Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7202, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531974

RESUMEN

Cancer is responsible for approximately 10 million deaths worldwide, with 70% of the deaths occurring in low- and middle-income countries; as such safer and more effective anti-cancer drugs are required. Therefore, the potential benefits of Ziziphus nummularia and Ziziphus spina-christi as sources of anti-cancer agents were investigated. Z. nummularia and Z. spina-christi extracts were prepared using chloroform, ethanol, ethyl acetate, and water. The extracts' anti-cancer properties were determined using the MTT Cell Viability Assay in four cancer cell lines: breast (KAIMRC2 and MDA-MB-231), colorectal (HCT8), and liver (HepG2). The ApoTox-Glo Triplex Assay and high-content imaging (HCI)-Apoptosis Assay were used to assess KAIMRC2 and HCT8 cells further. In addition, KAIMRC2 cells were tested for microtubule staining, and AKT/mTOR protein expression was determined by western blot analysis. Liquid chromatography-mass spectrometry (LC-MS) was performed to identify the secondary metabolites in the ethanol and ethyl acetate extracts, followed by in silico techniques to predict molecular targets and interactions, safety, and pharmacokinetic profile for identified metabolites. Out of the eight extracts, the ethanolic extract of Z. nummularia, exhibited the most potent activity against KAIMRC2 cells with an IC50 value of 29.2 µg/ml. Cancer cell treatment with the ethanolic extract of Z. nummularia resulted in a dose-dependent decrease in cell viability with increased apoptosis and cytotoxic effects. Microtubule staining showed a disrupted microtubular network. The ethanolic extract treatment of KAIMRC2 cells led to upregulated expression of pAKT and pmTOR. In silico studies predicted luteolin-7-O-glucoside to be a ligand for tubulin with the highest docking score (- 7.686) and similar binding interactions relative to the native ligand. Further computational analysis of the metabolites showed acceptable pharmacokinetic and safety profiles, although ethanolic extract metabolites were predicted to have cardiotoxic effects. Ethanolic extraction is optimal for solubilizing active anticancer metabolites from Z. nummularia, which may act by causing M-phase arrest via inhibition of tubulin polymerization. Luteolin-7-O-glucoside is the lead candidate for further research and development as an anti-cancer agent. In addition, this study suggests that herbal treatment could switch on mechanisms of adaptation and survival in cancer cells.


Asunto(s)
Acetatos , Glucósidos , Luteolina , Neoplasias , Ziziphus , Extractos Vegetales/farmacología , Ziziphus/química , Moduladores de Tubulina , Ligandos , Tubulina (Proteína) , Etanol
2.
Chem Biodivers ; 21(3): e202301351, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38268337

RESUMEN

In the present study, the main phytochemical components of endemic plant extracts and inhibitory potency were screened related to different biological activities. Seven compounds were quantified, and cyanidin-3-o-glucoside was the dominant secondary metabolite in the extract of plants. The extract from P. asiae-minoris (PAM) exhibited the best enzyme inhibitory activity against BChE (1.73±0.23 µg mL-1 ), tyrosinase (2.47±0.28 µg mL-1 ), α-glucosidase (5.28±0.66 µg mL-1 ), AChE (8.66±0.86 µg mL-1 ), and ACE (19.27±1.02 µg mL-1 ). In vitro antioxidant assay, PAM extract possessed the highest activity in respect of DPPH radical scavenging (24.29±0.23 µg/mL), ABTS⋅+ scavenging (13.50±0.27 µg/mL) and FRAP reducing power (1.56±0.01 µmol TE/g extract). MIC values ranged from 1-8 mg/mL for antibacterial ability, and the PAM extract showed a stronger effect for B. subtilis, E. faecalis, and E. coli at 1 mg/mL. The antiproliferative ability of A. bartinense (AB) extract demonstrated a suppressive effect (IC50 : 70.26 µg/mL) for pancreatic cancer cell lines. According to the affinity scores analysis, the cyanidin-3-o-glucoside demonstrated the lowest docking scores against ACE, AChE, BChE, and collagenase. It was found that the PAM extract exhibited better inhibitory capabilities than A. bartinense. The P. asiae-minoris plant, reported to be in the Critically Endangered (CR) category, should be conserved by culturing, considering its biological abilities.


Asunto(s)
Escherichia coli , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/química , Glucósidos
3.
Phytomedicine ; 124: 155260, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176264

RESUMEN

BACKGROUND: Ji-Ming-Shan (JMS) is a traditional prescription used for patients with rheumatism, tendons swelling, relief of foot pain, athlete's foot, diuresis, gout. Although many studies have investigated the active compounds in each herb, the functional mechanism behind its therapeutic effect remains unclear. STUDY DESIGN: Metabolic cages for sample collection. The serum components obtained from the experimental animals were analyzed using LC-MS/MS. Furthermore, cross-analysis using the software MetaboAnalyst and Venn diagrams were used to investigate chronopharmacology of JMS in the animal models. PURPOSE: The aim of this study is to analyze the diuretic effects of JMS and to explore their chronopharmacology involved in organ regulation through four-quarter periods from serum samples of rat models. METHODS: Metabolic cages were used for collecting the urine samples and PocketChem UA PU-4010, Fuji DRI-CHEM 800 were used to examine the urine biochemical parameters. The serum components were identified through ultra-performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) with a new developed method. Cross analysis, Venn diagram, MetaboAnalyst were used to investigate the key biomarker and major metabolism route with the oral administration of the drug. RESULT: JMS significantly changed the 6 h urine volume with no observed kidney toxicity. Urine pH value ranges from 7.0 to 7.5. The chronopharmacology of JMS diuresis activity were 0-6 and 6-12 groups. UPLC-Q-TOF analyses identified 243 metabolites which were determined in positive mode and negative mode respectively. With cross analysis in the Venn diagram, one key biomarker naringenin-7-O-glucoside has been identified. Major metabolic pathways such as 1: Glycerophospholipid metabolism, 2: Primary bile acid biosynthesis, 3: Sphingolipid metabolism, 4: Riboflavin metabolism, 5: Linoleic acid metabolism, 6: Butanoate metabolism. CONCLUSION: JMS significantly changed the urine output of animals in the 0-6 and 6-12 groups. No change in urine pH was observed and also kidney toxicity. A new UPLC-Q-TOF method was developed for the detection of the metabolites of JMS after oral administration. The cross analysis with Venn diagram and identified the key biomarker of JMS namely naringenin-7-O-glucoside. The results showed that six major pathways are involved in the gastrointestinal system and the liver. This study demonstrated the capability of JMS prescription in the regulation of diuresis and identified a key biomarker that is responsible for its therapeutic effect.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Ratas , Humanos , Animales , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Diuresis , Biomarcadores , China
4.
Plant Cell Environ ; 47(2): 682-697, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882446

RESUMEN

Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.


Asunto(s)
Camellia sinensis , Lepidópteros , Animales , Camellia sinensis/metabolismo , Quercetina/farmacología , Quercetina/metabolismo , Herbivoria , Larva , Té/metabolismo , Glucósidos/metabolismo , Proteínas de Plantas/metabolismo
5.
J Ethnopharmacol ; 321: 117394, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967777

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Plasmodium falciparum multi-drug resistant (MDR) strains are a great challenge to global health care. This predicament implies the urgent need to discover novel antimalarial drugs candidate from alternative natural sources. The Himalaya constitute a rich repository of medicinal plants which have been used traditionally in the folklore medicine since ages and having no scientific evidence for their activity. Crambe kotschyana Boiss. and Eremurus himalaicus Baker are used for their antipyretic and hepatoprotective properties in Kinnaur district of Himachal Pradesh, India. AIM OF THE STUDY: This study would investigate the antiplasmodial efficacy of C. kotschyana and E. himalaicus extracts, their fractions and active components using in vitro, in vivo and in silico approaches to provide a scientific insight into their activity. METHODS: The methanol extracts of C. kotschyana (CKME) and E. himalaicus (EHME) were prepared by maceration followed by fractionation using ethyl acetate. The isolation of flavonoid glycosides isorhamnetin-3, 7-di-O-glucoside from C. kotschyana and luteolin-6-C-glucoside (isoorientin) from E. himalaicus was carried out by antiplasmodial activity-guided isolation. In vitro antimalarial activity was assessed by WHO method while in vitro cytotoxicity was ascertained employing the MTT assay. Molecular docking and molecular dynamics simulation were performed using the Glide module of Schrödinger Software and Gromacs-2022 software package respectively. In vivo curative activity was assessed by Ryley and Peters method. RESULTS: The methanol extracts of both the plants illustrated the best antiplasmodial activity followed by the ethyl acetate fractions. Iso-orientin (IC50 6.49 µg/ml) and Isorhamnetin-3,7-di-O-glucoside (IC50 9.22 µg/ml) illustrated considerable in vitro activity even against P. falciparum resistant strain. Extracts/fractions as well as the isolated compounds were found to be non-toxic with CC50 > 640 µg/ml. Molecular docking studies were performed with these 2 O-glucosides against four malaria targets to understand the binding pose of these molecules and the results suggested that these molecules have selectivity for lactate dehydrogenase enzyme. CKME and EHME exhibited curative activity in vivo along with increase in Mean Survival Time of mice. CONCLUSION: The research delineated the scientific evidence that both the therapeutic herbs possessed antimalarial activity and notably, bioactive compounds responsible to exhibit the antimalarial activity have been isolated, identified and characterized. Further studies are underway to assess the antiplasmodial efficacy of isolated compounds alone and in combination with standard antimalarials.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Metanol/uso terapéutico , Simulación del Acoplamiento Molecular , Malaria/tratamiento farmacológico , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico , Glucósidos/uso terapéutico
6.
Fitoterapia ; 172: 105768, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056698

RESUMEN

Lysidrhodosides A-I (1-9), nine acylphloroglucinol glucoside derivatives along with three known analogues (10-12) were isolated from the leaves of Lysidice rhodostegia. Their structures and absolute configuration were elucidated by spectroscopic data analysis (NMR, UV, IR, HR-ESI-MS), single-crystal X-ray diffraction, and acid hydrolysis with HPLC analysis. Notably, compounds 7-9 represent the first examples of 3-methylbutyryl phloroglucinol glucoside dimers isolated from this plant. Additionally, compounds 1-12 were assessed for their inhibitory effects on nitric oxide (NO) in the LPS-induced BV-2 cells. The results showed that compounds 6 and 12 significantly inhibited the production of the inflammatory mediator NO, with an inhibitory rate of 95.96 and 91.13% at a concentration of 50 µM, respectively.


Asunto(s)
Fabaceae , Glucósidos , Glucósidos/farmacología , Estructura Molecular , Floroglucinol/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Espectroscopía de Resonancia Magnética , Fabaceae/química , Óxido Nítrico
7.
Food Chem ; 438: 137863, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37980871

RESUMEN

Unripe tomatoes are among the main waste produced during tomato cultivation and processing. In this study, unripe tomatoes from seven different Italian cultivars have been investigated to evaluate their nutraceutical potential. Phytochemical investigation allowed shedding light on the identification of seventy-five bioactive compounds. The highest amount of polyphenolic and glycoalkaloids along with the high level of antioxidant activities was found in the Datterini tomatoes variety. The peculiarity of this variety is the high chlorogenic acid content, being ten times higher compared to the other cultivars examined. Moreover, the total α-tomatine amount has been found substantially higher (34.699 ± 1.101 mg/g dry weight) with respect to the other tomato varieties analyzed. Furthermore, the cultivars metabolomic profiles were investigated with the PCA approach. Based on Datterini cultivar's metabolomic profile, its waste-recovery could represent a good option for further added value products in pharmaceutical and nutraceutical areas with a high α-tomatine content.


Asunto(s)
Antioxidantes , Solanum lycopersicum , Antioxidantes/química , Ácido Clorogénico , Fitoquímicos , Extractos Vegetales/química
8.
J Ethnopharmacol ; 319(Pt 3): 117298, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37866463

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tetrapleura tetraptera (Schumach. and Thonn.) Taub. (Fabaceae) is a tropical plant that is used in Cameroon pharmacopeia for the treatment of many cancers including prostate cancer (PCa), which is a major cause of men's death worldwide. The objective of this study was to evaluate the anticancer properties as well as underlying mechanisms of isolates from T. tetraptera on DU145, PC3 and LNCaP cancer cell lines. MATERIALS AND METHODS: Eight (8) compounds were purified from T. tetraptera stem bark extract through silica gel column chromatography (CC) and characterized using spectroscopic techniques (1D and 2D NMR), HRESIMS. Cell growth was assessed by a well-characterized MTT assay, while BrdU and clonogenicity assays provided information on the cell proliferation index. Further, the impact of the compounds on cell cycle progression and cell death were performed through Flow cytometry. Cell adhesion, cell migration and chemotaxis along with some proteins of epithelial-mesenchymal transition (EMT) were assayed. RESULTS: Out of the eight (1-8) isolates from T. tetraptera only oleanane-3-O-ß-D-glucoside-2'-acetamide and aridanin showed potent cell growth arrest with an estimated CC50 of 15, 23, 16 and 17, 26, 16 µg/mL on DU145, PC3 and LNCaP cells, respectively. A 15% (DU145) and 25% (LNCaP) increase in apoptotic cells induced by oleanane-3-O-ß-D-glucoside-2'-acetamide and aridanin at 10 µg/mL were noticed. Oleanane-3-O-ß-D-glucoside-2'-acetamide and aridanin at 2.5 and 10 µg/mL reduced the number of cells in S-phase and raised cells in G2/M phase. At the same concentrations, they decreased the number of invading DU145 cells and increased the adherence of DU145 cells to fibronectin and collagen matrix at tested concentrations, accompanied by an increase in integrin ß-1 (10 µg/mL) and integrin ß-4 (2.5 µg/mL) expression. Furthermore, a down-regulation of pcdk1, cdk2, Bcl-2, N-Cad, vimentin and cytokeratine 8-18 was noticed while, p19, p27, p53 pAKT, Bax, caspase-3 and E-Cad were up-regulated. CONCLUSIONS: This study outlines for the first time, the anticancer ability of compounds oleanane-3-O-ß-D-glucoside-2'-acetamide (4) and aridanin (6) from Tetrapleura tetraptera and proposes their putative mechanisms of action.


Asunto(s)
Fabaceae , Neoplasias de la Próstata , Tetrapleura , Masculino , Humanos , Tetrapleura/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Integrinas , Apoptosis , Línea Celular Tumoral
9.
Plant Physiol Biochem ; 206: 108279, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128226

RESUMEN

Polygonum multiflorum Thunb. is a traditional Chinese medicine with extensive distribution and robust adaptability, but comprehensive research on its acid and alkali resistance is presently lacking. This study aimed to analyze the effects of 5 months of continuous pH stress on the physiological and photosynthetic parameters of P. multiflorum, and the content of effective components. Results revealed that pH stress significantly influenced the normal growth, physiological functions, and photosynthetic indicators of P. multiflorum. At soil pH 4.5, the tubers of P. multiflorum exhibited the highest levels of 2,3,5,4'-tetrahydroxy stilbene-2-O-ß-d-glucoside (THSG) and total anthraquinones at 5.41% and 0.38%, respectively. However, increased soil pH significantly reduced the content of THSG and total anthraquinones. Reference-free transcriptome analysis was further conducted on P. multiflorum treated at pH 4.5 and 9.5, generating a total of 47,305 unigenes with an N50 of 2118 bp, of which 31,058 (65.65%) were annotated. Additionally, 2472 differentially expressed genes (DEGs) were identified. Among them, 17 DEGs associated with the biosynthesis of THSG and anthraquinones were screened. A comprehensive analysis of differential gene expression and effective component content demonstrated a significant positive correlation between the content of effective components and the 14 DEGs' expression but a negative correlation with soil pH. This study highlighted the influence of varying soil pH values on the effective component content of P. multiflorum. Specific acidic conditions proved beneficial for the synthesis and accumulation of THSG and total anthraquinones in P. multiflorum, thereby enhancing the quality of the medicinal material.


Asunto(s)
Fallopia multiflora , Estilbenos , Fallopia multiflora/genética , Fallopia multiflora/química , Antraquinonas/análisis , Tubérculos de la Planta/química , Suelo , Concentración de Iones de Hidrógeno
10.
Nat Prod Res ; 38(1): 158-163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-35921543

RESUMEN

Gentianopsis is a small gentianaceous genus with a known ethnopharmacological focus as hepatoprotectors containing two underestimated species that are scientifically unexplored: Gentianopsis komarovii (Grossh.) Toyok., which is typical of the Far East, and Gentianopsis stricta (Klotzsch) Ikonn., which is grown in Central Asia. Application of the HPLC-PDA-ESI-tQ-MS/MS technique led to the identification of 28 compounds, such as iridoid glycosides, flavones and xanthones, with loganic acid, sweroside, loganin, secologanin, isoorientin-7-O-glucoside, luteolin-7-O-gentiobioside, chrysoeriol-7-O-glucoside and acacetin-7-O-glucoside being found in the genus for the first time. The extracts of G. komarovii and G. stricta demonstrated choleretic potential, strengthening the bile flow and the total content of bile acids, bilirubin and cholesterol in the bile. The most pronounced effects were observed for luteolin-7-O-glucoside and gentiabavaroside (gentiacaulein-1-O-primveroside), establishing them as the principle choleretics of both herbs. Based on the results, G. komarovii, G. stricta and some phenolic metabolites are prospective new choleretic drugs.


Asunto(s)
Colagogos y Coleréticos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Glucósidos/farmacología , Fenoles/análisis , Extractos Vegetales/farmacología
11.
Phytochemistry ; 217: 113920, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951561

RESUMEN

Ten lignans, including six previously undescribed phenolic ester glycosyl lignans (1-6), were isolated from a well-known traditional Chinese medicine, Qin-Jiao, which is the dry root of Gentiana macrophylla Pall. (Gentianaceae). Their structures were determined by spectroscopic and chemical methods, especially 2D NMR techniques. Quantum chemical calculations of theoretical ECD spectra allowed the determination of their absolute configurations. Refer to its traditional applications for the treatment of rheumatic arthralgia and hepatopathy, these compounds were evaluated on a TNF-α induced MH7A human synoviocyte inflammation model and a D-GalN induced AML12 hepatocyte injury model. Compounds 1, 2, 5, and 6 significantly reduced the release of proinflammatory cytokine IL-1ß in MH7A cells at 15 µM and they also could strongly protect AML12 cells against D-GalN injury at 30 µM. Flow cytometry and Western blot analysis showed that compound 5 ameliorated D-GalN induced AML12 cell apoptosis by upregulating the expression of anti-apoptotic Bcl-2 protein and down-regulating the expression of pro-apoptotic Bax protein.


Asunto(s)
Medicamentos Herbarios Chinos , Gentiana , Lignanos , Humanos , Gentiana/química , Lignanos/farmacología , Glucósidos/farmacología , Glucósidos/química , Medicamentos Herbarios Chinos/farmacología , Inflamación
12.
Molecules ; 28(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067429

RESUMEN

Chiranthodendron pentadactylon Larreat is a tree native to southeastern Mexico and Guatemala. Its flower is used in Mexican folk medicine to treat a variety of diseases, including conditions of blood pressure. However, scientific information on its usefulness in this pathology is lacking. The present study evaluates the effect of a methanolic extract (ME) from the flower and its active constituents on heart rate (HR) and mean arterial pressure (MAP) in anesthetized rats (MAPHR). The study also analyzed the effects on rat-isolated aortic rings (RIAR) and the rat mesenteric arterial bed (MABR). Active fractions were chromatographed, which led to the isolation of cyanidin 3-O-glucoside (C3G) identified through HPLC. The Chiranthodendron pentadactylon flowers produced hypotensive and vasorelaxant effects associated with C3G. The vasorelaxant effect is a mechanism underlying the synthesis and release of nitric oxide (NO). Neither cholinergic receptors nor prostaglandins are involved. ME and C3G cause cardiovascular depression in anesthetized rats via cholinergic and prostanoid mechanisms. Our research expands the scientific understanding of the flowers on the rat cardiovascular system. This amplifies the appreciation of the flower's ethnomedicine employed to control blood pressure. However, researchers need to conduct toxicity studies to determine the safety of this plant.


Asunto(s)
Hipotensión , Extractos Vegetales , Ratas , Animales , Extractos Vegetales/farmacología , Hipotensión/inducido químicamente , Hipotensión/tratamiento farmacológico , Vasodilatadores/farmacología , Metanol , Flores
13.
Nutrients ; 15(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38140323

RESUMEN

Dry eye disease (DED) occurs when there are not enough tears, and the associated symptoms-burns, itching, and a gritty feeling in the eye-can cause great discomfort. The purpose of this study was to evaluate the therapeutic effect of purple corn extract (PCE) on DED. Pretreatment with PCE prevented desiccation-stress-induced cell damage in human retinal pigment epithelial cells and primary human corneal epithelial cells. Furthermore, PCE reduced the mRNA expression of inflammatory mediators in the induction of desiccation stress. The therapeutic effects of PCE on DED were evaluated in an animal model with induced unilateral excision of the exorbital lacrimal gland. The administration of PCE was effective at recovering tear production, corneal surface irregularity, and conjunctival goblet cell density, as well as at reducing apoptotic cell death in the outer layer of the corneal epithelium. Collectively, PCE improved dry eye symptoms, and, therefore, it could be a potential agent to ameliorate and/or treat DED.


Asunto(s)
Síndromes de Ojo Seco , Aparato Lagrimal , Animales , Humanos , Aparato Lagrimal/cirugía , Zea mays , Síndromes de Ojo Seco/etiología , Lágrimas , Extractos Vegetales/uso terapéutico , Modelos Animales de Enfermedad
14.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959784

RESUMEN

Emodin-8-O-glucoside (E-8-O-G) is a glycosylated derivative of emodin that exhibits numerous biological activities, including immunomodulatory, anti-inflammatory, antioxidant, hepatoprotective, or anticancer activities. However, there are no reports on the activity of E-8-O-G against cancers of the nervous system. Therefore, the aim of the study was to investigate the antiproliferative and cytotoxic effect of E-8-O-G in the SK-N-AS neuroblastoma, T98G human glioblastoma, and C6 mouse glioblastoma cancer cells. As a source of E-8-O-G the methanolic extract from the aerial parts of Reynoutria japonica Houtt. (Polygonaceae) was used. Thanks to the application of centrifugal partition chromatography (CPC) operated in the descending mode using a mixture of petroleum ether:ethyl acetate:methanol:water (4:5:4:5 v/v/v/v) and a subsequent purification with preparative HPLC, E-8-O-G was obtained in high purity in a sufficient quantity for the bioactivity tests. Assessment of the cancer cell viability and proliferation were performed with the MTT (3-(bromide 4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium), CTG (CellTiter-Glo®) and BrdU (5-bromo-2'-deoxyuridine) assays, respectively. E-8-O-G inhibits the viability and proliferation of SK-N-AS neuroblastoma, T98G human glioblastoma multiforme, and C6 mouse glioblastoma cells dose-dependently. E-8-O-G seems to be a promising natural antitumor compound in the therapy of nervous system tumors.


Asunto(s)
Emodina , Glioblastoma , Neoplasias del Sistema Nervioso , Neuroblastoma , Animales , Ratones , Humanos , Glucósidos/farmacología , Glioblastoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química
15.
Plant Physiol Biochem ; 204: 108090, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37847973

RESUMEN

Blue honeysuckle (Lonicera caerulea L.) is an emerging commercial fruit in the world, has been known for its multiple anthocyanins in the berries, cyanidin-3-glucoside (C3G) is a major anthocyanin in berries and it makes up 76-92% of the total anthocyanins content, with high antioxidant capacity, and widely used in food products. In this review, recent studies related to anthocyanins in blue honeysuckle were sorted out, including the current status of research on anthocyanins in blue honeysuckle berries, especially C3G, qualitative and quantitative analysis of anthocyanins in berries, extraction and purification methods of anthocyanins from blue honeysuckle, in addition, biological effects of blue honeysuckle, and recommended utilization. Blue honeysuckle contains polyphenols, flavonoids, anthocyanins, minerals, and multiple bioactive compounds, it has been extensively reported to have significant antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anticancer, and anti-diabetic functions, and has been used in a variety of food products as raw materials.


Asunto(s)
Antocianinas , Lonicera , Antocianinas/análisis , Antioxidantes/farmacología , Flavonoides/análisis , Polifenoles/análisis , Frutas/química , Extractos Vegetales
16.
Phytomedicine ; 119: 154953, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573809

RESUMEN

BACKGROUND: Glucocorticoids (GC)-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis, which leads to an increased risk of fracture in patients. The inhibition of the osteoblast effect is one of the main pathological characteristics of GIOP, but without effective drugs on treatment. PURPOSE: The aim of this study was to investigate the potential effects of orcinol glucoside (OG) on osteoblast cells and GIOP mice, as well as the mechanism of the underlying molecular target protein of OG both in vitro osteoblast cell and in vivo GIOP mice model. METHODS: GIOP mice were used to determine the effect of OG on bone density and bone formation. Then, a cellular thermal shift assay coupled with mass spectrometry (CETSA-MS) method was used to identify the target of OG. Surface plasmon resonance (SPR), enzyme activity assay, molecular docking, and molecular dynamics were used to detect the affinity, activity, and binding site between OG and its target, respectively. Finally, the anti-osteoporosis effect of OG through the target signal pathway was investigated in vitro osteoblast cell and in vivo GIOP mice model. RESULTS: OG treatment increased bone mineral density (BMD) in GIOP mice and effectively promoted osteoblast proliferation, osteogenic differentiation, and mineralization in vitro. The CETSA-MS result showed that the target of OG acting on the osteoblast is the p38 protein. SPR, molecular docking assay and enzyme activity assay showed that OG could direct bind to the p38 protein and is a p38 agonist. The cellular study found that OG could promote p38 phosphorylation and upregulate the proteins expression of its downstream osteogenic (Runx2, Osx, Collagen Ⅰ, Dlx5). Meanwhile, it could also inhibit the nuclear transport of GR by increasing the phosphorylation site at GR226 in osteoblast cell. In vivo GIOP mice experiment further confirmed that OG could prevent bone loss in the GIOP mice model through promoting p38 activity as well as its downstream proteins expression and activity. CONCLUSIONS: This study has established that OG could promote osteoblast activity and revise the bone loss in GIOP mice by direct binding to the p38 protein and is a p38 agonist to improve its downstream signaling, which has great potential in GIOP treatment for targeting p38. This is the first report to identify OG anti-osteoporosis targets using a label-free strategy (CETSA-MS).


Asunto(s)
Glucocorticoides , Osteoporosis , Animales , Ratones , Glucocorticoides/efectos adversos , Osteogénesis , Glucósidos/uso terapéutico , Simulación del Acoplamiento Molecular , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo
17.
J Nat Med ; 77(4): 972-977, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37432537

RESUMEN

Vietnamese ginseng (Panax vietnamensis Ha and Grushv., Araliaceae) is indigenous in the central highlands of Vietnam and the southernmost distribution in the Panax genus. Like other ginseng, Vietnamese ginseng is well known has been used as a tonic and for management of certain diseases in the traditional medicine. Nevertheless, it is noteworthy that in respect to the long history in use and systematic studied on Korean ginseng (P. ginseng), American ginseng (P. quinquefolius), Japanese ginseng (P. japonicus), and Chinese ginseng (P. notoginseng), the up-to-date published database on Vietnamese ginseng is relatively much less extensive. In our ongoing research on the promising Vietnamese medicinal plants, the present phytochemical investigation of the ethanol extract of the leaves of Panax vietnamensis led to the isolation of three compounds (1-3), including a new indole alkaloid N-glycoside (1) and two known compounds. Their structures were elucidated based on extensive physiochemical and chemical methods, especially the interpretation of NMR and MS spectra. The absolute configuration of 1 was determined based on the comparison of its experimental and theoretical ECD spectra along with NMR calculation. Compound 1 is naturally isolated N-glycoside, which is rarely found in natural products. The isolated compounds showed weak or no inhibitory activity against acetylcholinesterase enzyme (AChE).


Asunto(s)
Glucósidos , Panax , Acetilcolinesterasa , Glucósidos/química , Panax/química , Hojas de la Planta/química , Vietnam
18.
Phytomedicine ; 118: 154957, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37478683

RESUMEN

BACKGROUND: Hyperuricemia is an important pathological basis of gout and a distinct hazard factor for metabolic syndromes and cardiovascular and chronic renal disease, but lacks safe and effective treatments currently. Paeonia × suffruticosa Andrews leaf effectively reduced serum uric acid in gout patients; however, the material foundation and the mechanism remain unclear. PURPOSE: To determine the primary active components and mechanism of P. suffruticosa leaf in hyperuricemic mice. METHODS: The chemical constituents of P. suffruticosa leaf was identified using high-performance liquid chromatographic analysis. The anti-hyperuricemic activity of P. suffruticosa leaf extract (12.5, 25, 50, 100, and 200 mg/kg) and its components was evaluated in hyperuricemic mice induced by a high purine diet for 14 days. Then, the urate-lowering effects of apigenin 7-O-glucoside (0.09, 0.18, and 0.36 mg/kg) were assessed in another hyperuricemic mice model built by administrating potassium oxonate and adenine for 4 weeks. The inhibitory effect of apigenin 7-O-glucoside on uric acid production was elucidated by investigating xanthine oxidase activity in vitro and in serum and the liver and through molecular docking. Immunofluorescence and western blot analyses of the expression of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporters 1 (OAT1), and ATP-binding cassette G member 2 (ABCG2) proteins elucidated how apigenin 7-O-glucoside promoted uric acid excretion. RESULTS: Six compounds were identified in P. suffruticosa leaf: gallic acid, methyl gallate, oxypaeoniflorin, paeoniflorin, galloylpaeoniflorin, and apigenin 7-O-glucoside. P. suffruticosa leaf extract significantly attenuated increased serum uric acid, creatinine, and xanthine oxidase activity in hyperuricemic mice. Apigenin 7-O-glucoside from P. suffruticosa leaf reduced uric acid, creatinine, and malondialdehyde serum levels, increased superoxide dismutase activity, and partially restored the spleen coefficient in hyperuricemic mice. Apigenin 7-O-glucoside inhibited xanthine oxidase activity in vitro and decreased serum and liver xanthine oxidase activity and liver xanthine oxidase protein expression in hyperuricemic mice. Molecular docking revealed that apigenin 7-O-glucoside bound to xanthine oxidase. Apigenin 7-O-glucoside facilitated uric acid excretion by modulating the renal urate transporters URAT1, GLUT9, OAT1, and ABCG2. Apigenin 7-O-glucoside protected against renal damage and oxidative stress caused by hyperuricemia by reducing serum creatinine, blood urea nitrogen, malondialdehyde, and renal reactive oxygen species levels; increasing serum and renal superoxide dismutase activity; restoring the renal coefficient; and reducing renal pathological injury. CONCLUSION: Apigenin 7-O-glucoside is the main urate-lowering active component of P. suffruticosa leaf extract in the hyperuricemic mice. It suppressed liver xanthine oxidase activity to decrease uric acid synthesis and modulated renal urate transporters to stimulate uric acid excretion, alleviating kidney damage caused by hyperuricemia.


Asunto(s)
Gota , Hiperuricemia , Transportadores de Anión Orgánico , Paeonia , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/inducido químicamente , Ácido Úrico , Xantina Oxidasa/metabolismo , Creatinina , Simulación del Acoplamiento Molecular , Apigenina/farmacología , Riñón , Transportadores de Anión Orgánico/metabolismo , Superóxido Dismutasa/metabolismo , Glucósidos/farmacología , Malondialdehído/metabolismo , Ácido Oxónico/efectos adversos
19.
Food Res Int ; 170: 113028, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316089

RESUMEN

Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.


Asunto(s)
Antocianinas , Neoplasias Colorrectales , Humanos , Antocianinas/farmacología , Frutas , Verduras , Brasil , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/prevención & control
20.
Fitoterapia ; 168: 105539, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178810

RESUMEN

Phytochemical study on the whole plants of a Gentianaceous medicinal plant, Canscora lucidissima, gave one new acylated iridoid glucoside, canscorin A (1), and two new xanthone glycosides (2 and 3) together with 17 known compounds including five xanthones, eight xanthone glycosides, two benzophenone glucosides, caffeic acid, and loganic acid. Canscorin A (1) was assigned as a loganic acid derivative having a hydroxyterephthalic acid moiety by spectroscopic analysis together with chemical evidence, while 2 and 3 were elucidated to be a rutinosylxanthone and a glucosylxanthone, respectively. The absolute configurations of the sugar moieties of 2 and 3 were determined by HPLC analysis. The isolated compounds were evaluated for their inhibitory activities against erastin-induced ferroptosis on human hepatoma Hep3B cells and LPS-stimulated IL-1ß production from murine microglial cells.


Asunto(s)
Ferroptosis , Gentianaceae , Xantonas , Ratones , Humanos , Animales , Glucósidos Iridoides , Estructura Molecular , Glicósidos/farmacología , Glicósidos/química , Xantonas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA