Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 984
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Mar Drugs ; 22(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667767

RESUMEN

Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.


Asunto(s)
Alimentación Animal , Acuicultura , Quitosano , Cíclidos , Intestinos , Animales , Quitosano/farmacología , Cíclidos/crecimiento & desarrollo , Cíclidos/inmunología , Cíclidos/metabolismo , Intestinos/efectos de los fármacos , Acuicultura/métodos , Suplementos Dietéticos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Expresión Génica/efectos de los fármacos
2.
Environ Sci Pollut Res Int ; 31(20): 28847-28855, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561538

RESUMEN

The increasing demands for resources driven by the global population necessitate exploring sustainable alternatives for affordable animal protein over the use of traditional protein sources. Insects, with their high protein content, offer a promising solution, especially when reared on agricultural post-distillation residues for enhanced sustainability and cost-effectiveness. We assessed the development of Zophobas morio (F.) (Coleoptera: Tenebrionidae) larvae on diets enriched with essential oils and post-distillation residues from Greek aromatic and medicinal plants. Two aromatic plant mixtures (A and B) were examined. Mixture A consisted of post-distillation residues, while Mixture B incorporated these residues along with essential oils. Insect rearing diets were enriched with different proportions (10, 20, and 30 %) of these mixtures, with wheat bran serving as the control. Enrichment positively influenced larval development without compromising survival. Larval weight remained unchanged with Mixture A, but improved with Mixture B. No adverse effects were detected in the case of the enriched diets, although higher concentrations of Mixture B prolonged development time.


Asunto(s)
Escarabajos , Larva , Aceites Volátiles , Plantas Medicinales , Animales , Plantas Medicinales/química , Dieta , Alimentación Animal/análisis
3.
Nutrients ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38613007

RESUMEN

Selenium is an essential trace element that exists in inorganic forms (selenite and selenates) and organic forms (selenoamino acids, seleno peptides, and selenoproteins). Selenium is known to aid in the function of the immune system for populations where human immunodeficiency virus (HIV) is endemic, as studies suggest that a lack of selenium is associated with a higher risk of mortality among those with HIV. In a recent study conducted in Zambia, adults had a median plasma selenium concentration of 0.27 µmol/L (IQR 0.14-0.43). Concentrations consistent with deficiency (<0.63 µmol/L) were found in 83% of adults. With these results, it can be clearly seen that selenium levels in Southern Africa should be investigated to ensure the good health of both livestock and humans. The recommended selenium dietary requirement of most domesticated livestock is 0.3 mg Se/kg, and in humans above 19 years, anRDA (recommended daily allowance) of 55 mcg Se/per dayisis recommended, but most of the research findings of Southern African countries have recorded low levels. With research findings showing alarming low levels of selenium in soils, humans, and raw feed materials in Southern Africa, further research will be vital in answering questions on how best to improve the selenium status of Southern African soils and plants for livestock and humans to attain sufficient quantities.


Asunto(s)
Infecciones por VIH , Selenio , Adulto , Humanos , Animales , África Austral , Zambia , Ganado , Suelo
4.
Front Vet Sci ; 11: 1342310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596464

RESUMEN

The impact of 15% dietary inclusion of Spirulina (Arthrospira platensis) in broiler chickens was explored, focusing on blood cellular components, systemic metabolites and hepatic lipid and mineral composition. From days 14 to 35 of age, 120 broiler chickens were divided and allocated into four dietary treatments: a standard corn and soybean meal-based diet (control), a 15% Spirulina diet, a 15% extruded Spirulina diet, and a 15% Spirulina diet super-dosed with an enzyme blend (0.20% porcine pancreatin plus 0.01% lysozyme). The haematological analysis revealed no significant deviations (p > 0.05) in blood cell counts across treatments, suggesting that high Spirulina inclusion maintains haematological balance. The systemic metabolic assessment indicated an enhanced antioxidant capacity in birds on Spirulina diets (p < 0.001), pointing toward a potential reduction in oxidative stress. However, the study noted a detrimental impact on growth performance metrics, such as final body weight and feed conversion ratio (both p < 0.001), in the Spirulina-fed treatments, with the super-dosed enzyme blend supplementation failing to alleviate these effects but with extrusion mitigating them. Regarding hepatic composition, birds on extruded Spirulina and enzyme-supplemented diets showed a notable increase in n-3 fatty acids (EPA, DPA, DHA) (p < 0.001), leading to an improved n-6/n-3 PUFA ratio (p < 0.001). Despite this positive shift, a reduction in total hepatic lipids (p = 0.003) was observed without a significant change in cholesterol levels. Our findings underscore the need for further exploration into the optimal inclusion levels, processing methods and potential enzymatic enhancements of Spirulina in broiler diets. Ultimately, this research aims to strike a balance between promoting health benefits and maintaining optimal growth performance in poultry nutrition.

5.
Biol Trace Elem Res ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589682

RESUMEN

Aquaculture, a cornerstone of global food production, confronts myriad challenges including disease outbreaks and environmental degradation. Achieving nutritionally balanced aquafeed is critical for sustainable production, prompting exploration into innovative solutions like selenium nanoparticles (SeNPs). SeNPs offer potent antimicrobial, antioxidant, and growth-promoting properties, bolstering gut immunity and digestive capacity in aquatic animals. Their high bioavailability and ability to traverse gut barriers make them promising candidates for aquafeed supplementation. This study investigates SeNPs as a cutting-edge solution to enhance nutrient supply in aquaculture, addressing key challenges while promoting environmental stewardship and food security. By synthesizing current research and highlighting future directions, this review provides valuable insights into sustainable aquaculture practices. SeNPs hold promise for revolutionizing aquaculture feed formulations, offering a pathway to improved production outcomes and environmental sustainability.

6.
J Dev Orig Health Dis ; 15: e5, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563206

RESUMEN

Early supplementation with oregano essential oil (EO) in milk replacer (MR) may improve growth, immune responses, the microbiota and the metabolome in dairy calves during pre-weaning and in adulthood. Sixteen female dairy calves (3 days of age) were divided in two groups (n = 8/group): the control group (no EO) and the EO group (0.23 ml of EO in MR during 45 days). After weaning, calves were kept in a feedlot and fed ad libitum. The animals were weighed, and blood and faecal samples were collected on days 3 (T0), 45 (T1) and 370 (T2) to measure the biochemical profile and characterise peripheral blood mononuclear cells (PBMCs; CD4+, CD8+, CD14+, CD21+ and WC1+), the metabolome and microbiota composition. The EO group only had greater average daily weight gain during the suckling (EO supplementation) period (P = 0.030). The EO group showed higher average CD14+ population (monocytes) values, a lower abundance of Ruminococcaceae UCG-014, Faecalibacterium, Blautia and Alloprevotella and increased abundances of Allistipes and Akkermansia. The modification of some metabolites in plasma, such as butyric acid, 3-indole-propionic acid and succinic acid, particularly at T1, are consistent with intestinal microbiota changes. The data suggest that early EO supplementation increases feed efficiency only during the suckling period with notable changes in the microbiota and plasma metabolome; however, not all of these changes can be considered desirable from a gut health point of view. Additional research studies is required to demonstrate that EOs are a viable natural alternative to antibiotics for improving calf growth performance and health.


Asunto(s)
Dieta , Aceites Volátiles , Animales , Bovinos , Femenino , Leche , Leucocitos Mononucleares , Alimentación Animal/análisis , Destete , Aumento de Peso , Metaboloma , Suplementos Dietéticos , Peso Corporal
7.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542173

RESUMEN

This study aimed to investigate the effects of fermented corn-soybean meal mixed feed (FMF) on growth performance, intestinal barrier function, gut microbiota and short-chain fatty acids in weaned piglets. A total of 128 weaned piglets [Duroc×(Landrace×Yorkshire), male, 21-day-old] were randomly allocated to four groups. Piglets were fed a control diet (CON) or the control diet supplemented with 10%, 50% or 100% FMF (FMF-10, FMF-50 or FMF-100, respectively) for 14 d. The results showed that the FMF-100 group had higher average daily gain and average daily feed intake and lower diarrhea incidence than the CON group (p < 0.05). The FMF-50 and FMF-100 groups had greater villus height in the duodenum and jejunum, and the FMF-10 and FMF-100 groups had higher villus height-to-crypt depth ratio in the duodenum and jejunum than the CON group. Additionally, the FMF-100 group had higher protein expression of duodenal, jejunal and ileal ZO-1 and jejunal claudin-1; higher mRNA expression of duodenal and ileal TJP1 and jejunal CLDN1 and IL10; and lower jejunal IL1B mRNA expression (p < 0.05). The FMF-50 group showed higher jejunal ZO-1 and claudin-1 protein levels, higher mRNA expression levels of IL10 and TJP1 and lower levels of TNF in the jejunum; the FMF-10 group had higher mRNA expression levels of IL10 and lower levels of TNF in the jejunum than the CON group (p < 0.05). Furthermore, the FMF-10 and FMF-50 groups had higher colonic Lactobacillus abundance and butyrate levels; the FMF-100 group had higher abundance of colonic butyrate, Lactobacillus and Faecalibacterium than the CON group (p < 0.05). Collectively, our results suggest that FMF could improve intestinal mucosal barrier function, gut microbiota and their metabolites, thereby enhancing average daily gain and reducing diarrhea incidence in weaned piglets.


Asunto(s)
Microbioma Gastrointestinal , Zea mays , Porcinos , Animales , Masculino , Interleucina-10 , Funcion de la Barrera Intestinal , Glycine max , Claudina-1 , Harina , Incidencia , Suplementos Dietéticos , Diarrea/prevención & control , Diarrea/veterinaria , ARN Mensajero , Butiratos
8.
Animals (Basel) ; 14(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473056

RESUMEN

Improvements in the welfare of animals in the intensive production industries are increasingly being demanded by the public. Scientific methods of welfare improvement have been developed and are beginning to be used on farms, including those provided by precision livestock farming. The number of welfare challenges that animals are facing in the livestock production industries is growing rapidly, and farmers are a key component in attempts to improve welfare because their livelihood is at stake. The challenges include climate change, which not only exposes animals to heat stress but also potentially reduces forage and water availability for livestock production systems. Heat-stressed animals have reduced welfare, and it is important to farmers that they convert feed to products for human consumption less efficiently, their immune system is compromised, and both the quality of the products and the animals' reproduction are adversely affected. Livestock farmers are also facing escalating feed and fertiliser costs, both of which may jeopardise feed availability for the animals. The availability of skilled labour to work in livestock industries is increasingly limited, with rural migration to cities and the succession of older farmers uncertain. In future, high-energy and protein feeds are unlikely to be available in large quantities when required for the expanding human population. It is expected that livestock farming will increasingly be confined to marginal land offering low-quality pasture, which will favour ruminant livestock, at the expense of pigs and poultry unable to readily digest coarse fibre in plants. Farmers also face disease challenges to their animals' welfare, as the development of antibiotic resistance in microbes has heralded an era when we can no longer rely on antibiotics to control disease or improve the feed conversion efficiency of livestock. Farmers can use medicinal plants, pro-, pre- and synbiotics and good husbandry to help maintain a high standard of health in their animals. Loss of biodiversity in livestock breeds reduces the availability of less productive genotypes that survive better on nutrient-poor diets than animals selected for high productivity. Farmers have a range of options to help address these challenges, including changing to less intensive diets, diversification from livestock farming to other enterprises, such as cereal and pseudocereal crops, silvopastoral systems and using less highly selected breeds. These options may not always produce good animal welfare, but they will help to give farm animals a better life.

9.
Animals (Basel) ; 14(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473052

RESUMEN

BioCholine Powder is a polyherbal feed additive composed of Achyrantes aspera, Trachyspermum ammi, Azadirachta indica, and Citrullus colocynthis. The objective of this study was to analyze published results that support the hypothesis that the polyherbal product BioCholine Powder has rumen bypass choline metabolites through a meta-analysis and effect size analysis (ES). Using Scopus, Web of Science, ScienceDirect, PubMed, and university dissertation databases, a systematic search was conducted for experiments published in scientific documents that evaluated the effects of BioCholine supplementation on the variables of interest. The analyzed data were extracted from twenty-one publications (fifteen scientific articles, three abstracts, and three graduate dissertations available in institutional libraries). The studies included lamb growing-finishing, lactating ewes and goats, calves, and dairy cows. The effects of BioCholine were analyzed using random effects statistical models to compare the weighted mean difference (WMD) between BioCholine-supplemented ruminants and controls (no BioCholine). Heterogeneity was explored, and three subgroup analyses were performed for doses [(4 (or 5 g/d), 8 (10 g/d)], supplementation in gestating and lactating ewes (pre- and postpartum supplementation), and blood metabolites by species and physiological state (lactating goats, calves, lambs, ewes). Supplementation with BioCholine in sheep increased the average daily lamb gain (p < 0.05), final body weight (p < 0.01), and daily milk yield (p < 0.05) without effects on intake or feed conversion. Milk yield was improved in small ruminants with BioCholine prepartum supplementation (p < 0.10). BioCholine supplementation decreased blood urea (p < 0.01) and increased levels of the liver enzymes alanine transaminase (ALT; p < 0.10) and albumin (p < 0.001). BioCholine doses over 8 g/d increased blood glucose, albumin (p < 0.10), cholesterol, total protein, and globulin (p < 0.05). The ES values of BioCholine in retained energy over the control in growing lambs were +7.15% NEm (p < 0.10) and +9.25% NEg (p < 0.10). In conclusion, adding BioCholine Powder to domestic ruminants' diets improves productive performance, blood metabolite indicators of protein metabolism, and liver health, showing its nutraceutical properties where phosphatidylcholine prevails as an alternative that can meet the choline requirements in ruminants.

10.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38477705

RESUMEN

This study investigated the effects of feather meal (FM) processing methods on production parameters, blood biochemical indices, intestinal morphology, digestive and hepatic enzyme activities, and gastrointestinal tract pH and microflora of broilers. A total of 480-d-old male broilers were used for 42 d in a completely randomized design with eight treatments and five replicates (12 chicks/replicate). Treatments were 1) a control diet (without FM), 2) a diet containing 4% raw FM (RFM), 3) a diet containing 4% processed FM (PFM) by autoclave (Au-PFM), 4) a diet containing 4% fermented FM (FFM) by Bacillus licheniformis (Bl-FFM), 5) a diet containing 4% FFM by Bacillus subtilis (Bs-FFM), 6) a diet containing 4% FFM by Aspergillus niger (An-FFM), 7) a diet containing 4% FFM by B. licheniformis + B. subtilis + A. niger (Co-FFM), and 8) a diet containing 4% PFM by an enzyme (En-PFM). Results showed that in the FFMs the contents of ash, ether extract, total volatile nitrogen, and amino acids including Lys, Met, Thr, Trp, His, Leu, Gly, Ile, Phe, and Tyr increased (P < 0.05), while crude fiber, crude protein, and dry matter content decreased (P < 0.05). Compared with the control, the Co-FFM diet had no significant differences (P > 0.05) in total body weight gain (2,827 vs. 2,791 g/chick), total feed intake (5,018 vs. 4,991 g/chick), European production efficiency factor (375 vs. 377), European Broiler Index (371 vs. 371), and feed conversion ratio (1.77 vs. 1.78 g/g). Feeding FFM decreased (P < 0.05) serum total cholesterol (1.46-fold), triglyceride (1.61-fold), very low-density lipoprotein cholesterol (1.61-fold), and low-density lipoprotein cholesterol (2.27-fold) compared to the control. Also, FFM increased (P < 0.05) villus height (1,045 to 1,351, 661 to 854, and 523 to 620 µm), and villus height to crypt depth ratio (6.15 to 8.45, 4.55 to 7.04, and 4.27 to 5.45), in the duodenum, jejunum, and ileum, respectively, compared to the control. Compared to the control, the Co-FFM diet increased (P < 0.05) protease (34, 39, and 45 %) in the pancreas, duodenum, and jejunum, as well as amylase (73, and 97 %) activities in the duodenum, and jejunum, respectively. Diets containing FFM reduced (P < 0.05) pH in the crop, gizzard, and ileum, and decreased (P < 0.05) Escherichia coli (6.12 to 5.70) count in ileum compared to the control. The Co-FFM diet increased (P < 0.05) lactic acid bacteria count in crop (6.77 to 7.50) and ileum (6.94 to 7.73), also decreased (P < 0.05) coliforms (6.31 to 5.75) count in ileum compared to the control. In conclusion, FM fermentation, particularly Co-FFM, improves the nutritional value of FM, converting it into a decent source of dietary protein for broilers.


Fermentation represents an attractive alternative method for feather meal (FM) efficient bioconversion and its nutritional value enhancement. This study investigated the effects of FM processing methods on broilers. Experimental diets were 1) a control diet (without FM), 2) a diet containing 4% raw FM (RFM), 3) a diet containing 4% processed FM (PFM) by autoclave (Au-PFM), 4) a diet containing 4% fermented FM (FFM) by Bacillus licheniformis (Bl-FFM), 5) a diet containing 4% FFM by Bacillus subtilis (Bs-FFM), 6) a diet containing 4% FFM by Aspergillus niger (An-FFM), 7) a diet containing 4% FFM by B. licheniformis + B. subtilis + A. niger (Co-FFM), and 8) a diet containing 4% PFM by an enzyme (En-PFM). Results showed that FFMs increased the contents of ash, ether extract, total volatile nitrogen, and amino acids including Lys, Met, Thr, Trp, His, Leu, Gly, Ile, Phe, and Tyr, while decreased crude fiber, crude protein, and dry matter content. The production parameters of birds fed Co-FFM were similar to the control group. In addition, FFMs decreased serum total cholesterol (1.46-fold), triglyceride (1.61-fold), very low-density lipoprotein cholesterol (1.61-fold), and low-density lipoprotein cholesterol (2.27-fold). Furthermore, Co-FFM improved intestinal morphology, enzyme activities, and beneficial bacterial populations. In conclusion, Co-FFM, improves the nutritional value of FM, converting it into a decent source of dietary protein for broilers.


Asunto(s)
Pollos , Plumas , Animales , Masculino , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Colesterol , Dieta/veterinaria , Suplementos Dietéticos , Lipoproteínas LDL/farmacología
11.
Trop Anim Health Prod ; 56(3): 107, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507034

RESUMEN

The combined effect of Aloe vera gel (AVG) administered through drinking water and dietary red grape pomace powder (RGP) on growth performance, physiological traits, welfare indicators, and meat quality in densely stocked broilers was evaluated. A total of 750, two-week-old male Ross 308 broilers (317.7 ± 10.12 g live weight) were randomly assigned to 25 cages, with each cage as an experimental unit. The broilers were stocked at a density of 30 birds per cage with a floor space of 1.32 m2. Dietary treatments were a standard grower or finisher diet (CON); CON containing 30 g RGP /kg diet plus either 1 (GPA1), 2 (GPA2), 3 (GPA3), or 4% (GPA4) AVG in drinking water. Treatment GPA1 promoted higher (P < 0.05) overall weight gain and overall feed conversion ratio (FCR) than CON. Positive quadratic effects (P < 0.05) were noted for mean corpuscular hemoglobin, basophils, 24-hour breast meat yellowness, chroma, and hue angle. The GPA2 group had the lowest (P < 0.05) gait score while the CON group had the highest score. Concurrent supplementation with a 30 g RGP /kg diet plus 1% AVG in drinking water enhanced weight gain, FCR, and finisher weight of densely stocked broilers. However, AVG doses beyond 1% did not enhance performance and physiological traits in densely stocked broilers.


Asunto(s)
Agua Potable , Preparaciones de Plantas , Vitis , Masculino , Animales , Pollos , Suplementos Dietéticos , Dieta/veterinaria , Aumento de Peso , Alimentación Animal/análisis , Carne/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
12.
Heliyon ; 10(6): e27991, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524609

RESUMEN

This in vitro batch culture study investigated the effects of red osier dogwood (ROD) extract supplementation on gas production (GP), dry matter disappearance (DMD), and fermentation characteristics in high forage (HF) and high grain (HG) diets with varying media pH level. The experiment was a factorial arrangement of treatments in a completely randomized design with 2 media pH (5.8 and 6.5) × 4 dose rates of ROD extract (0, 1, 3, and 5% of DM substrate). An additional treatment of monensin was added as a positive control for each pH level. The HF substrate consisted of 400 and 600 g/kg DM barley-based concentrate and barley silage, respectively, while the HG substrate contained 100 and 900 g/kg DM barley silage and barley-based concentrate, respectively. Treatments were incubated for 24 h with GP, DMD and fermentation parameters determined. No interaction was detected between the media pH level and ROD extract dose rate on GP, DMD and most of the fermentation parameters. The GP, DMD, and total volatile fatty acid (VFA) concentration were greater (P = 0.01) with media pH of 6.5 in both HF and HG diets. The GP were not affected by increasing ROD dose rate, except that GP linearly decreased in the HF (P = 0.04) and HG (P = 0.01) diets at 24 h; the DMD tended to linearly decrease at pH 6.5 (P = 0.06) for both HF and HG diets and at pH 5.8 (P = 0.02) for the HG diet. Adding ROD extract to the HF and HG diets linearly (P = 0.01) increased the acetate molar proportion at high or low media pH and consequently, the acetate to propionate (A:P) ratio linearly (P ≤ 0.04) increased. Supplementation of ROD extract to the HF diet linearly (P = 0.04) decreased the molar proportion of propionate at pH 6.5 (interaction between pH and ROD extract; P = 0.05), but had no effect on propionate proportion when added to the HG diet. Moreover, the proportion of branched-chain fatty acids linearly (P = 0.03) decreased with ROD extract supplementation at low pH (interaction, P < 0.05) for HF diet and linearly decreased (P = 0.05) at pH 6.5 for HG diet (interaction, P < 0.05). The NH3-N concentration was not affected by ROD supplementation in the HF diet but it linearly (P = 0.01) decreased with increasing dose rate in the HG diet. Methane concentration tended to linearly (P = 0.06) increase with ROD extract supplementation at high pH for HF diet and linearly increased at pH 5.8 (P = 0.06) and pH 6.5 (P = 0.02) for HG diet. These results indicate that the decreased DMD and increased A:P ratio observed with addition of ROD extract may be beneficial to HG-fed cattle to reduce the risk of rumen acidosis without negatively impacting fiber digestion.

13.
Front Vet Sci ; 11: 1309754, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500607

RESUMEN

The objective of this research was to assess and quantify the potential vitamin A losses that occur during the manufacturing of pet feed and premix, as well as during their extended storage periods. This trial was conducted at a commercial feeder mill that utilized a standard commercial dog feed along with a corresponding vitamin-mineral premix. The calculated amount of vitamin A supplemented in the feed, in addition to the endogenous vitamins present in the ingredients, was adjusted to 18,000 IU/kg of feed. Five 500 g feed samples were collected at each of the predefined critical points throughout the manufacturing process (after mixing, milling, preconditioner, and extrusion/drying processes) to verify the stability of vitamin A during feed production. Additionally, various samples were collected at regular intervals of 30, 60, 90, 120, and 180 days during the storage of the premix to assess the stability of vitamin A. Vitamin A analyses in the samples were performed using high-performance liquid chromatography. The variables were assessed for normality using the Shapiro-Wilk test, followed by analysis of variance (ANOVA) and Tukey's test to compare the differences between the manufacturing process and premix shelf life. The statistical significance was set at 95%. The vitamin losses during the pre-conditioning process were 26%, and during the extrusion-drying processes, the losses were 34% when compared to the initial analyzed value. However, no differences were observed in other processes. There were no significant differences observed in recovered vitamin levels in the premix during its shelf-life (p = 0.484). The study indicated that the primary vitamin A losses in pet feed manufacturing processes occur during the pre-conditioning and drying/extrusion steps. However, it is worth noting that no significant losses of vitamin A were found during the premix storage phase.

14.
Front Nutr ; 11: 1335779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450227

RESUMEN

This review highlights the possible hazard of mycotoxins occurrence in foods and feeds in regards to foodborne diseases. The possible management of the risk of contamination of foods and feeds with mycotoxins by using natural feed additives, protecting against deleterious effects of mycotoxins or inhibiting the growth of fungi and mycotoxin production, is deeply investigated in the available literature and some effective measures for safe utilization of mycotoxin contaminated feed/food are proposed. The biological methods of decontamination, degradation or biotransformation of mycotoxins are deeply analyzed and discussed. Some natural antagonists against target fungi are also reviewed and a comparison is made with conventional fungicides for ensuring a safe prevention of mycotoxin contamination. The most common and useful chemical methods of mycotoxins decontamination of agricultural commodities or raw materials are also investigated, e.g., chemical additives inactivating or destroying and/or adsorbing mycotoxins as well as chemical additives inhibiting the growth of fungi and mycotoxin production. The practical use and safety of various kind of feed/food additives or herbal/biological supplements as possible approach for ameliorating the adverse effects of some dangerous mycotoxins is deeply investigated and some suggestions are given. Various possibilities for decreasing mycotoxins toxicity, e.g., by clarifying the mechanisms of their toxicity and using some target antidotes and vitamins as supplements to the diet, are also studied in the literature and appropriate discussions or suggestions are made in this regard. Some studies on animal diets such as low carbohydrate intake, increased protein content, calorie restriction or the importance of dietary fats are also investigated in the available literature for possible amelioration of the ailments associated with mycotoxins exposure. It could be concluded that natural feed additives and bioactive supplements would be more safe and practical approach to combat foodborne mycotoxicoses as compared to chemical additives.

15.
J Anim Sci Biotechnol ; 15(1): 33, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431668

RESUMEN

BACKGROUND: Nursery pigs undergo stressors in the post-weaning period that result in production and welfare challenges. These challenges disproportionately impact the offspring of primiparous sows compared to those of multiparous counterparts. Little is known regarding potential interactions between parity and feed additives in the post-weaning period and their effects on nursery pig microbiomes. Therefore, the objective of this study was to investigate the effects of maternal parity on sow and offspring microbiomes and the influence of sow parity on pig fecal microbiome and performance in response to a prebiotic post-weaning. At weaning, piglets were allotted into three treatment groups: a standard nursery diet including pharmacological doses of Zn and Cu (Con), a group fed a commercial prebiotic only (Preb) based on an Aspergillus oryzae fermentation extract, and a group fed the same prebiotic plus Zn and Cu (Preb + ZnCu). RESULTS: Although there were no differences in vaginal microbiome composition between primiparous and multiparous sows, fecal microbiome composition was different (R2 = 0.02, P = 0.03). The fecal microbiomes of primiparous offspring displayed significantly higher bacterial diversity compared to multiparous offspring at d 0 and d 21 postweaning (P < 0.01), with differences in community composition observed at d 21 (R2 = 0.03, P = 0.04). When analyzing the effects of maternal parity within each treatment, only the Preb diet triggered significant microbiome distinctions between primiparous and multiparous offspring (d 21: R2 = 0.13, P = 0.01; d 42: R2 = 0.19, P = 0.001). Compositional differences in pig fecal microbiomes between treatments were observed only at d 21 (R2 = 0.12, P = 0.001). Pigs in the Con group gained significantly more weight throughout the nursery period when compared to those in the Preb + ZnCu group. CONCLUSIONS: Nursery pig gut microbiome composition was influenced by supplementation with an Aspergillus oryzae fermentation extract, with varying effects on performance when combined with pharmacological levels of Zn and Cu or for offspring of different maternal parity groups. These results indicate that the development of nursery pig gut microbiomes is shaped by maternal parity and potential interactions with the effects of dietary feed additives.

16.
Tree Physiol ; 44(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38498335

RESUMEN

Broussonetia papyrifera, a valuable feed resource, is known for its fast growth, wide adaptability, high protein content and strong selenium enrichment capacity. Selenomethionine (SeMet), the main selenium form in selenium fortification B. papyrifera, is safe for animals and this enhances its nutritional value as a feed resource. However, the molecular mechanisms underlying SeMet synthesis remain unclear. This study identified three homocysteine S-methyltransferase genes from the B. papyrifera genome. The phylogenetic tree demonstrated that BpHMTs were divided into two classes, and BpHMT2 in the Class 2-D subfamily evolved earlier and possesses more fundamental functions. On the basis of the correlation between gene expression levels and selenium content, BpHMT2 was identified as a key candidate gene associated with selenium tolerance. Subcellular localization experiments confirmed the targeting of BpHMT2 in nucleus, cell membrane and chloroplasts. Moreover, three BpHMT2 overexpression Arabidopsis thaliana lines were confirmed to enhance plant selenium tolerance and SeMet accumulation. Overall, our finding provides insights into the molecular mechanisms of selenium metabolism in B. papyrifera, highlighting the potential role of BpHMT2 in SeMet synthesis. This research contributes to our understanding of selenium-enriched feed resources, with increased SeMet content contributing to the improved nutritional value of B. papyrifera as a feed resource.


Asunto(s)
Broussonetia , Selenio , Animales , Selenio/metabolismo , Broussonetia/genética , Broussonetia/metabolismo , Filogenia , Selenometionina/metabolismo
17.
Aust Vet J ; 102(5): 242-248, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342579

RESUMEN

Humate may be a valuable livestock feed additive, with potential effects on nutrient utilisation and animal performance. Thus, the aim of this study was to investigate the effect of K Humate S 100R supplementation on the feed intake, liveweight gain, and carcass parameters of Angus steers. Within individual pens, 40 weaned steers were allocated to four treatment groups (n = 10/potassium humate K Humate S100R, Omnia Specialities Australia) for 100 days. The treatment groups included Group 1, 35 g K Humate S100R/animal/day; Group 2, 70 g K Humate S100R/animal/day; Group 3, 140 g K Humate S100R/animal/day; and Control Group, which were not supplemented with K Humate S100R (0 g K Humate S100R/animal/day). Chemical and mineral composition of the feed ingredients, dry matter intake (DMI), and average daily weight gains were recorded. The steers were slaughtered as a single group at a commercial Australian abattoir. Standard measures for hot standard carcass weight, eye muscle area, fat depth and coverage, marbling, ossification, meat and fat colour, dressing percentage and loin pH values at 24-hour postmortem were recorded. It was found that the steers allocated to Group 2 had higher DMI (P = 0.003) and feed conversion ratio (FCR) (P < 0.001) compared with those allocated to Group 1 and the Control Group. The MSA marbling score was lowest for steers allocated to the Control Group (P < 0.05) and comparable for those allocated to Groups 1, 2, and 3. Together, these results demonstrate that increased levels of K Humate S100R supplementation improved the carcass quality, via an increase in MSA. However, further research is warranted on the potential effects of humates supplementation on intramuscular fat associated qualities of beef.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Aumento de Peso , Animales , Bovinos/fisiología , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales , Ingestión de Alimentos/fisiología , Composición Corporal/efectos de los fármacos , Australia , Carne/análisis , Carne/normas
18.
Heliyon ; 10(3): e24973, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322944

RESUMEN

This paper is reviewed with the objective to understand the effect of herbal extracts on animal performance as feed additives. The number of both external and internal factors which affects the production and productivity of animals obviously includes nutrition as a major factor. Feed additives are products used in animal nutrition to increase the quality of feed and animal-derived foods, as well as the performance and the health of animals. Plant extracts as feed additives are described as herbal-derived components added to ration to improve livestock performance and product quality. Many herbal extracts contain chemical components that have antioxidant, antimicrobial, anti-inflammatory, anticoccidial and anthelmintic properties to improve ruminal microbial activity, diet palatability and stimulate digestion. Bioactive chemicals found in nature, such as flavonoids and glucosinolates isoprene derivatives, are primarily responsible for the qualities of plant extracts. Plant extracts are commonly added to feed to increase palatability, productivity and to inhibit lipid oxidation. When added to meals, herbal extracts aid to decrease rancidity, delay the generation of hazardous oxidation products, and retain nutritional quality. It is concluded that; herbal extracts are important to improve growth performance and product quality.

19.
Vet Med Sci ; 10(2): e1399, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38419291

RESUMEN

BACKGROUND: Enzyme supplementation and the inclusion of fibre in the barley-based diets have been some of the alternatives proposed to improve productivity in the absence of growth promoters. OBJECTIVE: This study was performed to investigate the effect of adding sunflower hulls (SFH), a multi-enzyme carbohydrate, and feed forms (mash and pellet) on performance and some physiological parameters in broiler chickens fed barley containing diets. METHODS: Treatments were two feed forms (mash vs. pelleted), and four diets consisted of a barley-based diet (control, CTL) or test diets which contained either SFH at 30 g/kg, enzyme (ENZ; 0.2 g/kg) or combination of SFH and enzyme (SFH + ENZ). RESULTS: The results showed that average daily feed intake and average daily gain were significantly increased in chickens that were fed ENZ (p < 0.05). The highest digestibility of ether extract (EE) was observed in the treatment containing SFH and SFH + ENZ (p < 0.05). The highest population of Lactobacillus spp. was observed in the treatment containing SFH (p < 0.05). The villus height and villus height to crypt depth ratios of duodenum and jejunum were significantly higher (p < 0.05) in broilers fed pellet diets compared to the mash. CONCLUSION: It can be concluded that pellet diets reduce digesta viscosity and harmful microorganisms (Escherichia coli), increase growth performance, and improve intestinal morphology in barley-based diets. Moreover, SFH and ENZ had favourable effects on EE digestibility and caecal microbial population of broilers fed with barley containing diets.


Asunto(s)
Pollos , Hordeum , Animales , Pollos/fisiología , Dieta/veterinaria , Intestinos , Suplementos Dietéticos , Alimentación Animal/análisis
20.
Heliyon ; 10(4): e25724, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38380018

RESUMEN

A meta-analysis was conducted to determine the effects of herbal plant extracts on the growth performance, blood parameters, nutrient digestibility and carcase quality of farmed rabbits. A dataset was created from 33 in vivo studies comprising 121 experimental units. Statistical meta-analysis was performed using a random-effects model and linear-mixed model meta-regression using R software (v. 4.3.0). Our results showed that although supplemental herbs did not affect average daily gain (ADG) and final body weight (BW), they reduced (P < 0.01) feed conversion ratio and mortality and increased the digestibility of dry matter (DM) (P = 0.014) and crude protein (CP) (P = 0.018). The herbal extracts also increased (P = 0.037) blood high-density lipoprotein (HDL) and decreased (P = 0.004) low-density lipoprotein (LDL). Immunoglobulin M (IgM) was elevated (P = 0.009) by herbal plant extract supplementation, although most blood components were unaffected. The inclusion of herbal plant extract up to 300 g/kg increased (P = 0.011) carcase percentage while the weight and percentage of other organs were unaffected. Subgroup meta-analysis further explained the different effect of the type of herbal plant extract. Moringa, olive oil, and pepper were more favourable to increase final BW compared to the other herbs. Interestingly, the majority of herbs showed efficacy in reducing mortality. A majority of the response variables in our meta-analysis showed no dose-response effect except for ADG, mortality, HDL, and LDL which were improved by herbs supplementation. The evidence from the perspective of both meta-analysis and meta-regression shows that the addition of herbs tends to positively affect the parameters for production performance and blood metabolites in farmed rabbits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA