Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Hazard Mater ; 466: 133600, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316070

RESUMEN

This study aimed to remediate petroleum-contaminated soil using co-pyrolysis biochar derived from rice husk and cellulose. Rice husk and cellulose were mixed in various weight ratios (0:1, 1:0, 1:1, 1:3 and 3:1) and pyrolyzed under 500 °C. These biochar variants were labeled as R0C1, R1C0, R1C1, R1C3 and R3C1, respectively. Notably, the specific surface area and carbon content of the co- pyrolysis biochar increased, potentially promoting the growth and colonization of soil microorganisms. On the 60th day, the microbial control group achieved a 46.69% removal of pollutants, while the addition of R0C1, R1C0, R1C3, R1C1 and R3C1 resulted in removals of 70.56%, 67.01%, 67.62%, 68.74% and 67.30%, respectively. In contrast, the highest efficiency observed in the abiotic treatment group was only 24.12%. This suggested that the removal of petroleum pollutants was an outcome of the collaborative influence of co-pyrolysis biochar and soil microorganisms. Furthermore, the abundance of Proteobacteria, renowned for its petroleum degradation capability, obviously increased in the treatment group with the addition of co-pyrolysis biochar. This demonstrated that co-pyrolysis biochar could notably stimulate the growth of functionally associated microorganisms. This research confirmed the promising application of co-pyrolysis biochar in the remediation of petroleum-contaminated soil.


Asunto(s)
Contaminantes Ambientales , Microbiota , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Petróleo/metabolismo , Pirólisis , Carbón Orgánico , Suelo , Contaminantes del Suelo/análisis , Celulosa
2.
Water Res ; 251: 121149, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237462

RESUMEN

The development of efficient and low-consumption wastewater upgrading process is currently at the forefront of the wastewater treatment field. In this study, a novel wastewater treatment process based on powder carriers was proposed. Three systems, namely the activated sludge (AS) system, powder carrier (PC) system, and moving bed biofilm reactor (MBBR) system, were established and operated for over 140 days to treat real municipal wastewater. The characteristics and differences between the three systems were comprehensively investigated. The results suggested that the PC system exhibited notable advantages in nitrogen and phosphorus removal, especially under high influent load and low aeration conditions. The PC system, characterized by a higher nitrification rate compared to the MBBR system and a higher denitrification rate compared to the AS system, contributed to the stable nitrogen removal performance. The particle size of the zoogloea increased under the linkage of the powder carriers, and the mean size of micro-granules reached 170.88 µm. Large number of hydrophobic functional groups on sludge surface, coupled with increased protein content in EPS, further promoted sludge aggregation. Micro-granules formation improved settling performance and enhanced the abundance and activity of functional microbes. A significant enrichment in denitrifying bacteria and denitrifying phosphorus accumulating bacteria was observed in PC system. Up-regulation of the napA, narG, and nosZ genes was responsible for efficient nitrogen removal of the PC system. Moreover, a higher abundance in polyphosphate phosphotransferase (2.11 %) was found in PC system compared with AS and MBBR systems. The increase in the enzymes associated with poly-ß-hydroxybutyrate (PHB) synthesis metabolism in PC system provided the energy for denitrification and phosphorus removal processes.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Polvos , Eliminación de Residuos Líquidos/métodos , Nitrógeno/análisis , Fósforo/metabolismo , Biopelículas , Desnitrificación , Reactores Biológicos/microbiología , Nitrificación
3.
Environ Res ; 246: 118036, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163543

RESUMEN

Ofloxacin (OFL) is a typical fluoroquinolone antibiotic widely detected in rural domestic sewage, however, its effects on the performance of aerobic biofilm systems during sewage treatment process remain poorly understood. We carried out an aerobic biofilm experiment to explore how the OFL with different concentrations affects the pollutant removal efficiency of rural domestic sewage. Results demonstrated that the OFL negatively affected pollutant removal in aerobic biofilm systems. High OFL levels resulted in a decrease in removal efficiency: 9.33% for chemical oxygen demand (COD), 18.57% for ammonium (NH4+-N), and 8.49% for total phosphorus (TP) after 35 days. The findings related to the chemical and biological properties of the biofilm revealed that the OFL exposure triggered oxidative stress and SOS responses, decreased the live cell number and extracellular polymeric substance content of biofilm, and altered bacterial community composition. More specifically, the relative abundance of key genera linked to COD (e.g., Rhodobacter), NH4+-N (e.g., Nitrosomonas), and TP (e.g., Dechlorimonas) removal was decreased. Such the OFL-induced decrease of these genera might result in the down-regulation of carbon degradation (amyA), ammonia oxidation (hao), and phosphorus adsorption (ppx) functional genes. The conventional pollutants (COD, NH4+-N, and TP) removal was directly affected by biofilm resistance, functional genes, and bacterial community under OFL exposure, and the bacterial community played a more dominant role based on partial least-squares path model analysis. These findings will provide valuable insights into understanding how antibiotics impact the performance of aerobic biofilm systems during rural domestic sewage treatment.


Asunto(s)
Contaminantes Ambientales , Ofloxacino , Ofloxacino/farmacología , Aguas del Alcantarillado/microbiología , Matriz Extracelular de Sustancias Poliméricas , Bacterias/genética , Biopelículas , Fósforo , Nitrógeno , Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/métodos
4.
Bioresour Technol ; 393: 130095, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029804

RESUMEN

A pilot-scale carbon fibers enhanced ecological floating beds (CF-EFBs) was constructed. Compared to EFBs without carbon fibers enhancement, CF-EFBs have the better removal of total inorganic nitrogen (TIN), total phosphorus (TP), and chemical oxygen demand (COD), the removal efficiencies were 3.19, 3.49, and 2.74 times higher than EFBs. Throughout the pilot test (under three different coverage rates), the concentrations of COD, TIN and TP of effluent were 18.11 ± 4.52 mgL-1, 1.95 ± 0.92 mgL-1 and 0.13 ± 0.08 mgL-1. Meanwhile, the average removal of TIN, TP and COD from tailwater was 0.96 gm-2d-1, 0.07 gm-2d-1 and 2.37 gm-2d-1 respectively. When the coverage was 30 %, the CF-EFBs had better nitrogen removal effectiveness (TIN purification ability of 1.49 gm-2d-1). The enrichment of denitrifying bacteria, such as Aridibacter, Nitrospira, Povalibacter, and Phaeodactylibacter increased denitrification efficiency. These results verified the feasibility of CF-EFBs in tailwater treatment at pilot-scale, which was of great significance for the practical application of CF-EFBs.


Asunto(s)
Purificación del Agua , Fibra de Carbono , Nitrógeno , Fósforo , Desnitrificación , Carbono , Reactores Biológicos , Eliminación de Residuos Líquidos
5.
Huan Jing Ke Xue ; 44(12): 7014-7023, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098424

RESUMEN

Fertilizer reduction and efficiency improvement is an important basis for ensuring the safety of the agricultural ecological environment. Microorganisms are the key driving force for regulating the soil nitrogen and phosphorus cycle. Studying the nitrogen and phosphorus transformation function of rhizosphere microorganisms can provide a microbiological regulation approach for further improving the use efficiency of soil nitrogen and phosphorus. Based on the field micro-plot experiments of three typical farmland soils(phaeozem, cambisol, and acrisol), metagenomic sequencing technology was used to study the differences in functional genes and regulatory factors of maize rhizosphere microorganisms during soil nitrogen and phosphorus transformation. The results showed that the functional diversity of maize rhizosphere microorganisms was affected by soil type. The functional diversity of rhizosphere microorganisms in phaeozem and cambisol was mainly affected by water content and nutrient content, and that in acrisol was affected by total phosphorus(TP) and available phosphorus(AP). For soil nitrogen transformation, the gene abundance of related enzymes in the pathway of nitrogen transformation was the highest in the urease gene(ureC) and glucose dehydrogenase gene(gdh), which were 7.25×10-5-12.88×10-5 and 4.47×10-5-7.49×10-5, respectively. The total abundance of assimilatory nitrate reduction functional genes in acrisol was higher than that in phaeozem and cambisol, and the total abundance of functional genes related to other processes was the highest in cambisol. The abundance of functional genes encoding enzymes related to nitrogen metabolism was mainly driven by soil bacterial richness, total potassium(TK), and TP. For soil phosphorus transformation, the number of alkaline phosphatase genes(phoD) catalyzing organic phosphorus mineralization was 1093, and the number of acid phosphatase genes(PHO) was 42. The abundance of phoD was two orders of magnitude higher than that of PHO. In addition, fertilization had no significant effect on the abundance of phoD and PHO in the same soil type. Random forest analysis showed that the abundances of phoD and PHO were significantly affected by soil moisture, organic matter(OM), and total nitrogen(TN), but AP content had the greatest impact on PHO abundance. These results clarified the nitrogen and phosphorus transformation characteristics of maize rhizosphere microorganisms at the functional genomic level and enriched the molecular biological mechanism of the microbial nitrogen and phosphorus transformation function.


Asunto(s)
Rizosfera , Zea mays , Zea mays/metabolismo , Fósforo/metabolismo , Nitrógeno/análisis , Suelo , Genómica , Microbiología del Suelo , Fertilizantes/análisis
6.
Environ Monit Assess ; 195(12): 1464, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37955719

RESUMEN

In this study, two laboratory-scale SBBR reactors were established in a plateau habitat. Using high flux sequencing, the SBBR process was compared by natural sediment and autotrophic sludge to characterize the functional modules and functional genes of carbon, nitrogen, and phosphorus metabolism under different working conditions and to analyze the reaction mechanism. The results showed that all the functional modules of carbon metabolism and nitrogen metabolism were found in the SBBR process, except for methane metabolism, which occurred at 25 °C in tank 2, the functional modules related to methane metabolism are enhanced at all working conditions. Except for methane metabolism, all functional genes in tank 2 are inhibited by different working conditions, whereas tank 1 shows a slight enhancement. The different working conditions in nitrogen metabolism demonstrate inhibition of functional modules and functional genes in both tanks. Oxidative phosphorylation was missing five functional modules, except for M00153, where only two genes, K00424 and K22501, are missing, all of the required genes are missing in the other four functional modules. Overall the different conditions demonstrated some inhibition in both reaction tanks of the SBBR process. It is preferable to use self-cultivated sludge for membrane acclimation when operating the SBBR process in a plateau habitat. The findings of this study can be used to further research microbial carbon, nitrogen, and phosphorus metabolism mechanisms in SBBR processes in plateau habitats.


Asunto(s)
Nitrógeno , Aguas del Alcantarillado , Monitoreo del Ambiente , Carbono , Fósforo , Metano
7.
Molecules ; 28(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37375266

RESUMEN

Salvia is a large genus with hundreds of species used in traditional Chinese medicine. Tanshinones are a highly representative class of exclusive compounds found in the Salvia genus that exhibit significant biological activity. Tanshinone components have been identified in 16 Salvia species. The CYP76AH subfamily (P450) is crucial for the synthesis of tanshinone due to its catalytic generation of polyhydroxy structures. In this study, a total of 420 CYP76AH genes were obtained, and phylogenetic analysis showed their clear clustering relationships. Fifteen CYP76AH genes from 10 Salvia species were cloned and studied from the perspectives of evolution and catalytic efficiency. Three CYP76AHs with significantly improved catalytic efficiency compared to SmCYP76AH3 were identified, providing efficient catalytic elements for the synthetic biological production of tanshinones. A structure-function relationship study revealed several conserved residues that might be related to the function of CYP76AHs and provided a new mutation direction for the study of the directed evolution of plant P450.


Asunto(s)
Salvia miltiorrhiza , Salvia , Salvia/genética , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/química , Filogenia , Abietanos/química , Raíces de Plantas/química
8.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2273-2283, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282856

RESUMEN

The active ingredients in traditional Chinese medicine(TCM)are the foundation for the efficiency of TCM and the key to the formation of Dao-di herbs. It is of great significance to study the biosynthesis and regulation mechanisms of these active ingredients for analyzing the formation mechanism of Daodi herbs and providing components for the production of active ingredients in TCM by synthetic biology. With the advancements in omics technology, molecular biology, synthetic biology, artificial intelligence, etc., the analysis of biosynthetic pathways for active ingredients in TCM is rapidly progressing. New methods and technologies have promoted the analysis of the synthetic pathways of active ingredients in TCM and have also made this area a hot topic in molecular pharmacognosy. Many researchers have made significant progress in analyzing the biosynthetic pathways of active ingredients in TCM such as Panax ginseng, Salvia miltiorrhiza, Glycyrrhiza uralensis, and Tripterygium wilfordii. This paper systematically reviewed current research me-thods for analyzing the biosynthetic functional genes of active ingredients in TCM, elaborated the mining of gene elements based on multiomics technology and the verification of gene functions in plants in vitro and in vivo with candidate genes as objects. Additionally, the paper summarized new technologies and methods that have emerged in recent years, such as high-throughput screening, molecular probes, genome-wide association studies, cell-free systems, and computer simulation screening to provide a comprehensive reference for the analysis of the biosynthetic pathways of active ingredients in TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Inteligencia Artificial , Vías Biosintéticas , Simulación por Computador , Estudio de Asociación del Genoma Completo
9.
Sci Total Environ ; 867: 161529, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634774

RESUMEN

Microorganisms play important roles in element transformation and display distinct compositional changes during composting. However, little is known about the linkage between nutrient-cycling functional gene diversity and compost ecosystem multifunctionality (EMF). This study performed winter composting with pig manure and fallen leaves and evaluated the distribution patterns and ecological roles of multiple functional genes involved in nutrient cycles. Physicochemical properties and enzyme activities presented large fluctuations during composting. Absolute abundance, composition, and diversity of functional genes participating in carbon, nitrogen, phosphorus, and sulfur cycles presented distinct dynamic changes. Stronger linkage was found between enzyme activities and temperature than other physicochemical factors, whereas total nitrogen rather than other physicochemical factors displayed closer linkage with functional gene composition and diversity. EMF targeting key nutrient (i.e., carbon, nitrogen, phosphorus, and sulfur) cycles was significantly positively correlated with temperature and notably negatively correlated with functional gene diversity. Enzyme activities rather than functional gene diversity showed a greater potential effect on phosphorus availability. Consequently, the available phosphorus (AP) content increased from initial 0.50 g/kg to final 1.43 g/kg. To our knowledge, this is the first study that deciphered ecological roles of nutrient-cycling functional gene diversity during composting, and the final compost can serve as a potential phosphorus fertilizer.


Asunto(s)
Compostaje , Ecosistema , Porcinos , Animales , Estiércol , Suelo/química , Fósforo , Nitrógeno/análisis , Carbono
10.
Environ Sci Pollut Res Int ; 30(6): 15438-15453, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36169826

RESUMEN

Discharging waste water from the bauxite desilication process will bring potential environmental risk from the residual ions and organic compounds, especially hydrolyzed polyacrylamide. Characterization of the microbial community diversity in waste water plays an important role in the biological treatment of waste water. In this study, eight waste water samples from five flotation plants in China were investigated. The microbial community and functional profiles within the waste water were analyzed by a metagenomic sequencing method and associated with geochemical properties. The results revealed that Proteobacteria and Firmicutes were the dominant bacterial phyla. Both phylogenetical and clusters of orthologous groups' analyses indicated that Tepidicella, Paracoccus, Pseudomonas, and Exiguobacterium could be the dominant bacterial genera in the waste water from bauxite desilication process for their abilities to biodegrade complex organic compounds. The results of the microbial community diversity and functional gene compositions analyses provided a beneficial orientation for the biotreatment of waste water, as well as regenerative using of water resources. Besides, this study revealed that waste water from bauxite desilication process was an ideal ecosystem to find novel microorganisms, such as efficient strains for bio-desilication and bio-desulfurization of bauxite.


Asunto(s)
Microbiota , Purificación del Agua , Óxido de Aluminio , Aguas Residuales , Bacterias/genética , Microbiota/genética
11.
Sci Total Environ ; 854: 158709, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126705

RESUMEN

Microorganisms govern soil nutrient cycling. It is therefore critical to understand their responses to human-induced increases in N and P inputs. We investigated microbial community composition, biomass, functional gene abundance, and enzyme activities in response to 10-year N and P addition in a primary tropical montane forest, and we explored the drivers behind these effects. Fungi were more sensitive to nutrient addition than bacteria, and the fungal community shift was mainly driven by P availability. N addition aggravated P limitation, to which microbes responded by increasing the abundance of P cycling functional genes and phosphatase activity. In contrast, P addition alleviated P deficiency, and thus P cycling functional gene abundance and phosphatase activity decreased. The shift of microbial community composition, changes in functional genes involved in P cycling, and phosphatase activity were mainly driven by P addition, which also induced the alteration of soil stoichiometry (C/P and N/P). Eliminating P deficiency through fertilization accelerated C cycling by increasing the activity of C degradation enzymes. The abundances of C and P functional genes were positively correlated, indicating the intensive coupling of C and P cycling in P-limited forest soil. In summary, a long-term fertilization experiment demonstrated that soil microorganisms could adapt to induced environmental changes in soil nutrient stoichiometry, not only through shifts of microbial community composition and functional gene abundances, but also through the regulation of enzyme production. The response of the microbial community to N and P imbalance and effects of the microbial community on soil nutrient cycling should be incorporated into the ecosystem biogeochemical model.


Asunto(s)
Microbiota , Nitrógeno , Humanos , Nitrógeno/análisis , Suelo/química , Fósforo/metabolismo , Microbiología del Suelo , Bosques , Fertilización , Monoéster Fosfórico Hidrolasas , Carbono/metabolismo
12.
J Agric Food Chem ; 71(1): 488-498, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36562642

RESUMEN

The high accumulation of galloylated flavan-3-ols in Camellia sp. is a noteworthy phenomenon. We identified a flavan-3-ol galloylation-related functional gene cluster in tannin-rich plant Camellia sp., which included UGT84A22 and SCPL-AT gene clusters. We investigated the possible correlation between the accumulation of metabolites and the expression of SCPL-ATs and UGT84A22. The results revealed that C. sinensis, C. ptilophylla, and C. oleifera accumulated galloylated cis-flavan-3-ols (EGCG), galloylated trans-flavan-3-ols (GCG), and hydrolyzed tannins, respectively; however, C. nitidissima did not accumulate any galloylated compounds. C. nitidissima exhibited no expression of SCPL-AT or UGT84A22, whereas the other three species of Camellia exhibited various expression patterns. This indicated that the functions of the paralogs of SCPL-AT vary. Enzymatic analysis revealed that SCPL5 was neofunctionalized as a noncatalytic chaperone paralog, a type of chaerone-like protein, associating with flavan-3-ol galloylation; moreover, CsSCPL4 was subfunctionalized in association with the galloylation of cis- and trans-flavan-3-ols. In C. nitidissima, an SCPL4 homolog was noted with mutations in two cysteine residues forming a disulfide bond, which suggested that this homolog was defunctionalized. The findings of this study improve our understanding of the functional diversification of SCPL paralogs in Camellia sp.


Asunto(s)
Camellia sinensis , Camellia , Camellia/genética , Flavonoides/química , Taninos/metabolismo , Camellia sinensis/química
13.
Artículo en Chino | WPRIM | ID: wpr-981303

RESUMEN

The active ingredients in traditional Chinese medicine(TCM)are the foundation for the efficiency of TCM and the key to the formation of Dao-di herbs. It is of great significance to study the biosynthesis and regulation mechanisms of these active ingredients for analyzing the formation mechanism of Daodi herbs and providing components for the production of active ingredients in TCM by synthetic biology. With the advancements in omics technology, molecular biology, synthetic biology, artificial intelligence, etc., the analysis of biosynthetic pathways for active ingredients in TCM is rapidly progressing. New methods and technologies have promoted the analysis of the synthetic pathways of active ingredients in TCM and have also made this area a hot topic in molecular pharmacognosy. Many researchers have made significant progress in analyzing the biosynthetic pathways of active ingredients in TCM such as Panax ginseng, Salvia miltiorrhiza, Glycyrrhiza uralensis, and Tripterygium wilfordii. This paper systematically reviewed current research me-thods for analyzing the biosynthetic functional genes of active ingredients in TCM, elaborated the mining of gene elements based on multiomics technology and the verification of gene functions in plants in vitro and in vivo with candidate genes as objects. Additionally, the paper summarized new technologies and methods that have emerged in recent years, such as high-throughput screening, molecular probes, genome-wide association studies, cell-free systems, and computer simulation screening to provide a comprehensive reference for the analysis of the biosynthetic pathways of active ingredients in TCM.


Asunto(s)
Medicina Tradicional China , Medicamentos Herbarios Chinos , Inteligencia Artificial , Vías Biosintéticas , Simulación por Computador , Estudio de Asociación del Genoma Completo
14.
Bioresour Technol ; 366: 128224, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36328174

RESUMEN

Carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling functional genes and bacterial and fungal communities during composting with biochar and biogas residue amendments were studied. Correlations between microbial community structure, functional genes and physicochemical properties were investigated by network analysis and redundancy analysis. It was shown that the gene of acsA abundance accounted for about 50% of the C-related genes. Biogas residue significantly decreased the abundance of denitrification gene nirK. Biogas residues can better promote the diversity of bacteria and fungi during composting. Biochar significantly increased the abundance of Humicola. Redundancy analysis indicated that pile temperature, pH, EC were the main physicochemical factors affecting the microbial community. WSC and NO3--N have significant correlation with C, N, P, S functional genes. The research provides a theoretical basis for clarifying the metabolic characteristics of microbial communities during composting and for the application of biochar and biogas residues in composting.


Asunto(s)
Compostaje , Microbiota , Nitrógeno/metabolismo , Biocombustibles , Fósforo , Carbono , Suelo/química , Carbón Orgánico , Microbiota/genética , Bacterias/genética , Bacterias/metabolismo , Azufre
15.
Chemosphere ; 307(Pt 3): 135864, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35948105

RESUMEN

The redox process driven by anaerobic respiration is a link between matter conversion and energy exchange in soil biogeochemistry. Microbial extracellular electron transfer forming biocurrents is a force in element cycling and community living in soil. However, the effect of indigenous microorganisms generating biocurrents on soil quality is unclear. We found that soil biocurrent showed little adverse influence on soil pH, cation exchange capacity, and available nitrogen, phosphorus and potassium and deblocked sequestered organic matter (29%). In addition, the bioelectric field derived from biocurrent obviously forced the migration of mineral elements, which was a supplement to the theory of water-salt transport, providing a new perspective on element transport. Moreover, the soil biocurrent directly regulated the availability of Ca and Fe (increase of 7-fold), indicating that electron transfer plays an important role in weathering and mineralization and thus pedogenesis. From a microbial ecology point of view, the soil bacterial richness and diversity were perfectly restored to their original state when the biocurrent stopped; including bacterial functions; although a temporary enrichment of certain species was observed. The above results provide new insights into the interactions between electron transfer and soil quality and confirm the safety of soil bioelectrochemical technology.


Asunto(s)
Microbiología del Suelo , Suelo , Nitrógeno , Fósforo , Potasio , Suelo/química , Agua
16.
Sci Total Environ ; 851(Pt 2): 158253, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037898

RESUMEN

The potential of industrial effluents from vitamin C (VC) production was assessed for agricultural applications by monitoring plant growth, soil properties, and microbial community structure. The results demonstrated that two types of effluents-residue after evaporation (RAE) and concentrated bacterial solution after ultrafiltration (CBS)-had positive effects on the yield and VC content of pak choi. The highest yield and VC content were achieved with a combined RAE-CBS treatment (55.82 % and 265.01 % increase, respectively). The soil fertility was also enhanced by the application of RAE and CBS. Nitrate nitrogen and organic carbon contents in the soil were positively correlated with the RAE addition, while ammonium nitrogen and available phosphorus were positively correlated with the CBS addition. The diversity of bulk and rhizosphere soil bacterial communities increased significantly after the addition of RAE-CBS. The abundance of Sphingomonas and Rhizobium significantly increased after the RAE-CBS treatment, which affected aromatic compound hydrolysis and nitrogen fixation positively. Changes in plant growth and soil fertility were closely related to the upregulation of functional gene expression related to C, N, and P cycling. RAE and CBS application exerted various positive synergistic effects on plant growth, soil fertility, and bacterial community structure. Consequently, the study results confirmed the potential of RAE and CBS application in agriculture. This study provides an innovative solution for utilizing VC industrial wastewater in agriculture in a resourceful and economically beneficial manner while alleviating the corresponding environmental burden.


Asunto(s)
Compuestos de Amonio , Suelo , Suelo/química , Rizosfera , Microbiología del Suelo , Ácido Ascórbico , Aguas Residuales , Nitratos , Agricultura/métodos , Bacterias/metabolismo , Nitrógeno/metabolismo , Fósforo , Carbono
17.
Glob Chang Biol ; 28(14): 4459-4471, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452151

RESUMEN

Low soil phosphorus (P) bioavailability causes the widespread occurrence of P-limited terrestrial ecosystems around the globe. Exploring the factors influencing soil P bioavailability at large spatial scales is critical for managing these ecosystems. However, previous studies have mostly focused on abiotic factors. In this study, we explored the effects of microbial factors on soil P bioavailability of terrestrial ecosystems using a country-scale sampling effort. Our results showed that soil microbial biomass carbon (MBC) and acid phosphatase were important predictors of soil P bioavailability of agro- and natural ecosystems across China although they appeared less important than total soil P. The two microbial factors had a positive effect on soil P bioavailability of both ecosystem types and were able to mediate the effects of several abiotic factors (e.g., mean annual temperature). Meanwhile, we revealed that soil phytase could affect soil P bioavailability at the country scale via ways similar to those of soil MBC and acid phosphatase, a pattern being more pronounced in agroecosystems than in natural ecosystems. Moreover, we obtained evidence for the positive effects of microbial genes encoding these enzymes on soil P bioavailability at the country scale although their effect sizes varied between the two ecosystem types. Taken together, this study demonstrated the remarkable effects of microbial factors on soil P bioavailability at a large spatial scale, highlighting the importance to consider microbial factors in managing the widespread P-limited terrestrial ecosystems.


Asunto(s)
Fósforo , Suelo , Fosfatasa Ácida , Carbono , Ecosistema , Nitrógeno , Microbiología del Suelo
18.
Zhongguo Zhong Yao Za Zhi ; 47(1): 62-71, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35178912

RESUMEN

Dof(DNA binding with one finger), a unique class of transcription factors in plants, play an important role in seed development, tissue differentiation, and metabolic regulation. To identify the number and function of Dof gene family members in Panax ginseng, this study identified the members of Dof gene family in P. ginseng and systematically analyzed their structures, evolution, functional differentiation, expression patterns, and interactions using bioinformatics methods at the transcriptome level. At the same time, the association analysis of Dof genes from P. ginseng with key enzyme genes for ginsenoside synthesis was carried out to screen the candidate PgDof genes involved in the regulation of ginsenoside biosynthesis. The results showed that there were 54 genes belonging to the Dof gene family in P. ginseng from Jilin. All PgDof genes had Zf-Dof conserved motifs, implying that they were evolutionarily conserved and could be divided into five groups. Expression pattern analysis confirmed that the expression of PgDof gene family members in different tissues, different year-old P. ginseng, and different farm varieties varied significantly. Simultaneously, as revealed by "gene-saponin content" and "gene-gene" linkage analysis, an important candidate PgDof14-1 gene involved in the regulation of ginsenoside biosynthesis was obtained. From the established genetic transformation system of this gene in the hairy roots of P. ginseng, a positive hairy root clone was determined. This study has laid a theoretical foundation for the study of Dof gene family in P. ginseng.


Asunto(s)
Ginsenósidos , Panax , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transcriptoma
19.
Artículo en Chino | WPRIM | ID: wpr-927912

RESUMEN

Dof(DNA binding with one finger), a unique class of transcription factors in plants, play an important role in seed development, tissue differentiation, and metabolic regulation. To identify the number and function of Dof gene family members in Panax ginseng, this study identified the members of Dof gene family in P. ginseng and systematically analyzed their structures, evolution, functional differentiation, expression patterns, and interactions using bioinformatics methods at the transcriptome level. At the same time, the association analysis of Dof genes from P. ginseng with key enzyme genes for ginsenoside synthesis was carried out to screen the candidate PgDof genes involved in the regulation of ginsenoside biosynthesis. The results showed that there were 54 genes belonging to the Dof gene family in P. ginseng from Jilin. All PgDof genes had Zf-Dof conserved motifs, implying that they were evolutionarily conserved and could be divided into five groups. Expression pattern analysis confirmed that the expression of PgDof gene family members in different tissues, different year-old P. ginseng, and different farm varieties varied significantly. Simultaneously, as revealed by "gene-saponin content" and "gene-gene" linkage analysis, an important candidate PgDof14-1 gene involved in the regulation of ginsenoside biosynthesis was obtained. From the established genetic transformation system of this gene in the hairy roots of P. ginseng, a positive hairy root clone was determined. This study has laid a theoretical foundation for the study of Dof gene family in P. ginseng.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Ginsenósidos , Panax , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Transcriptoma
20.
Zhongguo Zhong Yao Za Zhi ; 46(8): 2020-2028, 2021 Apr.
Artículo en Chino | MEDLINE | ID: mdl-33982515

RESUMEN

Sesquiterpene lactones are a kind of widely distributed natural organic compounds with anti-tumor, anti-malarial and other significant biological activities. Based on their carbocylic skeletons, sesquiterpene lactones are classified into germacranolide, guaia-nolide, xanthanolide, pseudo-guaianolide, elemonolide and eudesmanolide, etc. In recent years, with the development of various omics and synthetic biology technologies, the biosynthetic pathways of sesquiterpene lactone compounds of different structural types have gradually been resolved. Among them, the researches on germacrene-derived sesquiterpene lactones are relatively more than others. Therefore, this article focused on the germacrene-derived sesquiterpene lactone biosynthesis pathways and their key enzyme genes, which can lay the foundation for in-depth analysis of sesquiterpene lactone biosynthetic pathways, functional gene mining and heterologous synthesis of active ingredients.


Asunto(s)
Sesquiterpenos , Vías Biosintéticas , Lactonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA