Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Mol Biol ; 114(2): 23, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453737

RESUMEN

Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Corydalis , Benzofenantridinas , Corydalis/genética , Corydalis/química , Corydalis/metabolismo , Alcaloides/metabolismo , Extractos Vegetales/química
2.
Biology (Basel) ; 13(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38392320

RESUMEN

This review provides insights into cellulolytic bacteria present in global forest and agricultural soils over a period of 11 years. It delves into the study of soil-dwelling cellulolytic bacteria and the enzymes they produce, cellulases, which are crucial in both soil formation and the carbon cycle. Forests and agricultural activities are significant contributors to the production of lignocellulosic biomass. Forest ecosystems, which are key carbon sinks, contain 20-30% cellulose in their leaf litter. Concurrently, the agricultural sector generates approximately 998 million tons of lignocellulosic waste annually. Predominant genera include Bacillus, Pseudomonas, Stenotrophomonas, and Streptomyces in forests and Bacillus, Streptomyces, Pseudomonas, and Arthrobacter in agricultural soils. Selection of cellulolytic bacteria is based on their hydrolysis ability, using artificial cellulose media and dyes like Congo red or iodine for detection. Some studies also measure cellulolytic activity in vitro. Notably, bacterial cellulose hydrolysis capability may not align with their cellulolytic enzyme production. Enzymes such as GH1, GH3, GH5, GH6, GH8, GH9, GH10, GH12, GH26, GH44, GH45, GH48, GH51, GH74, GH124, and GH148 are crucial, particularly GH48 for crystalline cellulose degradation. Conversely, bacteria with GH5 and GH9 often fail to degrade crystalline cellulose. Accurate identification of cellulolytic bacteria necessitates comprehensive genomic analysis, supplemented by additional proteomic and transcriptomic techniques. Cellulases, known for degrading cellulose, are also significant in healthcare, food, textiles, bio-washing, bleaching, paper production, ink removal, and biotechnology, emphasizing the importance of discovering novel cellulolytic strains in soil.

3.
Mol Biol Rep ; 51(1): 262, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302671

RESUMEN

BACKGROUND: The gut microbiome of honey bees significantly influences vital traits and metabolic processes, including digestion, detoxification, nutrient provision, development, and immunity. However, there is a limited information is available on the gut bacterial diversity of western honey bee populations in India. This study addresses the critical knowledge gap and outcome of which would benefit the beekeepers in India. METHODS AND RESULTS: This study investigates the gut bacterial diversity in forager and hive bees of Indian Apis mellifera, employing both culture-based and culture-independent methods. In the culturable study, a distinct difference in gut bacterial alpha and beta diversity between forager and hive bees emerges. Firmicutes, Proteobacteria, and Actinobacteria dominate, with hive bees exhibiting a Firmicutes-rich gut (65%), while foragers showcase a higher proportion of Proteobacteria (37%). Lactobacillus in the hive bee foregut aligns with the findings by other researchers. Bacterial amplicon sequencing analysisreveals a more intricate bacterial composition with 18 identified phyla, expanding our understanding compared to culturable methods. Hive bees exhibit higher community richness and diversity, likely due to diverse diets and increased social interactions. The core microbiota includes Snodgrassella alvi, Gilliamella apicola, and Bombilactobacillus mellis and Lactobacillus helsingborgensis, crucial for digestion, metabolism, and pathogen resistance. The study emphasises bacteria's role in pollen and nectar digestion, with specific groups like Lactobacillus and Bifidobobacterium spp. associated with carbohydrate metabolism and polysaccharide breakdown. These microbes aid in starch and sucrose digestion, releasing beneficial short-chain fatty acids. CONCLUSION: This research highlights the intricate relationship between honey bees and their gut microbiota, showcasing how the diverse and complex microbiome helps bees overcome dietary challenges and enhances overall host health. Understanding these interactions contributes to bee ecology knowledge and has implications for honey bee health management, emphasising the need for further exploration and conservation efforts.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Urticaria , Abejas , Animales , Bacterias/genética , Bacterias/metabolismo , Polen
4.
Physiol Mol Biol Plants ; 29(4): 459-469, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37187774

RESUMEN

Blumea balsamifera, a wooden plant belonging to the family Asteraceae, is a medicinal herb with anticancer, antiviral, and multiple pharmacological effects, which are believed to be caused by its essential oil. The essential oil from B. balsamifera is comprised of mono- and sesqui-terpenes as the majority. Unfortunately, this plant has been facing the challenge of resource shortage, which could be effectively alleviated by biological engineering. Therefore, the identification of key elements involved in the biosynthesis of active ingredients becomes an indispensable prerequisite. In this study, candidate genes encoding monoterpene synthase were screened by transcriptome sequencing combined with metabolomics profiling in the roots, stems, and leaves of B. balsamifera. Then, these candidates were successfully cloned and verified by heterologous expression and in vitro enzyme activity assays. As a result, six candidate BbTPS genes were isolated from B. balsamifera, of which three encoded single-product monoterpene synthases and one encoded a multi-product monoterpene synthase. Among them, BbTPS1, BbTPS3, and BbTPS4 could catalyze the formation of D-limonene, α-phellandrene, and L-borneol, respectively. Meanwhile, BbTPS5 functioned in catalyzing GPP into terpinol, ß-phellandrene, ß-myrcene, D-limonene, and 2-carene in vitro. In general, our results provided important elements for the synthetic biology of volatile terpenes in B. balsamifera, which laid a foundation for subsequent heterologous production of these terpenoids through metabolic engineering and increasing their yield, as well as promoting sustainable development and utilization of B. balsamifera. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01306-8.

5.
Plant Physiol Biochem ; 196: 162-170, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36709578

RESUMEN

Coumarin is an important secondary metabolite that affects plant physiology. It is a lactone of cis-o-hydroxycinnamic acid and widely exists in medicinal plants. Clematis terniflora DC. is a plant belonging to Ranunculaceae and is rich in variety of coumarins. Feruloyl-CoA 6'-hydroxylase has been reported as a key enzyme in the formation of coumarin basic skeleton only in some common plants, however, its evidence in other species is still lacking especially for the biosynthesis of coumarins in C. terniflora. In the present study, we identified a feruloyl-CoA 6'-hydroxylase CtF6'H in C. terniflora, and functional characterization indicated that CtF6'H could hydroxylate feruloyl-CoA to 6-hydroxyferuloyl-CoA. Furthermore, the expression level of CtF6'H was differed among different tissues in C. terniflora, while under UV-B radiation, the level of CtF6'H was increased in the leaves. Biochemical characteristics and subcellular location showed that CtF6'H was mainly present in the cytosol. The crystal structure of CtF6'H was simulated by homology modeling to predict the potential residues affecting enzyme activity. This study provides the additional evidence of feruloyl-CoA 6'-hydroxylase in different plant species and enriches our understanding of biosynthetic mechanism of coumarin in C. terniflora.


Asunto(s)
Clematis , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Clematis/química , Clematis/metabolismo , Rayos Ultravioleta , Cumarinas
6.
Int J Biol Macromol ; 225: 1543-1554, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436603

RESUMEN

Atractylodes lancea (Thunb.) DC. is an important medicinal plant mainly distributed in China. A. lancea is rich in volatile oils and has a significant effect on various diseases, including coronavirus disease 2019 (COVID-19). Based on the signature constituents of volatile oils, A. lancea is divided into two chemotypes: the Dabieshan and Maoshan chemotype. Gas chromatography-mass spectrometry (GC-MS) results revealed that the hinesol and ß-eudesmol contents in the Dabieshan chemotype were higher than those in the Maoshan chemotype. Next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technologies were combined to investigate the molecular mechanisms of sesquiterpenoid biosynthesis in A. lancea. A total of 42 differentially expressed genes (DEGs) for terpenoid biosynthesis were identified in the two chemotype groups, and nine full-length terpene synthase (TPS) genes were identified. Subcellular localization revealed that AlTPS1 and AlTPS2 proteins were localized in the nucleus and endoplasmic reticulum. They use FPP as a substrate to generate sesquiterpenoids. AlTPS1 catalyzes biosynthesis of elemol while AlTPS2 is observed to perform ß-farnesene synthase activity. This study provides information for understanding the differences in the accumulation of terpenoids in two chemotypes of A. lancea and lays a foundation for further elucidation of the molecular mechanism of sesquiterpenoid biosynthesis.


Asunto(s)
Atractylodes , COVID-19 , Aceites Volátiles , Sesquiterpenos , Atractylodes/química , Sesquiterpenos/metabolismo , Aceites Volátiles/química , Perfilación de la Expresión Génica
7.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6624-6634, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38212022

RESUMEN

Carthami Flos, as a traditional blood-activating and stasis-resolving drug, possesses anti-tumor, anti-inflammatory, and immunomodulatory pharmacological activities. Flavonoid glycosides are the main bioactive components in Carthamus tinctorius. Glycosyltransferase deserves to be studied in depth as a downstream modification enzyme in the biosynthesis of active glycoside compounds. This study reported a flavonoid glycosyltransferase CtUGT49 from C. tinctorius based on the transcriptome data, followed by bioinformatic analysis and the investigation of enzymatic properties. The open reading frame(ORF) of the gene was 1 416 bp, encoding 471 amino acid residues with the molecular weight of about 52 kDa. Phylogenetic analysis showed that CtUGT49 belonged to the UGT73 family. According to in vitro enzymatic results, CtUGT49 could catalyze naringenin chalcone to the prunin and choerospondin, and catalyze phloretin to phlorizin and trilobatin, exhibiting good substrate versatility. After the recombinant protein CtUGT49 was obtained by hetero-logous expression and purification, the enzymatic properties of CtUGT49 catalyzing the formation of prunin from naringenin chalcone were investigated. The results showed that the optimal pH value for CtUGT49 catalysis was 7.0, the optimal temperature was 37 ℃, and the highest substrate conversion rate was achieved after 8 h of reaction. The results of enzymatic kinetic parameters showed that the K_m value was 209.90 µmol·L~(-1) and k_(cat) was 48.36 s~(-1) calculated with the method of Michaelis-Menten plot. The discovery of the novel glycosyltransferase CtUGT49 is important for enriching the library of glycosylation tool enzymes and provides a basis for analyzing the glycosylation process of flavonoid glycosides in C. tinctorius.


Asunto(s)
Carthamus tinctorius , Chalconas , Carthamus tinctorius/genética , Carthamus tinctorius/química , Filogenia , Flavonoides/análisis , Glicósidos/análisis , Glicosiltransferasas/genética , Antiinflamatorios
8.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6587-6595, 2022 Dec.
Artículo en Chino | MEDLINE | ID: mdl-36604907

RESUMEN

Based on the transcriptome data of Isatis indigotica, a total of 110 putative glycosytransferases were identified. Through prokaryotic expression and enzymic activity assay in vitro, a novel lignan glycosyltransferase gene was screened out and named IiUGT349, which catalyzed lariciresinol into lariciresinol-4-O-ß-D-glucoside and lariciresinol-4'-O-ß-D-glucoside. Bioinformatics analysis suggested that IiUGT349 contained an open reading frame(ORF) of 1 401 bp encoding a protein of 467 amino acids. A protein analysis indicated that IiUGT349 have a predecited molecular weight of 52.77 kDa and pI of 5.96. Phylogenetic analysis showed that IiUGT349 belonging to UGT90 family shared low amino acid sequence identity with the reported lignan glycosyltransferases, which may represent a novel type of lignan glycosyltransferases. Quantitative real-time PCR(qRT-PCR) analysis showed that IiUGT349 was expressed in roots, stems, young leaves and leaves, with the highest expression level in stems. Further biochemical analysis showed that the optimal reaction time of IiUGT349 recombinant protein was 12 h and the optimal temperature was 45 ℃. Subcellular localization demonstrated that IiUGT349 was located in the cytoplasm and nucleus of plants. In this study, a new glucosyltransferase gene IiUGT349 from I. indigotica belonging to the UGT90 family was cloned, which laid a foundation to further investigate its' function and elucidate the lignan glycosides biosynthesis pathway and plays an important role for great significance for the synthetic biology of active lignan glycosides.


Asunto(s)
Isatis , Lignanos , Clonación Molecular , Glucósidos/metabolismo , Isatis/genética , Isatis/química , Lignanos/metabolismo , Filogenia , Glicosiltransferasas/metabolismo
9.
J Agric Food Chem ; 69(49): 14926-14937, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34859673

RESUMEN

Catechins are critical constituents for the sensory quality and health-promoting benefits of tea. Cytochrome P450 monooxygenases are required for catechin biosynthesis and are dependent on NADPH-cytochrome P450 reductases (CPRs) to provide reducing equivalents for their activities. However, CPRs have not been identified in tea, and their relationship to catechin accumulation also remains unknown. Thus, three CsCPR genes were identified in this study, all of which had five CPR-related conserved domains and were targeted to the endoplasmic reticulum. These three recombinant CsCPR proteins could reduce cytochrome c using NADPH as an electron donor. Heterologous co-expression in yeast demonstrated that all the three CsCPRs could support the enzyme activities of CsC4H and CsF3'H. Correlation analysis indicated that the expression level of CsCPR1 (or CsCPR2 or CsCPR3) was positively correlated with 3',4',5'-catechin (or total catechins) content. Our results indicate that the CsCPRs are involved in the biosynthesis of catechins in tea leaves.


Asunto(s)
Camellia sinensis , Catequina , Camellia sinensis/genética , Sistema Enzimático del Citocromo P-450/genética , NADPH-Ferrihemoproteína Reductasa/genética , Proteínas de Plantas/genética
10.
Int J Biol Macromol ; 192: 1108-1116, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582913

RESUMEN

Glycyrrhiza uralensis Fisch., a well-known medicinal plant, contains flavonoids including liquiritigenin and isoliquiritigenin, and their corresponding glycoside liquiritin and isoliquiritin. Although some genes encoding UDP-glycosyltransferases (UGTs) have been functionally characterized in G. uralensis, other UGTs mechanisms of glycosylation remain to be elucidated. Against this background the aim of the present study included cloning and characterization of two full-length cDNA clones of GuUGT isoforms from the UGT multigene family. These included GuUGT2 (NCBI acc. MK341791) and GuUGT3 (NCBI acc. MK341793) with an ORF of 1473 and 1332 bp, respectively. Multiple alignments and phylogenetic analysis revealed GuUGTs protein of Glycine max had a high homology to that of other plants. Meanwhile, quantitative real-time PCR was performed to detect the transcript levels of GuUGTs in different tissues. The results indicated that GuUGTs was more expressed in roots as compared to the leaves, and significantly up-regulated upon NaCl stress. The recombinant protein was heterologous expressed in Escherichia coli and exhibited a high level of UGT activity, catalyzing formation of isoliquiritin and liquiritin from isoliquiritigenin and liquiritigenin. The key residues of GuUGT2 for liquiritigenin glycosylation (Asn223), isoliquiritigenin (Asp272) were predicted by molecular docking and residue scanning based on simulated mutations. These results could serve as an important reference to understand the function of the UGT family. In addition, the identification of GuUGT2 and GuUGT3 provides a foundation for future studies of flavonoid biosynthesis in G. uralensis.


Asunto(s)
Clonación Molecular , Flavonoides/metabolismo , Expresión Génica , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Glycyrrhiza uralensis/enzimología , Glycyrrhiza uralensis/genética , Secuencia de Aminoácidos , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Activación Enzimática , Perfilación de la Expresión Génica , Glicosiltransferasas/química , Glycyrrhiza uralensis/clasificación , Redes y Vías Metabólicas , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Filogenia , Proteínas Recombinantes , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Plant Physiol Biochem ; 167: 31-41, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34329843

RESUMEN

Nepeta tenuifolia Briq. (Lamiaceae) is a medicinal plant historically used in the East Asia region to treat cold and fever, and it is currently used as a clinically effective treatment for respiratory diseases. We previously found that monoterpenoids are the dominant volatile secondary metabolites in N. tenuifolia and their biosynthesis occurs in peltate glandular trichomes. To gain an insight into the molecular mechanisms underlying monoterpenoid biosynthesis in N. tenuifolia, we conducted transcriptome sequencing and examined the expression differences in monoterpene molecular pathway-related genes in different tissues and growth stages by qRT-RCR. In total, six p-menthane monoterpene biosynthetic genes in the (+)-menthone pathway were identified and cloned successfully based on transcriptome data. Moreover, the major constituents, including (+)-limonene, (-)-pulegone and (+)-menthone showed greater accumulation in the spikes than in other organs, such as the expression levels of related key enzyme genes. Additionally, the relative expression of pulegone reductase was the highest at 84 days, showing an inverse trend from (-)-pulegone relative content and leading to (+)-menthone accumulation in peltate glandular trichomes. Finished cloning of the gene for limonene 3-hydroxylase in N. tenuifolia (NtL3OH), heterologous expression in yeast, and in vitro assays were performed for functional characterization. Our study provides an important resource for further research of secondary metabolism of monoterpenes in peltate glandular trichomes of N. tenuifolia and other homologous species.


Asunto(s)
Lamiaceae , Nepeta , Lamiaceae/genética , Monoterpenos , RNA-Seq , Tricomas/genética
12.
Acta Pharmaceutica Sinica ; (12): 3345-3352, 2021.
Artículo en Chino | WPRIM | ID: wpr-906834

RESUMEN

Huang-Qin is a traditional Chinese medicine with antiviral, antioxidant, and anti-inflammatory activities. Its major bioactive compounds are diverse flavone O-glucuronides and glucosides. Although three flavonoid O-glycosyltransferases have been identified from S. baicalensis, this information is not sufficient to elucidate the structural diversity of flavonoid glycosides. In this study, nine glycosyltransferase candidate genes were discovered from S. baicalensis by BLAST analysis and their functions were characterized after heterologous expression. Three new flavone O-glycosyltransferases were able to catalyze the formation of major compounds in S. baicalensis, including baicalin and wogonoside. These enzymes could also utilize exogenous flavones as sugar acceptors. This work further elucidates biosynthetic pathways for Scutellaria flavonoid O-glycosides.

13.
Front Plant Sci ; 11: 519752, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042169

RESUMEN

L ycoris longituba is a traditional medicinal plant containing the bioactive compound galanthamine (Gal), a type of Amaryllidaceae alkaloid and can be used to treat Alzheimer's disease. However, research on its genome or transcriptome and associated genes in the biosynthetic pathway is incomplete. In this study, we estimated the nuclear genome size of this species to be 29.33 Gb by flow cytometry. Then, RNA sequencing of the leaves, roots, and bulbs of L. longituba was carried out. After de novo assembly, 474,589 all-transcripts and 333,440 all-unigenes were finally generated. In addition, the differentially expressed genes (DEGs) were identified, and genes involved in the galanthamine metabolic pathway encoding tyrosine decarboxylase (TYDC), phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), p-coumarate 3-hydroxylase (C3H), norbelladine synthase (NBS), norbelladine 4'-O-methyltransferase (OMT), and noroxomaritidine synthase (CYP96T1) were detected and validated by real-time quantitative PCR analysis. One candidate gene, Lycoris longituba O-Methyltransferase (LlOMT), was identified in the proposed galanthamine biosynthetic pathway. Sequence analysis showed that LlOMT is a class I OMT. LlOMT is localized in the cytoplasm, and biochemical analysis indicated that the recombinant LlOMT catalyzes norbelladine to generate 4'-O-methylnorbelladine. The protoplast transformation result showed that the overexpression of LlOMT could increase the Gal content. Our results indicate that LlOMT may play a role in galanthamine biosynthesis in L. longituba. This work provides a useful resource for the metabolic engineering of Amaryllidaceae alkaloids.

14.
Plant Mol Biol ; 104(3): 327-337, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32761540

RESUMEN

KEY MESSAGE: Psoralen synthase and angelicin synthase responsible for the formation of psoralen and angelicin in Peucedanum praeruptorum Dunn were identified and functionally characterized, respectively. Furanocoumarins were reported to possess several activities such as anticancer, anti-inflammatory and neuroprotective, and function as phytotoxin and allelochemical in plants. Furanocoumarins are the main bioactive ingredient in P. praeruptorum which is a commonly used traditional Chinese medicine. Phenylalanine ammonia lyase (PAL), 4-coumarate: CoA ligase (4CL), p-coumaroyl CoA 2'-hyfroxylase (C2'H) were cloned previously to elucidate the biosynthetic mechanism of coumarin lactone ring. However, the genes involved in complex coumarins in P. praeruptorum have not been explored. Herein, putative psoralen synthase CYP71AJ49 and angelicin synthase CYP71AJ51 were cloned from P. praeruptorum. In vivo and in vitro yeast assays were conducted to confirm their activities. Furthermore, the results of High Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry (HPLC-ESI-MS) verified that CYP71AJ49 catalyzed the conversion of marmesin to psoralen, and CYP71AJ51 catalyzed columbianetin to angelicin. Subsequently, the expression profile showed that CYP71AJ49 and CYP71AJ51 were easily affected by environmental conditions, especially UV and temperature. The genes tissue-specific expression and compounds tissue-specific distribution pattern indicated the existence of substance transport in P. praeruptorum. Phylogenetic analysis was conducted with 27 CYP71AJs, CYP71AJ49 and CYP71AJ51 were classified in I-4 and I-2, respectively. These results provide further insight to understand the biosynthetic mechanism of complex coumarins.


Asunto(s)
Apiaceae/enzimología , Apiaceae/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Furocumarinas/metabolismo , Proteínas de Plantas/metabolismo , Apiaceae/genética , China , Cromatografía Líquida de Alta Presión/métodos , Coenzima A Ligasas/genética , Cumarinas/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Furocumarinas/química , Furocumarinas/genética , Regulación de la Expresión Génica de las Plantas , Cinética , Medicina Tradicional China , Fenilanina Amoníaco-Liasa/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Transcriptoma
15.
Molecules ; 23(2)2018 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-29382150

RESUMEN

Celastrol is an active triterpenoid compound derived from Tripterygium wilfordii which is well-known as a traditional Chinese medicinal plant. Squalene synthase has a vital role in condensing two molecules of farnesyl diphosphate to form squalene, a key precursor of triterpenoid biosynthesis. In the present study, T. wilfordii squalene synthase (TwSQS) was cloned followed by prokaryotic expression and functional verification. The open reading frame cDNA of TwSQS was 1242 bp encoding 413 amino acids. Bioinformatic and phylogenetic analysis showed that TwSQS had high homology with other plant SQSs. To obtain soluble protein, the truncated TwSQS without the last 28 amino acids of the carboxy terminus was inductively expressed in Escherichia coliTransetta (DE3). The purified protein was detected by SDS-PAGE and Western blot analysis. Squalene was detected in the product of in vitro reactions by gas chromatograph-mass spectrometry, which meant that TwSQS did have catalytic activity. Organ-specific and inducible expression levels of TwSQS were detected by quantitative real-time PCR. The results indicated that TwSQS was highly expressed in roots, followed by the stems and leaves, and was significantly up-regulated upon MeJA treatment. The identification of TwSQS is important for further studies of celastrol biosynthesis in T. wilfordii.


Asunto(s)
Clonación Molecular , Farnesil Difosfato Farnesil Transferasa , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas , Tripterygium , Farnesil Difosfato Farnesil Transferasa/biosíntesis , Farnesil Difosfato Farnesil Transferasa/química , Farnesil Difosfato Farnesil Transferasa/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Tripterygium/enzimología , Tripterygium/genética
16.
Molecules ; 22(8)2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28829394

RESUMEN

Swertia mussotii is an important medicinal plant found on the Qinghai Tibetan Plateau that has great economic and medicinal value. This plant has enjoyed a long history of use as a curative for hepatitis. The biological activity of secoiridoids, including gentiopicroside and swertiamarin, has been mainly tested for its anti-hepatitis effects. Here, we identify two candidate genes (SmIS1 and SmIS2) that are homologues of iridoid synthase and that are components of the secoiridoid pathway in S. mussotii. Using sequencing and phylogenetic analyses, we confirm that SmIS1 and SmIS2 contain six conserved short-chain dehydrogenases/reductase (SDR) motifs and thus belong to the P5ßRs group. The two purified Escherichia coli-expressed proteins reduced 8-oxogeranial to both nepetalactol and iridodials. A comparison of the kinetic parameters of SmIS1 and SmIS2 recombinant proteins revealed that SmIS2 has a lower affinity than SmIS1 for 8-oxogeranial. Transcript levels of the two genes were analysed in three different tissues of S. mussotii using semi-quantitative RT-PCR and RT-qPCR. SmIS1 and SmIS2 expression levels were more abundant in leaves and stems. This investigation adds to our knowledge of P5ßRs genes in the secoiridoid synthesis pathway and provides candidate genes for genetically improving S. mussotii by enhancing secondary metabolite production.


Asunto(s)
Iridoides/química , Proteínas de Plantas/metabolismo , Progesterona Reductasa/metabolismo , Swertia/genética , Clonación Molecular , Escherichia coli , Expresión Génica , Perfilación de la Expresión Génica , Genes , Humanos , Glucósidos Iridoides/química , Glucósidos Iridoides/metabolismo , Iridoides/metabolismo , Cinética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Medicinales , Progesterona Reductasa/química , Progesterona Reductasa/genética , Pironas/química , Pironas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Swertia/enzimología
17.
Plant Mol Biol ; 95(1-2): 199-213, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28822035

RESUMEN

KEY MESSAGE: A p-coumaroyl CoA 2'-hydroxylase responsible for the formation of coumarin lactone ring was identified from Peucedanum praeruptorum Dunn and functionally characterized in vitro. Coumarins are important plant secondary metabolites with a variety of biological activities. Ortho-hydroxylation of cinnamates leads to the formation of coumarin lactone ring and is generally thought to be a key step in coumarin biosynthesis. However, ortho-hydroxylases, especially p-coumaroyl CoA 2'-hydroxylase (C2'H) responsible for the biosynthesis of the most common coumarin skeleton, have received insufficient attention. Here, a putative ortho-hydroxylase PpC2'H was isolated from P. praeruptorum Dunn, a traditional Chinese medicinal herb rich in coumarins. Expression profile indicated that PpC2'H exhibited the highest transcript level in roots and could be up-regulated by MeJA elicitation. Subcellular localization of PpC2'H was demonstrated to be cytosol in planta. In order to functionally characterize PpC2'H, the purified recombinant protein was incubated with various potential substrates. HPLC-ESI-MS analysis indicated that PpC2'H catalyzed the conversion of p-coumaroyl CoA into hydroxylated intermediate, which then underwent spontaneous lactonization to generate umbelliferone. Our data also showed that light would promote the spontaneous process. In addition, based on homology modeling and site-directed mutagenesis, amino acid residues Phe-130, Lys-141, Asn-207, His-224, Asp-226, His-282 and Phe-298 were verified essential for enzymatic activity. These findings provide insight into structure-function relationship of this pivotal ortho-hydroxylase and also contribute to elucidating the biosynthetic mechanism of coumarin skeleton.


Asunto(s)
Apiaceae/enzimología , Vías Biosintéticas , Cumarinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Secuencia de Aminoácidos , Vías Biosintéticas/genética , Cromatografía Líquida de Alta Presión , Cumarinas/química , ADN Complementario/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Cinética , Luz , Oxigenasas de Función Mixta/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Especificidad de Órganos/genética , Especificidad de Órganos/efectos de la radiación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Espectrometría de Masa por Ionización de Electrospray , Homología Estructural de Proteína , Fracciones Subcelulares/enzimología , Transcriptoma/genética , Transcriptoma/efectos de la radiación
18.
Int J Biol Macromol ; 102: 208-217, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28410952

RESUMEN

Andrographis paniculata (Burm.f.) Wall. ex Nees is widely used as medicinal herb in Southern and Southeastern Asia and andrographolide is its main medicinal constituent. Based on the structure of andrographolide, it has been proposed that cytochrome P450 enzymes play vital roles on its biosynthesis. NADPH:cytochrome P450 reductase (CPR) is the most important redox partner of multiple P450s. In this study, three CPRs were identified in the genomic data of A. paniculata (namely ApCPR1, ApCPR2, and ApCPR3), and their coding regions were cloned. They varied from 62% to 70% identities to each other at the amino acid sequence level. ApCPR1 belongs to Class I of dicotyledonous CPR while both ApCPR2 and ApCPR3 are grouped to Class II. The recombinant enzymes ApCPR1 and ApCPR2 reduced cytochrome c and ferricyanide in an NADPH-dependent manner. In yeast, they supported the activity of CYP76AH1, a ferruginol-forming enzyme. However, ApCPR3 did not show any enzymatic activities either in vitro or in vivo. Quantitative real-time PCR analysis showed that both ApCPR1 and ApCPR2 expressed in all tissues examined, but ApCPR2 showed higher expression in leaves. Expression of ApCPR2 was inducible by MeJA and its pattern matched with andrographolide accumulation. Present investigation suggested ApCPR2 involves in the biosynthesis of secondary metabolites including andrographolide.


Asunto(s)
Andrographis/enzimología , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Secuencia de Aminoácidos , Andrographis/genética , Andrographis/metabolismo , Biocatálisis , Clonación Molecular , Diterpenos/metabolismo , Genómica , NADPH-Ferrihemoproteína Reductasa/química
19.
Int J Biol Macromol ; 95: 658-666, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27884675

RESUMEN

Panax notoginseng (Burk.) F. H. Chen, which is a used traditional Chinese medicine known as Sanqi or Tianqi in China, is widely studied for its ability to accumulate the triterpene saponins. Squalene synthase (SS: EC 2.5.1.21) catalyzes the first enzymatic step from the central isoprenoid pathway toward sterol and triterpenoid biosynthesis. In this study, SS from P. notoginseng was cloned and investigated followed by its recombinant expression and preliminary enzyme activity. The nucleotide sequence of the ORF contains 1 248 nucleotides and encodes 415 amino acid residues with molecular weight of 47.16kDa and pI of 6.50. Bioinformatics analysis revealed that the deduced PnSS protein had a high similarity with other plant squalene synthases. To obtain soluble recombinant enzymes, 29 hydrophobic amino acids were deleted from the carboxy terminus and expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3). Approximately 66.46kDa recombinant protein was checked on SDS-PAGE and Western Blot analysis. Preliminary activity of the resultant bacterial crude extract was analyzed by gas chromatograph-mass spectrometer (GC-MS). The identification and function of PnSS is important for further studies of the triterpene saponins biosynthesis in P. notoginseng.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/química , Farnesil Difosfato Farnesil Transferasa/metabolismo , Panax notoginseng/enzimología , Panax notoginseng/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Farnesil Difosfato Farnesil Transferasa/genética , Farnesil Difosfato Farnesil Transferasa/aislamiento & purificación , Humanos , Modelos Moleculares , Filogenia , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
20.
Front Plant Sci ; 7: 1274, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27605932

RESUMEN

Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC 2.5.1.21) converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S. miltiorrhiza Bunge squalene synthase 2 (SmSQS2, Genbank Accession Number: KM408605) cDNA was investigated subsequently followed by its recombinant expression and preliminary enzyme activity. The full-length cDNA of SmSQS2 was 1 597 bp in length, with an open reading frame of 1 245 bp encoding 414 amino acids. The deduced amino acid sequence of SmSQS2 shared high similarity with those of SQSs from other plants. To obtain soluble recombinant enzymes, the truncated SmSQS2 in which 28 amino acids were deleted from the carboxy terminus was expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western Blot analysis, and the resultant bacterial crude extract was incubated with FPP and NADPH. Gas chromatograph-mass spectrometer analysis showed that squalene was detected in the in vitro reaction mixture. The gene expression level was analyzed through Quantitative real-time PCR, and was found to be higher in roots as compared to the leaves, and was up-regulated upon YE+ Ag(+) treatment. These results could serve as an important to understand the function of the SQS family. In addition, the identification of SmSQS2 is important for further studies of terpenoid and sterol biosynthesis in S. miltiorrhiza Bunge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA