Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 872
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 460-486, jul. 2024. graf, ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1538009

RESUMEN

This review presents advances in the implementation of high - throughput se quencing and its application to the knowledge of medicinal plants. We conducted a bibliographic search of papers published in PubMed, Science Direct, Google Scholar, Scopus, and Web of Science databases and analyzed the obtained data using VOSviewer (versi on 1.6.19). Given that medicinal plants are a source of specialized metabolites with immense therapeutic values and important pharmacological properties, plant researchers around the world have turned their attention toward them and have begun to examine t hem widely. Recent advances in sequencing technologies have reduced cost and time demands and accelerated medicinal plant research. Such research leverages full genome sequencing, as well as RNA (ribonucleic acid) sequencing and the analysis of the transcr iptome, to identify molecular markers of species and functional genes that control key biological traits, as well as to understand the biosynthetic pathways of bioactive metabolites and regulatory mechanisms of environmental responses. As such, the omics ( e.g., transcriptomics, metabolomics, proteomics, and genomics, among others) have been widely applied within the study of medicinal plants, although their usage in Colombia is still few and, in some areas, scarce. (185)


El extracto de cloroformo (CE) y las fracciones obtenidas de las raíces de Aldama arenaria se evaluaron para determinar su actividad antiproliferativa in vitro contra 10 líneas ce lulares tumorales humanas [leucemia (K - 562), mama (MCF - 7), ovario que expresa un fenotipo resistente a múltiples fármacos (NCI/ADR - RES), melanoma (UACC - 62), pulmón (NCI - H460), próstata (PC - 3), colon (HT29), ovario (OVCAR - 3), glioma (U251) y riñón (786 - 0)]. CE presentó actividad antiproliferativa débil a moderada (log GI 50 medio 1.07), mientras que las fracciones 3 y 4, enriquecidas con diterpenos de tipo pimarane [ent - pimara - 8 (14), ácido 15 - dien - 19 - oico y ent - 8(14),15 - pimaradien - 3 ß - ol], presentaron activid ad moderada a potente para la mayoría de las líneas celulares, con un log GI 50 medio de 0.62 y 0.59, respectivamente. Los resultados mostraron una acción antiproliferativa in vitro prometedora de las muestras obtenidas de A. arenaria , con los mejores resul tados para NCI/ADR - RES, HT29 y OVCAR - 3, y valores de TGI que van desde 5.95 a 28.71 µg.mL - 1, demostrando que los compuestos de esta clase pueden ser prototipos potenciales para el descubrimiento de nuevos agentes terapéuticos


Asunto(s)
Plantas Medicinales , Secuenciación de Nucleótidos de Alto Rendimiento , Multiómica , Medicina Tradicional , Colombia
2.
Chembiochem ; 25(10): e202400184, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573110

RESUMEN

Genetic aberrations of the maternal UBE3A allele, which encodes the E3 ubiquitin ligase E6AP, are the cause of Angelman syndrome (AS), an imprinting disorder. In most cases, the maternal UBE3A allele is not expressed. Yet, approximately 10 percent of AS individuals harbor distinct point mutations in the maternal allele resulting in the expression of full-length E6AP variants that frequently display compromised ligase activity. In a high-throughput screen, we identified cyanocobalamin, a vitamin B12-derivative, and several alloxazine derivatives as activators of the AS-linked E6AP-F583S variant. Furthermore, we show by cross-linking coupled to mass spectrometry that cobalamins affect the structural dynamics of E6AP-F583S and apply limited proteolysis coupled to mass spectrometry to obtain information about the regions of E6AP that are involved in, or are affected by binding cobalamins and alloxazine derivatives. Our data suggest that dietary supplementation with vitamin B12 can be beneficial for AS individuals.


Asunto(s)
Síndrome de Angelman , Ubiquitina-Proteína Ligasas , Vitamina B 12 , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/genética , Síndrome de Angelman/tratamiento farmacológico , Síndrome de Angelman/metabolismo , Humanos , Regulación Alostérica/efectos de los fármacos , Vitamina B 12/metabolismo , Vitamina B 12/química , Vitamina B 12/farmacología
3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612894

RESUMEN

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Asunto(s)
Aminopeptidasas , Insulina , Ensayos Analíticos de Alto Rendimiento , Insulina Regular Humana , Colorantes , Ácidos Hidroxámicos , Zinc
4.
J Fungi (Basel) ; 10(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667929

RESUMEN

Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The role of peptides in defense against pathogens in F. ulmaria remains unknown. The objective of this study was to explore the repertoire of antimicrobial (AMPs) and defense-related signaling peptide genes expressed by F. ulmaria in response to infection with Bipolaris sorokiniana using RNA-seq. Transcriptomes of healthy and infected plants at two time points were sequenced on the Illumina HiSeq500 platform and de novo assembled. A total of 84 peptide genes encoding novel putative AMPs and signaling peptides were predicted in F. ulmaria transcriptomes. They belong to known, as well as new, peptide families. Transcriptional profiling in response to infection disclosed complex expression patterns of peptide genes and identified both up- and down-regulated genes in each family. Among the differentially expressed genes, the vast majority were down-regulated, suggesting suppression of the immune response by the fungus. The expression of 13 peptide genes was up-regulated, indicating their possible involvement in triggering defense response. After functional studies, the encoded peptides can be used in the development of novel biofungicides and resistance inducers.

5.
Talanta ; 273: 125869, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490027

RESUMEN

High-throughput drug screening (HTDS) has significantly reduced the time and cost of new drug development. Nonetheless, contact-dependent cell-cell communication (CDCCC) may impact the chemosensitivity of tumour cells. There is a pressing need for low-cost single-cell HTDS platforms, alongside a deep comprehension of the mechanisms by which CDCCC affects drug efficacy, to fully unveil the efficacy of anticancer drugs. In this study, we develop a microfluidic chip for single-cell HTDS and evaluate the molecular mechanisms impacted by CDCCC using quantitative mass spectrometry-based proteomics. The chip achieves high-quality drug mixing and single-cell capture, with single-cell drug screening results on the chip showing consistency with those on the 96-well plates under varying concentration gradients. Through quantitative proteomic analysis, we deduce that the absence of CDCCC in single tumour cells can enhance their chemoresistance potential, but simultaneously subject them to stronger proliferation inhibition. Additionally, pathway enrichment analysis suggests that CDCCC could impact several signalling pathways in tumour single cells that regulate vital biological processes such as tumour proliferation, adhesion, and invasion. These results offer valuable insights into the potential connection between CDCCC and the chemosensitivity of tumour cells. This research paves the way for the development of single-cell HTDC platforms and holds the promise of advancing tumour personalized treatment strategies.


Asunto(s)
Neoplasias , Proteómica , Humanos , Evaluación Preclínica de Medicamentos , Comunicación Celular , Ensayos Analíticos de Alto Rendimiento/métodos
6.
Sci Total Environ ; 924: 171686, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38485026

RESUMEN

Methane-oxidizing bacteria (MOB) have long been considered as a microbial indicator for oil and gas prospecting. However, due to the phylogenetically narrow breath of ecophysiologically distinct MOB, classic culture-dependent approaches could not discriminate MOB population at fine resolution, and accurately reflect the abundance of active MOB in the soil above oil and gas reservoirs. Here, we presented a novel microbial anomaly detection (MAD) strategy to quantitatively identify specific indicator methylotrophs in the surface soils for bioprospecting oil and gas reservoirs by using a combination of 13C-DNA stable isotope probing (SIP), high-throughput sequencing (HTS), quantitative PCR (qPCR) and geostatistical analysis. The Chunguang oilfield of the Junggar Basin was selected as a model system in western China, and type I methanotrophic Methylobacter was most active in the topsoil above the productive oil wells, while type II methanotrophic Methylosinus predominated in the dry well soils, exhibiting clear differences between non- and oil reservoir soils. Similar results were observed by quantification of Methylobacter pmoA genes as a specific bioindicator for the prediction of unknown reservoirs by grid sampling. A microbial anomaly distribution map based on geostatistical analysis further showed that the anomalous zones were highly consistent with petroleum, geological and seismic data, and validated by subsequent drilling. Over seven years, a total of 24 wells have been designed and drilled into the targeted anomaly, and the success rate via the MAD prospecting strategy was 83 %. Our results suggested that molecular techniques are powerful tools for oil and gas prospecting. This study indicates that the exploration efficiency could be significantly improved by integrating multi-disciplinary information in geophysics and geomicrobiology while reducing the drilling risk to a greater extent.


Asunto(s)
Methylococcaceae , Petróleo , Yacimiento de Petróleo y Gas , Metano , Suelo , Bioprospección , Microbiología del Suelo , Filogenia , Oxidación-Reducción
7.
Food Chem ; 447: 139017, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38531304

RESUMEN

Long-term consumption of mixed fraudulent edible oils increases the risk of developing of chronic diseases which has been a threat to the public health globally. The complicated global supply-chain is making the industry malpractices had often gone undetected. In order to restore the confidence of consumers, traceability (and accountability) of every level in the supply chain is vital. In this work, we shown that machine learning (ML) assisted windowed spectroscopy (e.g., visible-band, infra-red band) produces high-throughput, non-destructive, and label-free authentication of edible oils (e.g., olive oils, sunflower oils), offers the feasibility for rapid analysis of large-scale industrial screening. We report achieving high-level of discriminant (AUC > 0.96) in the large-scale (n ≈ 11,500) of adulteration in olive oils. Notably, high clustering fidelity of 'spectral fingerprints' achieved created opportunity for (hypothesis-free) self-sustaining large database compilation which was never possible without machine learning. (137 words).


Asunto(s)
Contaminación de Alimentos , Aceites de Plantas , Aceites de Plantas/química , Aceite de Oliva/química , Aceite de Girasol , Análisis Espectral , Contaminación de Alimentos/análisis
8.
Phytomedicine ; 128: 155300, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518639

RESUMEN

BACKGROUND: This study was conducted to elucidate the critical molecular pathways underlying the protective effects of remifentanil against hepatic ischemia-reperfusion injury in rats. Our approach integrated network pharmacology analysis with high-throughput sequencing to achieve a comprehensive understanding of the mechanisms involved. STUDY DESIGN/METHODS: The study utilized GSE24430 gene expression data from GEO to investigate remifentanil's impact on Hepatic Ischemia-Reperfusion Injury in rats. Weighted Correlation Network Analysis (WGCNA) was employed to pinpoint crucial genes and identify modules of co-expressed genes. Differential analysis with the "Limma" package revealed genes differentially expressed in IRI vs. control groups. PubChem and PharmMapper provided target genes affected by remifentanil. Protein-protein interaction networks were constructed via GeneCards and STRING. Functional analysis pinpointed core genes involved in remifentanil's IRI alleviation. IRI rat models were established, and hepatic injury indicators, liver structure via H&E staining, autophagosome counts via electron microscopy, and gene/protein expression via RT-qPCR and Western blot were assessed. High-throughput sequencing analyzed molecular pathways affected by varying remifentanil doses in IRI rats. RESULTS: In the study, we discovered four primary co-expression modules associated with hepatic IRI, and the grey module exhibited the highest correlation with hepatic IRI.A total of sixty-eight genes that were differentially expressed were found to have a connection with hepatic IRI.Network pharmacology analysis found that remifentanil may alleviate hepatic IRI through Fmol.found that the Fmol/Parkin signaling pathway may alleviate hepatic IRI via Additionally, the database autophagy. The established hepatic IRI rat models further confirmed the above findings. CONCLUSION: Our study established that remifentanil triggers the Fmol/Parkin signaling cascade, amplifying the expression levels of Fmol and Parkin. This process culminates in the activation of autophagy within hepatic cells, ultimately alleviating hepatic ischemia-reperfusion injury (IRI).


Asunto(s)
Hígado , Farmacología en Red , Ratas Sprague-Dawley , Remifentanilo , Daño por Reperfusión , Transducción de Señal , Ubiquitina-Proteína Ligasas , Animales , Daño por Reperfusión/tratamiento farmacológico , Remifentanilo/farmacología , Transducción de Señal/efectos de los fármacos , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratas , Ubiquitina-Proteína Ligasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Mapas de Interacción de Proteínas
9.
Biochem Pharmacol ; 223: 116127, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490519

RESUMEN

Sepsis induced myocardial dysfunction (SIMD) is a serious complication of sepsis. There is increasing evidence that the renin-angiotensin system (RAS) is activated in SIMD. Angiotensinogen (AGT) is a precursor of the RAS, and the inhibition of AGT may have significant cardiovascular benefits. But until now, there have been no reports of small molecule drugs targeting AGT. In this study, we designed a promoter-luciferase based system to screen for novel AGT inhibitors to alleviate SIMD. As a result of high-throughput screening, a total of 5 compounds from 351 medicinal herb-derived natural compounds were found inhibiting AGT. 18ß-glycyrrhetinic acid (18ßGA) was further identified as a potent suppressor of AGT. In vitro experiments, 18ßGA could inhibit the secretion of AGT by HepG2 cells and alleviate the elevated level of mitochondrial oxidative stress in cardiomyocytes co-cultured with HepG2 supernatants. In vivo, 18ßGA prolonged the survival rate of SIMD mice, enhanced cardiac function, and inhibited the damage of mitochondrial function and inflammation. In addition, the results showed that 18ßGA may reduce AGT transcription by downregulating hepatocyte nuclear factor 4 (HNF4) and that further alleviated SIMD. In conclusion, we provided a more efficient screening strategy for AGT inhibitors and expanded the novel role of 18ßGA as a promising lead compound in rescuing cardiovascular disease associated with RAS overactivation.


Asunto(s)
Ácido Glicirretínico/análogos & derivados , Ensayos Analíticos de Alto Rendimiento , Sepsis , Ratones , Animales , Lipopolisacáridos , Angiotensinógeno/genética
10.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339084

RESUMEN

The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well as the development of the infant microbiota. Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM) (5 g/L), lactoferrin (0.6 g/L), and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) (106 CFU/g). Using fecal inoculates from three healthy infants, we assessed microbiota changes, the bifidogenic effect, and the short-chain fatty acid (SCFA) production of the supplemented test formula and compared those with data obtained from an unsupplemented base formula and from the breast milk control. Our results show that even after INFOGEST digestion of the formula, the supplemented formula can still maintain its bioactivity and modulate infants' microbiota composition, promote faster bifidobacterial growth, and stimulate production of SCFAs. Thus, it may be concluded that the test formula containing a bioactive blend promotes infant gut microbiota and SCFA profile to something similar, but not identical to those of breastfed infants.


Asunto(s)
Bifidobacterium animalis , Microbiota , Lactante , Femenino , Humanos , Fórmulas Infantiles , Leche Humana , Suplementos Dietéticos , Lactancia Materna , Bifidobacterium , Heces/microbiología , Oligosacáridos/farmacología
11.
Environ Sci Pollut Res Int ; 31(7): 10766-10784, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200199

RESUMEN

Currently, there is limited understanding of the structures and variabilities of bacterial communities in oil-contaminated soil within shale gas development. The Changning shale gas well site in Sichuan province was focused, and high-throughput sequencing was used to investigate the structures of bacterial communities and functions of bacteria in soil with different degrees of oil pollution. Furthermore, the influences of the environmental factors including pH, moisture content, organic matter, total nitrogen, total phosphorus, oil, and the biological toxicity of the soil on the structures of bacterial communities were analyzed. The results revealed that Proteobacteria and Firmicutes predominated in the oil-contaminated soil. α-Proteobacteria and γ-Proteobacteria were the main classes under the Proteobacteria phylum. Bacilli was the main class in the Firmicutes phylum. Notably, more bacteria were only found in CN-5 which was the soil near the storage pond for abandoned drilling mud, including Marinobacter, Balneola, Novispirillum, Castellaniella, and Alishewanella. These bacteria exhibited resilience to higher toxicity and demonstrated proficiency in oil degradation. The functions including carbohydrate transport and metabolism, energy metabolism, replication, recombination and repair replication, signal transduction mechanisms, and amino acid transport and metabolism responded differently to varying concentrations of oil. The disparities in bacterial genus composition across samples stemmed from a complex play of pH, moisture content, organic matter, total nitrogen, total phosphorus, oil concentration, and biological toxicity. Notably, bacterial richness correlated positively with moisture content, while bacterial diversity showed a significant positive correlation with pH. Acidobacteria exhibited a significant positive correlation with moisture content. Litorivivens and Luteimonas displayed a significant negative correlation with pH, while Rhizobium exhibited a significant negative correlation with moisture content. Pseudomonas, Proteiniphilum, and Halomonas exhibited positive correlations not only with organic matter but also with oil concentration. Total nitrogen exhibited a significant positive correlation with Taonella and Sideroxydans. On the other hand, total phosphorus showed a significant negative correlation with Sphingomonas. Furthermore, Sphingomonas, Gp6, and Ramlibacter displayed significant negative correlations with biological toxicity. The differential functions exhibited no significant correlation with environmental factors but displayed a significant positive correlation with the Proteobacteria phylum. Aridibacter demonstrated a significant positive correlation with cell motility and cellular processes and signaling. Conversely, Pseudomonas, Proteiniphilum, and Halomonas were negatively correlated with differential functions, particularly in amino acid metabolism, carbohydrate metabolism, and membrane transport. Compared with previous research, more factors were considered in this research when studying structural changes in bacterial communities, such as physicochemical properties and biological toxicity of soil. In addition, the correlations of differential functions of communities with environmental factors, bacterial phyla, and genera were investigated.


Asunto(s)
Gas Natural , Yacimiento de Petróleo y Gas , Bacterias/metabolismo , Proteobacteria , Firmicutes , Suelo/química , Acidobacteria , Minerales/metabolismo , Fósforo/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Nitrógeno/análisis , Aminoácidos/metabolismo , Microbiología del Suelo
12.
Biomaterials ; 305: 122450, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38169190

RESUMEN

In vitro atherosclerosis models are essential to evaluate therapeutics before in vivo and clinical studies, but significant limitations remain, such as the lack of three-layer vascular architecture and limited atherosclerotic features. Moreover, no scalable 3D atherosclerosis model is available for making high-throughput assays for therapeutic evaluation. Herein, we report an in vitro 3D three-layer nanomatrix vascular sheet with critical atherosclerosis multi-features (VSA), including endothelial dysfunction, monocyte recruitment, macrophages, extracellular matrix remodeling, smooth muscle cell phenotype transition, inflammatory cytokine secretion, foam cells, and calcification initiation. Notably, we present the creation of high-throughput functional assays with VSAs and the use of these assays for evaluating therapeutics for atherosclerosis treatment. The therapeutics include conventional drugs (statin and sirolimus), candidates for treating atherosclerosis (curcumin and colchicine), and potential gene therapy (miR-146a-loaded liposomes). The high efficiency and flexibility of the scalable VSA functional assays should facilitate drug discovery and development for atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Aterosclerosis/tratamiento farmacológico , Macrófagos , Células Espumosas , Monocitos , Expresión Génica , Miocitos del Músculo Liso
13.
Int J Biol Macromol ; 254(Pt 2): 127808, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926310

RESUMEN

Gut microbiota and their metabolic processes depend on the intricate interplay of gut microbiota and their metabolic processes. Bacillus licheniformis, a beneficial food supplement, has shown promising effects on stabilizing gut microbiota and metabolites. However, the precise mechanisms underlying these effects remain elusive. In this study, we investigated the impact of polysaccharide-producing B. licheniformis as a dietary supplement on the gut microbiome and metabolites through a combination of scanning electron microscopy (SEM), histological analysis, high-throughput sequencing (HTS), and metabolomics. Our findings revealed that the B. licheniformis-treated group exhibited significantly increased jejunal goblet cells. Moreover, gut microbial diversity was lower in the treatment group as compared to the control, accompanied by noteworthy shifts in the abundance of specific bacterial taxa. Enrichment of Firmicutes, Lachnospiraceae, and Clostridiales_bacterium contrasted with reduced levels of Campylobacterota, Proteobacteria, Parasutterella, and Helicobacter. Notably, the treatment group showed significant weight gain after 33 days, emphasizing the polysaccharide's impact on host metabolism. Delving into gut metabolomics, we discovered significant alterations in metabolites. Nine metabolites, including olprinone, pyruvic acid, and 2-methyl-3-oxopropanoate, were upregulated, while eleven, including defoslimod and voclosporin were down-regulated, shedding light on phenylpropanoid biosynthesis, tricarboxylic acid cycle (TCA cycle), and the glucagon signaling pathway. This comprehensive multi-omics analysis offers compelling insights into the potential of B. licheniformis as a dietary polysaccharide supplement for gut health and host metabolism, promising significant implications for gut-related issues.


Asunto(s)
Bacillus licheniformis , Microbioma Gastrointestinal , Animales , Bovinos , Multiómica , Tibet , Metabolómica , Suplementos Dietéticos , Bacterias , Polisacáridos/farmacología , ARN Ribosómico 16S
14.
Sci China Life Sci ; 67(2): 258-273, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37837531

RESUMEN

Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.


Asunto(s)
Plantas Medicinales , Plantas Medicinales/genética , Fitomejoramiento , Genómica/métodos , Secuenciación Completa del Genoma , Productos Agrícolas/genética , Genoma de Planta/genética
15.
Free Radic Biol Med ; 210: 430-447, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056576

RESUMEN

Cisplatin is a frequently used chemotherapeutic medicine for cancer treatment. Permanent hearing loss is one of the most serious side effects of cisplatin, but there are few FDA-approved medicines to prevent it. We applied high-through screening and target fishing and identified aldose reductase, a key enzyme of the polyol pathway, as a novel target for treating cisplatin ototoxicity. Cisplatin treatment significantly increased the expression level and enzyme activity of aldose reductase in the cochlear sensory epithelium. Genetic knockdown or pharmacological inhibition of aldose reductase showed a significant protective effect on cochlear hair cells. Cisplatin-induced overactivation of aldose reductase led to the decrease of NADPH/NADP+ and GSH/GSSG ratios, as well as the increase of oxidative stress, and contributed to hair cell death. Results of target prediction, molecular docking, and enzyme activity detection further identified that Tiliroside was an effective inhibitor of aldose reductase. Tiliroside was proven to inhibit the enzymatic activity of aldose reductase via competitively interfering with the substrate-binding region. Both Tiliroside and another clinically approved aldose reductase inhibitor, Epalrestat, inhibited cisplatin-induced oxidative stress and subsequent cell death and thus protected hearing function. These findings discovered the role of aldose reductase in the pathogenesis of cisplatin-induced deafness and identified aldose reductase as a new target for the prevention and treatment of hearing loss.


Asunto(s)
Cisplatino , Pérdida Auditiva , Humanos , Cisplatino/efectos adversos , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Simulación del Acoplamiento Molecular , Evaluación Preclínica de Medicamentos , Pérdida Auditiva/inducido químicamente
16.
Water Res ; 250: 121010, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142507

RESUMEN

Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs. We found that, compared with algal-derived ALPs, bacteria-derived ALPs exhibited a more pronounced and sensitive response to CYN. This response to CYN was enhanced under low-P conditions. Interestingly, we found that Verrucomicrobia made the largest contribution to the total abundance of pho genes, which encode ALPs. Having high gene abundance of the CYN-sensing PI3K-AKT signaling pathway, Verrucomicrobia's proportion increased with higher concentrations of CYN under low-P conditions, thereby explaining the observed increase in pho gene abundance. Compared with other cyanobacterial genera, Raphidiopsis had a higher abundance of the pst gene. This suggests that Raphidiopsis exhibited a greater capacity to uptake the inorganic P generated by ALPs secreted by other organisms. Overall, our results reveal the mechanism of CYN-induced ALP secretion and its impact on planktonic P-cycling, and provide valuable insights into the role of CYN in supporting the formation of Raphidiopsis blooms.


Asunto(s)
Alcaloides , Cianobacterias , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Fósforo/metabolismo , Uracilo
17.
J Nutr Biochem ; 123: 109502, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890711

RESUMEN

Embryo development exerts far-reaching influence on pregnancy outcome, postnatal development and lifelong health. Thereafter, to select functional nutrients to improve embryo development is of great importance. Herein, a stable porcine trophectoderm cell line expressing a luciferase reporter gene driven by a 1,009 bp PCNA gene promoter was constructed through lentiviral transduction and G418 selection. A high throughput screening assay was subsequently developed using the stable reporter cell line to screen a library of 225 nutrients. Seven nutrients with a minimum Z-score of 2.0 were initially identified to be capable of enhancing embryonic development. Among these nutrients, resveratrol, apigenin, and retinol palmitate were furtherly confirmed the beneficial effects for embryo development. Resveratrol significantly increased the expression of key genes involved in pTr cell proliferation and the number of S-phase cells. Resveratrol was furtherly confirmed to promote the expression of key genes in trophoblast development and increase embryo adhesion rate in vitro. Similarly, dietary 0.05% resveratrol supplementation significantly increased the number of embryo attachment and serum level of P4 and E2 in rats. Resveratrol could also improve maternal antioxidant levels and reduce intracellular ROS. Collectively, a high throughput screening cell model for nutrient regulation of embryonic development was established, which can be used to highly effectively select the potential candidates for embryo development. These findings have great implications for exploring optimal functional nutrients to improve embryo development, ultimately beneficial for pregnancy outcome, offspring postnatal development and lifelong health for human beings and mammalian animals.


Asunto(s)
Desarrollo Embrionario , Ensayos Analíticos de Alto Rendimiento , Femenino , Porcinos , Embarazo , Ratas , Humanos , Animales , Resveratrol/farmacología , Desarrollo Embrionario/genética , Antioxidantes/farmacología , Nutrientes , Mamíferos
18.
Nutrients ; 15(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38068786

RESUMEN

Non-nutritive sweeteners (NNSs) provide a sweet taste to foods and beverages without significantly adding calories. Still, their consumption has been linked to modifications in adult's and children's gut microbiota and the disruption of blood glucose control. Human milk microbiota are paramount in establishing infants' gut microbiota, but very little is known about whether the consumption of sweeteners can alter it. To address this question, we sequenced DNA extracted colostrum samples from a group of mothers, who had different levels of NNS consumption, using the Ion Torrent Platform. Our results show that the "core" of colostrum microbiota, composed of the genera Bifidobacterium, Blautia, Cutibacteium, Staphylococcus, and Streptococcus, remains practically unchanged with the consumption of NNS during pregnancy, but specific genera display significant alterations, such as Staphylococcus and Streptococcus. A significant increase in the unclassified archaea Methanobrevibacter spp. was observed as the consumption frequency of NNS increased. The increase in the abundance of this archaea has been previously linked to obesity in Mexican children. NNS consumption during pregnancy could be related to changes in colostrum microbiota and may affect infants' gut microbiota seeding and their future health.


Asunto(s)
Microbiota , Edulcorantes no Nutritivos , Embarazo , Femenino , Adulto , Niño , Humanos , Calostro , Edulcorantes , Ingestión de Energía
19.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6030-6038, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38114209

RESUMEN

This study aimed to explore the correlation between rhizosphere soil microorganisms of wild Arnebia euchroma and the content of medicinal components to provide guidance for the selection of the ecological planting base. The total DNA of rhizosphere soil microorganisms of wild A. euchroma was extracted, and the microbial community structure of rhizosphere soil microorganisms was analyzed by IlluminaMiseq high-throughput sequencing technology. The content of total hydroxynaphthoquinone pigment and ß,ß'-dimethylacrylalkannin in medicinal materials was determined by high-performance liquid chromatography(HPLC). The physicochemical pro-perties of rhizosphere soil of wild A. euchroma in main producing areas were determined, and the correlation of soil microbial abundance with index component content and soil physicochemical properties was analyzed by SPSS software. The results showed that the species composition of rhizosphere fungi and bacteria in A. euchroma from different habitats was similar at the phylum and genus levels, but their relative abundance, richness index(Chao1), and community diversity(Simpson) index were different. Correlation analysis showed that the content of available phosphorus in soil was positively correlated with the content of total hydroxynaphthoquinone pigment and ß,ß'-dimethylacrylalkannin, and the abundance of five fungal genera such as Solicoccozyma and six bacterial genera such as Pseudo-nocardia and Bradyrhizobium was positively correlated with the content of medicinal components in medicinal materials. The abundance of Bradyrhizobium was significantly positively correlated with the content of ß,ß'-dimethylacrylalkanin. The abundance of fungi such as Archaeorhizomyces was significantly positively correlated with the content of available phosphorus in rhizosphere soil, and Bradyrhizobium was significantly negatively correlated with soil pH. Therefore, the abundance of fungi and bacteria in the rhizosphere of A. euchroma has a certain correlation with the medicinal components and the physicochemical properties of the rhizosphere soil, which can provide a scientific basis for the selection of ecological planting bases in the later stage.


Asunto(s)
Boraginaceae , Rizosfera , Microbiología del Suelo , Bacterias/genética , Fósforo , Suelo
20.
J Cheminform ; 15(1): 102, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37915072

RESUMEN

Docking of large compound collections becomes an important procedure to discover new chemical entities. Screening of large sets of compounds may also occur in de novo design projects guided by molecular docking. To facilitate these processes, there is a need for automated tools capable of efficiently docking a large number of molecules using multiple computational nodes within a reasonable timeframe. These tools should also allow for easy integration of new docking programs and provide a user-friendly program interface to support the development of further approaches utilizing docking as a foundation. Currently available tools have certain limitations, such as lacking a convenient program interface or lacking support for distributed computations. In response to these limitations, we have developed a module called EasyDock. It can be deployed over a network of computational nodes using the Dask library, without requiring a specific cluster scheduler. Furthermore, we have proposed and implemented a simple model that predicts the runtime of docking experiments and applied it to minimize overall docking time. The current version of EasyDock supports popular docking programs, namely Autodock Vina, gnina, and smina. Additionally, we implemented a supplementary feature to enable docking of boron-containing compounds, which are not inherently supported by Vina and smina, and demonstrated its applicability on a set of 55 PDB protein-ligand complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA