-based palynological characterization of selected 20 Euphorbiaceae taxa. In this study, important pollen qualitative and quantitative features of selected Euphorbiaceae species such as polar diameter, equatorial diameter, P/E ratio, sculpturing of pollen, exine thickness, intine thickness, presence or absence of colpi and length of colpi, and pollen fertility were examined. Remarkable variations in these pollen characters had been observed among these species. In both polar and equatorial views, Riccinus communis L. exhibited the highest pollen size (polar = 264.1 µm, Equatorial = 270 µm), while Acalypha wilkesiana Mull Arg. showed lowest pollen size (Polar = 17 µm, Equatorial = 18.5 µm). Most of the pollen varied from oblate to spheroidal in shape. With regard to the P/E ratio, Sapium sebiferum L. Roxb showed the highest ratio while Bischofia javanica Blume showed minimum, that is, 1.18 and 0.85, respectively. Intine and exine thickness also varied. Most of the pollen grains were monade. Tricolporate, tricolpate, monocolpate, pentaporate, and polyporate pollen aperture types have been observed. Most of the plants showed regular, reticulate, and echinate pollen sculpturing. Pollen fertility also varied from species to species but most of the plant showed pollen fertility between 70 and 80%. Through this work, it has been concluded that quantitative and qualitative pollen features are helpful at the specific level as well as the generic level and can provide a fruitful taxonomic solution.


Asunto(s)
Euphorbiaceae , Microscopía Electrónica de Rastreo , Pakistán , Polen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA