Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 689
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Chin J Nat Med ; 22(4): 341-355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658097

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by persistent synovial inflammation and joint degradation, posing challenges in the development of effective treatments. Nuciferine, an alkaloid found in lotus leaf, has shown promising anti-inflammatory and anti-tumor effects, yet its efficacy in RA treatment remains unexplored. This study investigated the antiproliferative effects of nuciferine on the MH7A cell line, a human RA-derived fibroblast-like synoviocyte, revealing its ability to inhibit cell proliferation, promote apoptosis, induce apoptosis, and cause G1/S phase arrest. Additionally, nuciferine significantly reduced the migration and invasion capabilities of MH7A cells. The therapeutic potential of nuciferine was further evaluated in a collagen-induced arthritis (CIA) rat model, where it markedly alleviated joint swelling, synovial hyperplasia, cartilage injury, and inflammatory infiltration. Nuciferine also improved collagen-induced bone erosion, decreased pro-inflammatory cytokines and serum immunoglobulins (IgG, IgG1, IgG2a), and restored the balance between T helper (Th) 17 and regulatory T cells in the spleen of CIA rats. These results indicate that nuciferine may offer therapeutic advantages for RA by decreasing the proliferation and invasiveness of FLS cells and correcting the Th17/Treg cell imbalance in CIA rats.


Asunto(s)
Aporfinas , Proliferación Celular , Sinoviocitos , Linfocitos T Reguladores , Células Th17 , Animales , Proliferación Celular/efectos de los fármacos , Sinoviocitos/efectos de los fármacos , Ratas , Humanos , Células Th17/efectos de los fármacos , Células Th17/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Aporfinas/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inmunología , Masculino , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Fibroblastos/efectos de los fármacos , Colágeno , Apoptosis/efectos de los fármacos , Línea Celular
2.
Ren Fail ; 46(1): 2336128, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38575340

RESUMEN

Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Animales , Riñón/patología , Adenina , Reproducibilidad de los Resultados , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica/tratamiento farmacológico
3.
Phytother Res ; 38(7): 3337-3351, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38634416

RESUMEN

The discovery of alternative medicines with fewer adverse effects is urgently needed for rheumatoid arthritis (RA). Sophoridine (SR), the naturally occurring quinolizidine alkaloid isolated from the leguminous sophora species, has been demonstrated to possess a wide range of pharmacological activities. However, the effect of SR on RA remains unknown. In this study, the collagen-induced arthritis (CIA) rat model and tumor necrosis factor alpha (TNFα)-induced fibroblast-like synoviocytes (FLSs) were utilized to investigate the inhibitory effect of SR on RA. The anti-arthritic effect of SR was evaluated using the CIA rat model in vivo and TNFα-stimulated FLSs in vitro. Mechanistically, potential therapeutic targets and pathways of SR in RA were analyzed through drug target databases and disease databases, and validation was carried out through immunofluorescence, immunohistochemistry, and Western blot. The in vivo results revealed that SR treatment effectively ameliorated synovial inflammation and bone erosion in rats with CIA. The in vitro studies showed that SR could significantly suppress the proliferation and migration in TNFα-induced arthritic FLSs. Mechanistically, SR treatment efficiently inhibited the activation of MAPKs (JNK and p38) and NF-κB pathways in TNFα-induced arthritic FLSs. These findings were further substantiated by Immunohistochemistry results in the CIA rat. SR exerts an anti-arthritic effect in CIA rats through inhibition of the pathogenic characteristic of arthritic FLSs via suppressing NF-κB and MAPKs (JNK and p38) signaling pathways. SR may have a great potential for development as a novel therapeutic agent for RA treatment.


Asunto(s)
Alcaloides , Artritis Experimental , Artritis Reumatoide , Fibroblastos , Matrinas , FN-kappa B , Quinolizinas , Sinoviocitos , Factor de Necrosis Tumoral alfa , Animales , Sinoviocitos/efectos de los fármacos , Artritis Experimental/tratamiento farmacológico , Alcaloides/farmacología , Ratas , Quinolizinas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Fibroblastos/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Masculino , Proliferación Celular/efectos de los fármacos , Sophora/química , Ratas Sprague-Dawley
4.
Phytomedicine ; 128: 155512, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460357

RESUMEN

BACKGROUND: The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms. PURPOSE: This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway. METHODS: SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot. RESULTS: SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C. CONCLUSION: SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Apoptosis , Artritis Experimental , Artritis Reumatoide , Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Naftoquinonas , Transducción de Señal , Sinoviocitos , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Naftoquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas , Artritis Experimental/tratamiento farmacológico , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Masculino , Proliferación Celular/efectos de los fármacos , Humanos , Ratas Sprague-Dawley
5.
Fitoterapia ; 175: 105918, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554887

RESUMEN

Keloids are prevalent pathological scars, often leading to cosmetic deformities and hindering joint mobility.They cause discomfort, including burning and itching, while gradually expanding and potentially posing a risk of cancer.Developing effective drugs and treatments for keloids has been a persistent challenge in the medical field. Natural products are an important source of innovative drugs and a breakthrough for many knotty disease.Herein, keywords of "natural, plant, compound, extract" were combined with "keloid" and searched in PubMed and Google Scholar, respectively. A total of 32 natural products as well as 9 extracts possessing the potential for treating keloids were ultimately identified.Current research in this field faces a significant challenge due to the lack of suitable animal models, resulting in a predominant reliance on in vitro studies.In vivo and clinical studies are notably scarce as a result.Moreover, there is a notable deficiency in research focusing on the role of nutrients in keloid formation and treatment.The appropriate dosage form (oral, topical, injectable) is crucial for the development of natural product drugs. Finally, the conclusion was hereby made that natural products, when used as adjuncts to other treatments, hold significant potential in the management of keloids.By summarizing the natural products and elucidating their mechanisms in keloid treatment, the present study aims to stimulate further discoveries and research in drug development for effectively addressing this challenging condition.


Asunto(s)
Productos Biológicos , Queloide , Queloide/tratamiento farmacológico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Animales , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
6.
J. physiol. biochem ; 80(1): 99-112, Feb. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-EMG-569

RESUMEN

Several humoral factors, such as adiponectin and urate, have been suggested to affect metabolic syndromes. Previously, we reported a reduction in blood adiponectin concentrations after a high-fructose diet partially via the vagus nerve in rats. Although a lithogenic diet (LD), i.e., supplementation of a normal control diet (CT) with 0.6% cholesterol and 0.2% sodium cholate, reduced blood adiponectin concentrations, the involvement of the vagus nerve in this mechanism remains unclear. To estimate the involvement of the vagus nerve in the regulation of blood adiponectin concentrations using an LD, male imprinting control region mice that had been vagotomized (HVx) or only laparotomized (Sham) were administered a CT or an LD for 10 weeks. Serum adiponectin concentrations in the Sham-LD, HVx-CT, and HVx-LD groups were reduced by half compared with the Sham-CT group. The hepatic mRNA levels of fibroblast growth factor 21 (Fgf21), which reportedly stimulates adiponectin secretion from white adipose tissue, were lower in the LD groups compared with the CT groups. HepG2 hepatoma cells showed that various bile acids reduced the mRNA expression of FGF21. Moreover, the LD increased serum urate concentrations and reduced hepatic expressions of the acyl-CoA oxidase 1 (Acox1) mRNA and glucokinase, suggesting insufficient regeneration of ATP from AMP. In conclusion, serum adiponectin concentration may be regulated via the vagus nerve in normal mice, whereas a reduction of hepatic Fgf21 mRNA by bile acids may also lower serum adiponectin levels. Moreover, the LD may promote hepatic AMP accumulation and subsequently increase the serum urate concentration in mice. (AU)


Asunto(s)
Animales , Ratones , Adiponectina , Nervio Vago , Péptidos y Proteínas de Señalización Intercelular , Ácidos y Sales Biliares , Ácido Úrico
7.
Genes (Basel) ; 15(2)2024 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-38397163

RESUMEN

Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor ß1 (TGF-ß1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFßR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.


Asunto(s)
Aldehídos , Monoterpenos Ciclopentánicos , Fenoles , Alcohol Feniletílico/análogos & derivados , Aceites de Plantas , Factor A de Crecimiento Endotelial Vascular , Humanos , Aceite de Oliva/farmacología , Aceites de Plantas/análisis , Biomarcadores , Antígenos de Diferenciación , Proliferación Celular , Fibroblastos , Expresión Génica
8.
Clin Rheumatol ; 43(3): 959-969, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38305937

RESUMEN

OBJECTIVE: Fibroblast-like synoviocytes (FLS) play a critical role on the exacerbation and deterioration of rheumatoid arthritis (RA). Aberrant activation of FLS pyroptosis signaling is responsible for the hyperplasia of synovium and destruction of cartilage of RA. This study investigated the screened traditional Chinese medicine berberine (BBR), an active alkaloid extracted from the Coptis chinensis plant, that regulates the pyroptosis of FLS and secretion of inflammatory factors in rheumatoid arthritis. METHODS: First, BBR was screened using a high-throughput drug screening strategy, and its inhibitory effect on RA-FLS was verified by in vivo and in vitro experiments. Second, BBR was intraperitoneally administrated into the collagen-induced arthritis rat model, and the clinical scores, arthritis index, and joint HE staining were evaluated. Third, synovial tissues of CIA mice were collected, and the expression of NLRP3, cleaved-caspase-1, GSDMD-N, Mst1, and YAP was detected by Western blot. RESULTS: The administration of BBR dramatically alleviated the severity of collagen-induced arthritis rat model with a decreased clinical score and inflammation reduction. In addition, BBR intervention significantly attenuates several pro-inflammatory cytokines (interleukin-1ß, interleukin-6, interleukin-17, and interleukin-18). Moreover, BBR can reduce the pyroptosis response (caspase-1, NLR family pyrin domain containing 3, and gasdermin D) of the RA-FLS in vitro, activating the Hippo signaling pathway (Mammalian sterile 20-like kinase 1, yes-associated protein, and transcriptional enhanced associate domains) so as to inhibit the pro-inflammatory effect of RA-FLS. CONCLUSION: These results support the role of BBR in RA and may have therapeutic implications by directly repressing the activation, migration of RA-FLS, which contributing to the attenuation of the progress of CIA. Therefore, targeting PU.1 might be a potential therapeutic approach for RA. Besides, BBR inhibited RA-FLS pyroptosis by downregulating of NLRP3 inflammasomes (NLRP3, caspase-1) and eased the pro-inflammatory activities via activating the Hippo signaling pathway, thereby improving the symptom of CIA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Berberina , Ratas , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Berberina/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Caspasas/metabolismo , Caspasas/farmacología , Caspasas/uso terapéutico , Fibroblastos/metabolismo , Células Cultivadas , Proliferación Celular , Mamíferos
9.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38397757

RESUMEN

Deficient wound healing is frequently observed in patients diagnosed with diabetes, a clinical complication that compromises mobility and leads to limb amputation, decreasing patient autonomy and family lifestyle. Fibroblasts are crucial for secreting the extracellular matrix (ECM) to pave the wound site for endothelial and keratinocyte regeneration. The biosynthetic pathways involved in collagen production and crosslinking are intimately related to fibroblast redox homeostasis. In this study, two sets of human dermic fibroblasts were cultured in normal (5 mM) and high (25 mM)-glucose conditions in the presence of 1 µM selenium, as sodium selenite (inorganic) and the two selenium amino acids (organic), Se-cysteine and Se-methionine, for ten days. We investigated the ultrastructural changes in the secreted ECM induced by these conditions using scanning electron microscopy (SEM). In addition, we evaluated the redox impact of these three compounds by measuring the basal state and real-time responses of the thiol-based HyPer biosensor expressed in the cytoplasm of these fibroblasts. Our results indicate that selenium compound supplementation pushed the redox equilibrium towards a more oxidative tone in both sets of fibroblasts, and this effect was independent of the type of selenium. The kinetic analysis of biosensor responses allowed us to identify Se-cysteine as the only compound that simultaneously improved the sensitivity to oxidative stimuli and augmented the disulfide bond reduction rate in high-glucose-cultured fibroblasts. The redox response profiles showed no clear association with the ultrastructural changes observed in matrix fibers secreted by selenium-treated fibroblasts. However, we found that selenium supplementation improved the ECM secreted by high-glucose-cultured fibroblasts according to endothelial migration assessed with a wound healing assay. Direct application of sodium selenite and Se-cysteine on purified collagen fibers subjected to glycation also improved cellular migration, suggesting that these selenium compounds avoid the undesired effect of glycation.

10.
Nutrients ; 16(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398809

RESUMEN

(1) Objectives: Intestinal failure in home parenteral nutrition patients (HPNPs) results in oxidative stress and liver damage. This study investigated how a high dose of fish oil (FO) added to various lipid emulsions influences antioxidant status and liver function markers in HPNPs. (2) Methods: Twelve HPNPs receiving Smoflipid for at least 3 months were given FO (Omegaven) for a further 4 weeks. Then, the patients were randomized to subsequently receive Lipoplus and ClinOleic for 6 weeks or vice versa plus 4 weeks of Omegaven after each cycle in a crossover design. Twelve age- and sex-matched healthy controls (HCs) were included. (3) Results: Superoxide dismutase (SOD1) activity and oxidized-low-density lipoprotein concentration were higher in all baseline HPN regimens compared to HCs. The Omegaven lowered SOD1 compared to baseline regimens and thus normalized it toward HCs. Lower paraoxonase 1 activity and fibroblast growth factor 19 (FGF19) concentration and, on the converse, higher alkaline phosphatase activity and cholesten concentration were observed in all baseline regimens compared to HCs. A close correlation was observed between FGF19 and SOD1 in baseline regimens. (4) Conclusions: An escalated dose of FO normalized SOD1 activity in HPNPs toward that of HCs. Bile acid metabolism was altered in HPNPs without signs of significant cholestasis and not affected by Omegaven.


Asunto(s)
Colestasis , Nutrición Parenteral en el Domicilio , Humanos , Superóxido Dismutasa-1 , Emulsiones Grasas Intravenosas , Aceites de Pescado , Aceite de Soja , Nutrición Parenteral en el Domicilio/métodos
11.
Ecotoxicol Environ Saf ; 272: 116101, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38359653

RESUMEN

Selenium (Se) and cadmium (Cd) usually co-existed in soils, especially in areas with Se-rich soils in China. The potential health consequences for the local populations consuming foods rich in Se and Cd are unknown. Cardamine hupingshanensis (HUP) is Se and Cd hyperaccumulator plant that could be an ideal natural product to assess the protective effects of endogenous Se against endogenous Cd-caused bone damage. Male C57BL/6 mice were fed 5.22 mg/kg cadmium chloride (CdCl2) (Cd 3.2 mg/kg body weight (BW)), or HUP solutions containing Cd 3.2 mg/kg BW and Se 0.15, 0.29 or 0.50 mg/kg BW (corresponding to the HUP0, HUP1 and HUP2 groups) interventions. Se-enriched HUP1 and HUP2 significantly decreased Cd-induced femur microstructure damage and regulated serum bone osteoclastic marker levels and osteogenesis-related genes. In addition, endogenous Se significantly decreased kidney fibroblast growth factor 23 (FGF23) protein expression and serum parathyroid hormone (PTH) levels, and raised serum calcitriol (1,25(OH)2D3). Furthermore, Se also regulated gut microbiota involved in skeletal metabolism disorder. In conclusion, endogenous Se, especially with higher doses (the HUP2 group), positively affects bone formation and resorption by mitigating the damaging effects of endogenous Cd via the modulation of renal FGF23 expression, circulating 1,25(OH)2D3 and PTH and gut microbiota composition.


Asunto(s)
Cardamine , Selenio , Ratones , Animales , Selenio/farmacología , Selenio/metabolismo , Cadmio , Ratones Endogámicos C57BL , Suelo
12.
Nutrients ; 16(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276557

RESUMEN

Panax ginseng Meyer and Inula japonica Thunb. are well established in traditional medicine and are known for their therapeutic properties in managing a range of ailments such as diabetes, asthma, and cancer. Although P. ginseng and I. japonica can alleviate pulmonary fibrosis (PF), the anti-fibrosis effect on PF by the combination of two herbal medicines remains unexplored. Therefore, this study explores this combined effect. In conditions that were not cytotoxic, MRC-5 cells underwent treatment using the formula combining P. ginseng and I. japonica (ISE081), followed by stimulation with transforming growth factor (TGF)-ß1, to explore the fibroblast-to-myofibroblast transition (FMT). After harvesting the cells, mRNA levels and protein expressions associated with inflammation and FMT-related markers were determined to evaluate the antiinflammation activities and antifibrosis effect of ISE081. Additionally, the anti-migratory effects of ISE081 were validated through a wound-healing assay. ISE081 remarkably reduced the mRNA levels of interleukin (IL)-6, IL-8, α-smooth muscle actin (SMA), and TGF-ß1 in MRC-5 cells and suppressed the α-SMA and fibronectin expressions, respectively. Furthermore, ISE081 inhibited Smad2/3 phosphorylation and wound migration of MRC-5 cells. Under the same conditions, comparing those of ISE081, P. ginseng did not affect the expression of α-SMA, fibronectin, and Smad2/3 phosphorylation, whereas I. japonica significantly inhibited them but with cytotoxicity. The results indicate that the synergistic application of P. ginseng and I. japonica enhances the anti-fibrotic properties in pulmonary fibroblasts and concurrently diminishes toxicity. Therefore, ISE081 has the potential as a prevention and treatment herbal medicine for PF.


Asunto(s)
Inula , Panax , Fibrosis Pulmonar , Humanos , Inula/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Panax/metabolismo , Fibrosis , Fibrosis Pulmonar/metabolismo , Fibroblastos , Factor de Crecimiento Transformador beta1/metabolismo , ARN Mensajero/metabolismo
13.
Int Immunopharmacol ; 128: 111433, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181676

RESUMEN

OBJECTIVE: Coptisine, a natural bioactive small molecular compound extracted from traditional Chinese herb Coptis chinensis, has been shown to exhibit anti-tumor effect. However, its contribution to autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we evaluate the effect of coptisine in controlling fibroblast-like synoviocytes (FLS)-mediated synovial proliferation and aggression in RA and further explore its underlying mechanism(s). METHODS: FLS were separated from synovial tissues obtained from patients with RA. Protein expression was measured by Western blot or immunohistochemistry. Gene expression was detected by quantitative RT-PCR. The EdU incorporation was used to measure cell proliferation. Migration and invasion were determined by Boyden chamber assay. RNA sequencing analysis was used to seek for the target of coptisine. The in vivo effect of coptisine was evaluated in collagen-induced arthritis (CIA) model. RESULTS: Treatment with coptisine reduced the proliferation, migration, and invasion, but not apoptosis of RA FLS. Mechanistically, we identified PSAT1, an enzyme that catalyzes serine/one-carbon/glycine biosynthesis, as a novel targeting gene of coptisine in RA FLS. PSAT1 expression was increased in FLS and synovial tissues from patients with RA compared to healthy control subjects. Coptisine treatment or PSAT1 knockdown reduced the TNF-α-induced phosphorylation of p38, ERK1/2, and JNK MAPK pathway. Interestingly, coptisine administration improved the severity of arthritis and reduced synovial PSAT1 expression in mice with CIA. CONCLUSIONS: Our data demonstrate that coptisine treatment suppresses aggressive and proliferative actions of RA FLS by targeting PSAT1 and sequential inhibition of phosphorylated p38, ERK1/2, and JNK MAPK pathway. Our findings suggest that coptisine might control FLS-mediated rheumatoid synovial proliferation and aggression, and be a novel potential agent for RA treatment.


Asunto(s)
Artritis Reumatoide , Berberina/análogos & derivados , Sinoviocitos , Humanos , Ratones , Animales , Agresión , Movimiento Celular , Artritis Reumatoide/tratamiento farmacológico , Membrana Sinovial/patología , Proliferación Celular , Fibroblastos , Células Cultivadas
14.
J Ethnopharmacol ; 324: 117704, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38176664

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and arthritic pain. Sinomenine (SIN), derived from the rhizome of Chinese medical herb Qing Teng (scientific name: Sinomenium acutum (Thunb.) Rehd. Et Wils), has a longstanding use in Chinese traditional medicine for treating rheumatoid arthritis. It has been shown to possess anti-inflammatory, analgesic, and immunosuppressive effects with minimal side-effects clinically. However, the mechanisms governing its effects in treatment of joint pathology, especially on fibroblast-like synoviocytes (FLSs) dysfunction, and arthritic pain remains unclear. AIM: This study aimed to investigate the effect and underlying mechanism of SIN on arthritic joint inflammation and joint FLSs dysfunctions. MATERIALS AND METHODS: Collagen-induced arthritis (CIA) was induced in rats and the therapeutic effects of SIN on joint pathology were evaluated histopathologically. Next, we conducted a series of experiments using LPS-induced FLSs, which were divided into five groups (Naïve, LPS, SIN 10, 20, 50 µg/ml). The expression of inflammatory factors was measured by qPCR and ELISA. The invasive ability of cells was detected by modified Transwell assay and qPCR. Transwell migration and cell scratch assays were used to assess the migration ability of cells. The distribution and content of relevant proteins were observed by immunofluorescence and laser confocal microscopy, as well as Western Blot and qPCR. FLSs were transfected with plasmids (CRMP2 T514A/D) to directly modulate the post-translational modification of CRMP2 protein and downstream effects on FLSs function was monitored. RESULTS: SIN alleviated joint inflammation in rats with CIA, as evidenced by improvement of synovial hyperplasia, inflammatory cell infiltration and cartilage damage, as well as inhibition of pro-inflammatory cytokines release from FLSs induced by LPS. In vitro studies revealed a concentration-dependent suppression of SIN on the invasion and migration of FLSs induced by LPS. In addition, SIN downregulated the expression of cellular CRMP2 that was induced by LPS in FLSs, but increased its phosphorylation at residue T514. Moreover, regulation of pCRMP2 T514 by plasmids transfection (CRMP2 T514A/D) significantly influenced the migration and invasion of FLSs. Finally, SIN promoted nuclear translocation of pCRMP2 T514 in FLSs. CONCLUSIONS: SIN may exert its anti-inflammatory and analgesic effects by modulating CRMP2 T514 phosphorylation and its nuclear translocation of FLSs, inhibiting pro-inflammatory cytokine release, and suppressing abnormal invasion and migration. Phosphorylation of CRMP2 at the T514 site in FLSs may present a new therapeutic target for treating inflammatory joint's destruction and arthritic pain in RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Morfinanos , Sinoviocitos , Ratas , Animales , Fosforilación , Lipopolisacáridos/farmacología , Movimiento Celular , Artritis Reumatoide/patología , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Citocinas/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Fibroblastos , Dolor/tratamiento farmacológico , Células Cultivadas , Proliferación Celular
15.
Small ; 20(1): e2304491, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653587

RESUMEN

A composite nanoagent capable of phototriggered tumor microenvironment (TME) regulation is developed based on copper (II) metal-organic frameworks (MOFs) with encapsulation of blebbistatin (Bb) and surface modification of fibroblast activation protein-αtargeted peptide (Tp). Tp enables active targeting of the nanoagents to cancer-associated fibroblast (CAF) while near-infrared light triggers Cu2+ -to-Cu+ photoreduction in MOFs, which brings about the collapse of MOFs and the release of Bb and Cu+ . Bb mediates photogeneration of hydroxyl radicals (•OH) and therefore inhibits extracellular matrix production by inducing CAF apoptosis, which facilitates the penetration of nanoagent to deep tumor tissue. The dual-channel generation of •OH based on Bb and the Cu+ species, via distinct mechanisms, synergistically reinforces oxidative stress in TME capable of inducing immunogenic cell death, which activates the antitumor immune response and therefore reverses the immunosuppressive TME. The synergistic antitumor phototherapy efficacy of such a type of nanoagent based on the abovementioned TME remodeling is unequivocally verified in a cell-derived tumor xenograft model.


Asunto(s)
Fibroblastos Asociados al Cáncer , Estructuras Metalorgánicas , Neoplasias , Humanos , Estructuras Metalorgánicas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Microambiente Tumoral , Cobre/metabolismo , Neoplasias/metabolismo , Línea Celular Tumoral
16.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101834, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37935612

RESUMEN

Tumor-induced osteomalacia (TIO) is rare paraneoplastic syndrome of hypophosphatemic osteomalacia, caused by phosphaturic factors secreted by small mesenchymal origin tumors with distinct pathological features, called 'phosphaturic mesenchymal tumors'. FGF23 is the most well-characterized of the phosphaturic factors. Tumors are often small and located anywhere in the body from head to toe, which makes the localisation challenging. Functional imaging by somatostatin receptor-based PET imaging is the first line investigation, which should be followed with CT or MRI based anatomical imaging. Once localised, complete surgical excision is the treatment of choice, which brings dramatic resolution of symptoms. Medical management in the form of phosphate and active vitamin D supplements is given as a bridge to surgical management or in inoperable/non-localised patients. This review provides an overview of the epidemiology, pathophysiology, pathology, clinical features, diagnosis, and treatment of TIO, including the recent advances and directions for future research in this field.


Asunto(s)
Mesenquimoma , Neoplasias de Tejido Conjuntivo , Osteomalacia , Síndromes Paraneoplásicos , Humanos , Neoplasias de Tejido Conjuntivo/diagnóstico , Neoplasias de Tejido Conjuntivo/etiología , Neoplasias de Tejido Conjuntivo/terapia , Osteomalacia/etiología , Osteomalacia/diagnóstico , Osteomalacia/patología , Mesenquimoma/complicaciones , Mesenquimoma/diagnóstico , Mesenquimoma/patología , Síndromes Paraneoplásicos/diagnóstico , Síndromes Paraneoplásicos/etiología , Síndromes Paraneoplásicos/patología
17.
J Diet Suppl ; 21(3): 313-326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37933457

RESUMEN

Herbal supplements containing several types of plant sterols, vitamins, and minerals, are marketed for prostate health. In the majority of these supplements, the most abundant plant sterol is saw palmetto extract or its' principal component, beta-sitosterol. In terms of prostate health, previous work almost exclusively focused on the effects of beta-sitosterol on prostatic epithelium, with little attention paid to the effects on prostatic stroma. This omission is a concern, as the abnormal accumulation of collagen, or fibrosis, of the prostatic stroma has been identified as a factor contributing to lower urinary tract symptoms and dysfunction in aging men. To address whether beta-sitosterol may be promoting prostatic fibrosis, immortalized and primary prostate stromal fibroblasts were subjected to immunoblotting, immunofluorescence, qRT-PCR, ELISA, and image quantitation and analysis techniques to elucidate the effects of beta-sitosterol on cell viability and collagen expression and cellular localization. The results of these studies show that beta-sitosterol is nontoxic to prostatic fibroblasts and does not stimulate collagen production by these cells. However, beta-sitosterol alters collagen distribution and sequesters collagen within prostatic fibroblasts, likely in an age-dependent manner. This is a significant finding as prostate health supplements are used predominantly by middle aged and older men who may, then, be affected disproportionately by these effects.


Asunto(s)
Fitosteroles , Próstata , Sitoesteroles , Masculino , Persona de Mediana Edad , Humanos , Anciano , Próstata/metabolismo , Próstata/patología , Colágeno , Fibroblastos , Fibrosis
18.
Photodermatol Photoimmunol Photomed ; 40(1): e12926, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37957888

RESUMEN

BACKGROUND: Light therapy is widely used in medicine. Specifically, photobiomodulation has been shown to exert beneficial effects in wound healing disorders, which present a major challenge in health care. The study's aim was providing information on the effect of a novel, red-laser-based wound therapy device (WTD) on keratinocytes and fibroblasts during wound healing under optimal and non-optimal conditions. METHODS: The scratch wound assay was employed as a wound healing model for mechanical damage with readjustment of specific cell milieus, explicitly chronic TH1 inflammation and TH2-dominant conditions. Furthermore, gene expression analysis of pro-inflammatory cytokines (IL1A, IL6, CXCL8), growth factors (TGFB1, PDGFC), transcription factors (NFKB1, TP53) and heat shock proteins (HSP90AA1, HSPA1A, HSPD1) as well as desmogleins (DSG1, DSG3) in keratinocytes and collagen (COL1A1, COL3A1) in fibroblasts was performed after WTD treatment. RESULTS: It was shown that WTD treatment is biocompatible and supports scratch wound closure under non-optimal conditions. A distinct enhancement of desmoglein and collagen gene expression as well as induction of early growth factor gene expression was observed under chronic inflammatory conditions. Moreover, WTD increased HSPD1 transcript levels in keratinocytes and augmented collagen expression in fibroblasts during wound healing under TH2 conditions. WTD treatment also alleviated the inflammatory response in keratinocytes and induced early growth factor gene expression in fibroblasts under physiological conditions. CONCLUSION: Positive effects described for wound treatment with WTD could be replicated in vitro and seem to be to be conferred by a direct influence on cellular processes taking place in keratinocytes and fibroblasts during wound healing.


Asunto(s)
Queratinocitos , Cicatrización de Heridas , Humanos , Proliferación Celular , Movimiento Celular , Queratinocitos/fisiología , Colágeno , Inflamación , Péptidos y Proteínas de Señalización Intercelular , Rayos Láser , Fibroblastos/fisiología
19.
J Physiol Biochem ; 80(1): 99-112, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37837567

RESUMEN

Several humoral factors, such as adiponectin and urate, have been suggested to affect metabolic syndromes. Previously, we reported a reduction in blood adiponectin concentrations after a high-fructose diet partially via the vagus nerve in rats. Although a lithogenic diet (LD), i.e., supplementation of a normal control diet (CT) with 0.6% cholesterol and 0.2% sodium cholate, reduced blood adiponectin concentrations, the involvement of the vagus nerve in this mechanism remains unclear. To estimate the involvement of the vagus nerve in the regulation of blood adiponectin concentrations using an LD, male imprinting control region mice that had been vagotomized (HVx) or only laparotomized (Sham) were administered a CT or an LD for 10 weeks. Serum adiponectin concentrations in the Sham-LD, HVx-CT, and HVx-LD groups were reduced by half compared with the Sham-CT group. The hepatic mRNA levels of fibroblast growth factor 21 (Fgf21), which reportedly stimulates adiponectin secretion from white adipose tissue, were lower in the LD groups compared with the CT groups. HepG2 hepatoma cells showed that various bile acids reduced the mRNA expression of FGF21. Moreover, the LD increased serum urate concentrations and reduced hepatic expressions of the acyl-CoA oxidase 1 (Acox1) mRNA and glucokinase, suggesting insufficient regeneration of ATP from AMP. In conclusion, serum adiponectin concentration may be regulated via the vagus nerve in normal mice, whereas a reduction of hepatic Fgf21 mRNA by bile acids may also lower serum adiponectin levels. Moreover, the LD may promote hepatic AMP accumulation and subsequently increase the serum urate concentration in mice.


Asunto(s)
Adiponectina , Hígado , Nervio Vago , Animales , Masculino , Ratones , Ratas , Ácidos y Sales Biliares/metabolismo , Expresión Génica , Hígado/metabolismo , ARN Mensajero/metabolismo , Ácido Úrico , Nervio Vago/metabolismo
20.
Z Rheumatol ; 83(Suppl 1): 78-87, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37851166

RESUMEN

BACKGROUND: Salidroside (Sal) is a natural product commonly isolated from Rhodiola rosea L., which has been found to have numerous pharmacological activities (e.g., ameliorating apoptosis and inflammation, and acting as an antioxidant) in various diseases, but its concrete function in rheumatoid arthritis (RA) has not been revealed yet. Here, we aimed to explore the specific role and underlying mechanisms of Sal in RA-fibroblast-like synoviocytes (RA-FLSs). METHODS: Cell counting kit 8 (CCK-8) was used to assess the viability of normal-FLSs and RA-FLSs. Cell apoptosis in RA-FLSs was evaluated by flow cytometry. Western blotting was prepared to examine the levels of apoptosis- and signaling-related proteins. Wound-healing and Transwell assays were conducted to examine RA-FLSs migration and invasion. Enzyme-linked immunosorbent assay (ELISA) was used to assess the effect of Sal on tumor necrosis factor-alpha (TNF-α)-induced inflammation in RA-FLSs. RA animal model was established through complete Freund's adjuvant (CFA) induction, and the histopathological changes in synovial tissues of the rat model were analyzed by H&E staining. RESULTS: RA-FLSs were treated with 200 µM Sal for 24 h, and cell viability was significantly suppressed. Sal promoted RA-FLSs apoptosis. The migratory and invasive abilities of RA-FLSs were markedly inhibited by Sal. Sal incubation reduced the levels of inflammatory cytokines interleukin­8 (IL-8), IL-1ß, and IL­6 in RA-FLSs under the stimulation of TNF­α. Subsequently, Sal downregulated phosphorylated phosphatidylinositol­3 kinase (p-PI3K) and protein kinase (p-AKT) expression in RA-FLSs. After the treatment with pathway activator 740Y­P (20 µM) in RA-FLSs, the promotive effect of Sal on cell apoptosis was reversed, and inhibitory effects of it on cell viability, migration, invasion, and inflammatory response were abolished. Sal inhibited RA development in the CFA-induced rat model. CONCLUSION: Sal suppressed cell growth and inflammation in RA-FLSs by inactivating PI3K/AKT-signaling pathways.


Asunto(s)
Artritis Reumatoide , Glucósidos , Fragmentos de Péptidos , Fenoles , Receptores del Factor de Crecimiento Derivado de Plaquetas , Sinoviocitos , Ratas , Animales , Sinoviocitos/metabolismo , Sinoviocitos/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Factor de Necrosis Tumoral alfa , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA