Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Res (Camb) ; 9(5): 622-631, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33178422

RESUMEN

Diethylhexyl phthalate (DEHP) is known as a persistent environmental pollutant. However, the possible effects of DEHP on human neural tube defects (NTDs) remain elusive. We set out to investigate the exposure of DEHP in human and explore the association of DEHP and NTDs. The level of DEHP in maternal urine was measured and analyzed by GC-MS. To further validate the results in human NTDs, chick embryos were used as animal models. Viability, reactive oxygen species (ROS) level, oxidative stress indicators and apoptosis were detected in DEHP-treated chick embryos. Our research revealed that the detection ratio of positive DEHP and its metabolites in maternal urine were observed dramatically higher in NTDs population than that in normal controls (P < 0.01, P < 0.05, respectively). Moreover, DEHP treatment (10-6 M) led to developmental toxicity in chick embryos via accelerating oxidative stress response and cell apoptosis, and changing the level of oxidative stress-related indicators. Moreover, high dose choline (100 µg/µl) could partially restrain the toxicity effects induced by DEHP. Our data collectively imply that the incidence of NTDs may closely associate with DEHP exposure, which disturbs the development of neural tubes by enhancing oxidative stress.

2.
Toxicol Res (Camb) ; 9(3): 222-229, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32670553

RESUMEN

Benzyl butyl phthalate (BBP) is a persistent environmental pollutant. BBP exposure and the possible effects on human neural tube defects (NTDs) remain elusive. In this study, we found that the detection ratio of positive BBP and its metabolites in maternal urine was obviously higher in NTDs' population than that in normal controls by GC-MS (P < 0.01, P < 0.05, respectively). Animal experiments showed that BBP treatment induced developmental toxicity in chick embryo by enhancing the levels of oxidative stress and cell apoptosis (P < 0.01). More interestingly, the supplement of high-dose choline (CHO, 10 5  µg/mL) could partially restore the teratogenic effects of BBP by inhibiting the occurrence of oxidative stress. Our data collectively suggest that BBP exposure may disturb neural tube development by strengthening oxidative stress. CHO can partially restore the toxicity effects of BBP. This study may provide new insight for NTD prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA