Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.588
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Clin. transl. oncol. (Print) ; 26(4): 891-904, Abr. 2024. ilus
Artículo en Inglés | IBECS | ID: ibc-VR-52

RESUMEN

Background: Recently, enhancer RNAs (eRNAs) have garnered attention as pivotal biomarkers for the onset and progression of cancer. However, the landscape of eRNAs and the implications of eRNA-based molecular subtypes in stage II/III colorectal cancer (CRC) remain largely unexplored. Methods: Comprehensive profiling of eRNAs was conducted on a public stage II/III CRC cohort with total RNA-seq data. We used unsupervised clustering of prognostic eRNAs to establish an eRNA-based subtyping system. Further evaluations included molecular characteristics, immune infiltration, clinical outcomes, and drug responses. Finally, we validated the eRNA-based subtyping system in The Cancer Genome Atlas (TCGA) CRC cohort. Results: We identified a total of 6453 expressed eRNAs, among which 237 were prognostic. A global upregulation of eRNAs was observed in microsatellite-stable (MSS) CRCs when compared to microsatellite instability-high (MSI-H) CRCs. Through consensus clustering, two novel molecular subtypes, termed Cluster 1(C1) and Cluster 2(C2), were further identified. C1, associated with the activation of epithelial–mesenchymal transition (EMT), hypoxia, and KRAS signaling pathways, showed poorer prognosis. C2, correlated with the canonical CRC subtype, exhibited superior survival outcomes. In addition, C1 showed enrichment with immune infiltration and more sensitivity to immune checkpoint inhibitors. Conclusion: Our study unravels the molecular heterogeneity of stage II/III CRC at the eRNA level and highlights the potential applications of the novel eRNA-based subtyping system in predicting prognosis and guiding immunotherapy.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Inmunoterapia , Pronóstico , Heterogeneidad Genética , Inestabilidad de Microsatélites , Neoplasias Colorrectales/terapia
2.
Scand J Immunol ; 99(5): e13356, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605549

RESUMEN

In light of increasing resistance to PD1 antibody therapy among certain patient populations, there is a critical need for in-depth research. Our study assesses the synergistic effects of a MUC1 DNA vaccine and PD1 antibody for surmounting PD1 resistance, employing a murine CT26/MUC1 colon carcinoma model for this purpose. When given as a standalone treatment, PD1 antibodies showed no impact on tumour growth. Additionally, there was no change observed in the intra-tumoural T-cell ratios or in the functionality of T-cells. In contrast, the sole administration of a MUC1 DNA vaccine markedly boosted the cytotoxicity of CD8+ T cells by elevating IFN-γ and granzyme B production. Our compelling evidence highlights that combination therapy more effectively inhibited tumour growth and prolonged survival compared to either monotherapy, thus mitigating the limitations intrinsic to single-agent therapies. This enhanced efficacy was driven by a significant alteration in the tumour microenvironment, skewing it towards pro-immunogenic conditions. This assertion is backed by a raised CD8+/CD4+ T-cell ratio and a decrease in immunosuppressive MDSC and Treg cell populations. On the mechanistic front, the synergistic therapy amplified expression levels of CXCL13 in tumours, subsequently facilitating T-cell ingress into the tumour setting. In summary, our findings advocate for integrated therapy as a potent mechanism for surmounting PD1 antibody resistance, capitalizing on improved T-cell functionality and infiltration. This investigation affords critical perspectives on enhancing anti-tumour immunity through the application of innovative therapeutic strategies.


Asunto(s)
Anticuerpos , Mucina-1 , Neoplasias , Receptor de Muerte Celular Programada 1 , Vacunas de ADN , Animales , Ratones , Anticuerpos/metabolismo , Linfocitos T CD8-positivos , Línea Celular Tumoral , Mucina-1/genética , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
3.
Crit Rev Oncol Hematol ; 198: 104359, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615871

RESUMEN

Ferroptosis is an unconventional programmed cell death mode caused by phospholipid peroxidation dependent on iron. Emerging immunotherapies (especially immune checkpoint inhibitors) have the potential to enhance lung cancer patients' long-term survival. Although immunotherapy has yielded significant positive applications in some patients, there are still many mechanisms that can cause lung cancer cells to evade immunity, thus leading to the failure of targeted therapies. Immune-tolerant cancer cells are insensitive to conventional death pathways such as apoptosis and necrosis, whereas mesenchymal and metastasis-prone cancer cells are particularly vulnerable to ferroptosis, which plays a vital role in mediating immune tolerance resistance by tumors and immune cells. As a result, triggering lung cancer cell ferroptosis holds significant therapeutic potential for drug-resistant malignancies. Here, we summarize the mechanisms underlying the suppression of ferroptosis in lung cancer, highlight its function in the lung cancer immune microenvironment, and propose possible therapeutic strategies.


Asunto(s)
Ferroptosis , Inmunoterapia , Neoplasias Pulmonares , Microambiente Tumoral , Ferroptosis/efectos de los fármacos , Ferroptosis/inmunología , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Animales
4.
Int J Pharm ; 656: 124045, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38561134

RESUMEN

The field of cancer therapy is witnessing the emergence of immunotherapy, an innovative approach that activates the body own immune system to combat cancer. Immunogenic cell death (ICD) has emerged as a prominent research focus in the field of cancer immunotherapy, attracting significant attention in recent years. The activation of ICD can induce the release of damage-associated molecular patterns (DAMPs), such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box protein 1 (HMGB1), and heat shock proteins (HSP). Subsequently, this process promotes the maturation of innate immune cells, including dendritic cells (DCs), thereby triggering a T cell-mediated anti-tumor immune response. The activation of the ICD ultimately leads to the development of long-lasting immune responses against tumors. Studies have demonstrated that partial therapeutic approaches, such as chemotherapy with doxorubicin, specific forms of radiotherapy, and phototherapy, can induce the generation of ICD. The main focus of this article is to discuss and review the therapeutic methods triggered by nanoparticles for ICD, while briefly outlining their anti-tumor mechanism. The objective is to provide a comprehensive reference for the widespread application of ICD.


Asunto(s)
Muerte Celular Inmunogénica , Inmunoterapia , Nanopartículas , Neoplasias , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Animales , Nanopartículas/administración & dosificación , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos
5.
Front Oncol ; 14: 1373388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601764

RESUMEN

Stage IIIA-N2 non-small cell lung cancer (NSCLC) is a heterogeneous group with different potential therapeutic approaches. Treatment is typically multimodal with either surgical resection after neoadjuvant chemotherapy and/or radiation or concurrent chemotherapy and radiation if unresectable. Despite the multimodal treatment and early stage, cure rates have traditionally been low. The introduction of immunotherapy changed the treatment landscape for NSCLC in all stages, and the introduction of immunotherapy in early-stage lung cancer has improved event free survival and overall survival. Tyrosine Kinase inhibitors (TKIs) have also improved outcomes in early-stage mutation-driven NSCLC. Optimal treatment choice and sequence is increasingly becoming based upon personalized factors including clinical characteristics, comorbidities, programmed death-ligand 1 (PD-L1) score, and the presence of targetable mutations. Despite encouraging data from multiple trials, the optimal multimodal sequence of stage IIIA-N2 NSCLC treatment remains unresolved and warrants further investigation. This review article summarizes recent major clinical trials of neoadjuvant and adjuvant treatment including stage IIIA-N2 NSCLC with a focus on immunotherapy and TKIs.

6.
BMC Complement Med Ther ; 24(1): 156, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605368

RESUMEN

BACKGROUND: The clinical application of immune checkpoint inhibitors (ICIs) is limited by their drug resistance, necessitating the development of ICI sensitizers to improve cancer immunotherapy outcomes. Huang Lian Jie Du Decoction (HLJD, Oren-gedoku-to in Japanese, Hwangryunhaedok-tang in Korean), a famous traditional Chinese medicinal prescription, has exhibited potential in the field of cancer treatment. This study aims to investigate the impact of HLJD on the efficacy of ICIs in melanoma and elucidate the underlying mechanisms. METHODS: The potential synergistic effects of HLJD and ICIs were investigated on the tumor-bearing mice model of B16F10 melanoma, and the tumor infiltration of immune cells was tested by flow cytometry. The differential gene expression in tumors between HLJD and ICIs group and ICIs alone group were analyzed by RNA-seq. The effects of HLJD on oxidative stress, TLR7/8, and type I interferons (IFN-Is) signaling were further validated by immunofluorescence, PCR array, and immunochemistry in tumor tissue. RESULTS: HLJD enhanced the anti-tumor effect of ICIs, significantly inhibited tumor growth, and prolonged the survival duration in melanoma. HLJD increased the tumor infiltration of anti-tumor immune cells, especially DCs, CD4+ T cells and CD8+T cells. Mechanically, HLJD activated the oxidative stress and TLR7/8 signaling pathway and IFN-Is-related genes in tumors. CONCLUSIONS: HLJD enhanced the therapeutic benefits of ICIs in melanoma, through increasing reactive oxygen species (ROS), promoting the TLR7/8 pathway, and activating IFN-Is signaling, which in turn activated DCs and T cells.


Asunto(s)
Medicamentos Herbarios Chinos , Inhibidores de Puntos de Control Inmunológico , Melanoma , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Coptis chinensis , Receptor Toll-Like 7 , Melanoma/tratamiento farmacológico , Transducción de Señal
7.
Cancers (Basel) ; 16(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611105

RESUMEN

Spinal meningiomas are the most common intradural, extramedullary tumor in adults, yet the least common entity when accounting for all meningiomas spanning the neuraxis. While traditionally considered a benign recapitulation of their intracranial counterpart, a paucity of knowledge exists regarding the differences between meningiomas arising from these two anatomic compartments in terms of histopathologic subtypes, molecular tumor biology, surgical principles, long-term functional outcomes, and recurrence rates. To date, advancements at the bench have largely been made for intracranial meningiomas, including the discovery of novel gene targets, DNA methylation profiles, integrated diagnoses, and alternative systemic therapies, with few exceptions reserved for spinal pathology. Likewise, evolving clinical research offers significant updates to our understanding of guiding surgical principles, intraoperative technology, and perioperative patient management for intracranial meningiomas. Nonetheless, spinal meningiomas are predominantly relegated to studies considering non-specific intradural extramedullary spinal tumors of all histopathologic types. The aim of this review is to comprehensively report updates in both basic science and clinical research regarding intraspinal meningiomas and to provide illustrative case examples thereof, thereby lending a better understanding of this heterogenous class of central nervous system tumors.

8.
JTO Clin Res Rep ; 5(4): 100659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38596201

RESUMEN

Introduction: Previous studies reported an association between immune checkpoint inhibitor infusion timing and the treatment effect in metastatic NSCLC. The present study assessed the association between durvalumab infusion timing and survival outcomes in patients with locally advanced NSCLC. Methods: Patients receiving durvalumab after chemoradiotherapy for locally advanced NSCLC at a single institution were retrospectively analyzed, and the association of the proportion of durvalumab infusions greater than or equal to 20% versus less than 20% after 3 PM with progression-free survival (PFS) and overall survival was assessed. Results: A total of 82 patients were included, with a median age of 69 years (interquartile range, 62-74 years); of these, 67 patients (82%) were of male sex, and 78 patients (95%) had a history of smoking. The median number of durvalumab infusions per patient was 16 (interquartile range, 8-24). Patients with at least 20% of their durvalumab infusions after 3 PM (n = 12/82, 15%) had a significantly shorter PFS than those who did not (median: 7.4 mo versus not available [NA]; hazard ratio [HR], 2.43; 95% confidence interval [CI]: 1.11-5.34, p = 0.027), whereas overall survival was shorter among the former compared with the latter group (median: 22.4 versus NA; HR, 1.80; 95% CI: 0.73-4.42, p = 0.20). In addition, both backward stepwise multivariable analysis and propensity score-matching analysis revealed that receiving at least 20% of durvalumab infusions after 3 PM was significantly associated with worse PFS (HR, 2.54; 95% CI: 1.03-5.67, p = 0.047; and HR, 4.64; 95% CI: 1.95-11.04; p < 0.001, respectively). Conclusions: The time of day of durvalumab infusions may impact survival outcomes in patients with locally advanced NSCLC.

9.
J Nanobiotechnology ; 22(1): 192, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637848

RESUMEN

Androgen deprivation therapy (ADT) is a crucial and effective strategy for prostate cancer, while systemic administration may cause profound side effects on normal tissues. More importantly, the ADT can easily lead to resistance by involving the activation of NF-κB signaling pathway and high infiltration of M2 macrophages in tumor microenvironment (TME). Herein, we developed a biomimetic nanotherapeutic platform by deriving cell membrane nanovesicles from cancer cells and probiotics to yield the hybrid cellular nanovesicles (hNVs), loading flutamide (Flu) into the resulting hNVs, and finally modifying the hNVs@Flu with Epigallocatechin-3-gallate (EGCG). In this nanotherapeutic platform, the hNVs significantly improved the accumulation of hNVs@Flu-EGCG in tumor sites and reprogramed immunosuppressive M2 macrophages into antitumorigenic M1 macrophages, the Flu acted on androgen receptors and inhibited tumor proliferation, and the EGCG promoted apoptosis of prostate cancer cells by inhibiting the NF-κB pathway, thus synergistically stimulating the antitumor immunity and reducing the side effects and resistance of ADT. In a prostate cancer mouse model, the hNVs@Flu-EGCG significantly extended the lifespan of mice with tumors and led to an 81.78% reduction in tumor growth compared with the untreated group. Overall, the hNVs@Flu-EGCG are safe, modifiable, and effective, thus offering a promising platform for effective therapeutics of prostate cancer.


Asunto(s)
FN-kappa B , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , FN-kappa B/metabolismo , Andrógenos/uso terapéutico , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Inmunoterapia/métodos , , Línea Celular Tumoral , Microambiente Tumoral
10.
J Nanobiotechnology ; 22(1): 163, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600506

RESUMEN

Photothermal immunotherapy is regarded as the ideal cancer therapeutic modality to against malignant solid tumors; however, its therapeutic benefits are often modest and require improvement. In this study, a thermoresponsive nanoparticle (BTN@LND) composed of a photothermal agent (PTA) and pyroptosis inducer (lonidamine) were developed to enhance immunotherapy applications. Specifically, our "two-step" donor engineering strategy produced the strong NIR-II-absorbing organic small-molecule PTA (BTN) that exhibited high NIR-II photothermal performance (ε1064 = 1.51 × 104 M-1 cm-1, η = 75.8%), and this facilitates the diagnosis and treatment of deep tumor tissue. Moreover, the fabricated thermally responsive lipid nanoplatform based on BTN efficiently delivered lonidamine to the tumor site and achieved spatiotemporal release triggered by the NIR-II photothermal effect. In vitro and in vivo experiments demonstrated that the NIR-II photothermal therapy (PTT)-mediated on-demand release of cargo effectively faciliated tumor cell pyroptosis, thereby intensifying the immunogenic cell death (ICD) process to promote antitumor immunotherapy. As a result, this intelligent component bearing photothermal and chemotherapy can maximally suppress the growth of tumors, thus providing a promising approach for pyroptosis/NIR-II PTT synergistic therapy against tumors.


Asunto(s)
Indazoles , Nanopartículas , Neoplasias , Humanos , Fototerapia , Piroptosis , Neoplasias/tratamiento farmacológico , Inmunoterapia , Línea Celular Tumoral
11.
Acta Pharm Sin B ; 14(4): 1525-1541, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572106

RESUMEN

Cancer immunotherapy has garnered promise in tumor progression, invasion, and metastasis through establishing durable and memorable immunological activity. However, low response rates, adverse side effects, and high costs compromise the additional benefits for patients treated with current chemical and biological agents. Chinese herbal medicines (CHMs) are a potential treasure trove of natural medicines and are gaining momentum in cancer immunomodulation with multi-component, multi-target, and multi-pathway characteristics. The active ingredient extracted from CHMs benefit generalized patients through modulating immune response mechanisms. Additionally, the introduction of nanotechnology has greatly improved the pharmacological qualities of active ingredients through increasing the hydrophilicity, stability, permeability, and targeting characteristics, further enhancing anti-cancer immunity. In this review, we summarize the mechanism of active ingredients for cancer immunomodulation, highlight nano-formulated deliveries of active ingredients for cancer immunotherapy, and provide insights into the future applications in the emerging field of nano-formulated active ingredients of CHMs.

12.
ACS Nano ; 18(15): 10439-10453, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567994

RESUMEN

The cGAS-STING pathway plays a crucial role in innate immune activation against cancer and infections, and STING agonists based on cyclic dinucleotides (CDN) have garnered attention for their potential use in cancer immunotherapy and vaccines. However, the limited drug-like properties of CDN necessitate an efficient delivery system to the immune system. To address these challenges, we developed an immunostimulatory delivery system for STING agonists. Here, we have examined aqueous coordination interactions between CDN and metal ions and report that CDN mixed with Zn2+ and Mn2+ formed distinctive crystal structures. Further pharmaceutical engineering led to the development of a functional coordination nanoparticle, termed the Zinc-Mn-CDN Particle (ZMCP), produced by a simple aqueous one-pot synthesis. Local or systemic administration of ZMCP exerted robust antitumor efficacy in mice. Importantly, recombinant protein antigens from SARS-CoV-2 can be simply loaded during the aqueous one-pot synthesis. The resulting ZMCP antigens elicited strong cellular and humoral immune responses that neutralized SARS-CoV-2, highlighting ZMCP as a self-adjuvant vaccine platform against COVID-19 and other infectious pathogens. Overall, this work establishes a paradigm for developing translational coordination nanomedicine based on drug-metal ion coordination and broadens the applicability of coordination medicine for the delivery of proteins and other biologics.


Asunto(s)
Nanopartículas , Neoplasias , Vacunas , Animales , Ratones , Neoplasias/terapia , Adyuvantes Inmunológicos , Inmunoterapia/métodos , Nanopartículas/química
13.
Ageing Res Rev ; 97: 102309, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38615895

RESUMEN

Alzheimer's disease (AD), a multi-factorial neurodegenerative disorder has affected over 30 million individuals globally and these numbers are expected to increase in the coming decades. Current therapeutic interventions are largely ineffective as they focus on a single target. Development of an effective drug therapy requires a deep understanding of the various factors influencing the onset and progression of the disease. Aging and genetic factors exert a major influence on the development of AD. Other factors like post-viral infections, iron overload, gut dysbiosis, and vascular dysfunction also exacerbate the onset and progression of AD. Further, post-translational modifications in tau, DRP1, CREB, and p65 proteins increase the disease severity through triggering mitochondrial dysfunction, synaptic loss, and differential interaction of amyloid beta with different receptors leading to impaired intracellular signalling. With advancements in neuroscience tools, new inter-relations that aggravate AD are being discovered including pre-existing diseases and exposure to other pathogens. Simultaneously, new therapeutic strategies involving modulation of gene expression through targeted delivery or modulation with light, harnessing the immune response to promote clearance of amyloid deposits, introduction of stem cells and extracellular vesicles to replace the destroyed neurons, exploring new therapeutic molecules from plant, marine and biological sources delivered in the free state or through nanoparticles and use of non-pharmacological interventions like music, transcranial stimulation and yoga. Polypharmacology approaches involving combination of therapeutic agents are also under active investigation for superior therapeutic outcomes. This review elaborates on various disease-causing factors, their underlying mechanisms, the inter-play between different disease-causing players, and emerging therapeutic options including those under clinical trials, for treatment of AD. The challenges involved in AD therapy and the way forward have also been discussed.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Envejecimiento/fisiología , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo
14.
Front Immunol ; 15: 1365172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562932

RESUMEN

CAR T cell therapies face challenges in combating solid tumors due to their single-target approach, which becomes ineffective if the targeted antigen is absent or lost. Universal CAR T cells (UniCAR Ts) provide a promising solution by utilizing molecular tags (linkers), such as biotin conjugated to monoclonal antibodies, enabling them to target a variety of tumor antigens. Recently, we showed that conventional CAR T cells could penetrate the extracellular matrix (ECM) of ADCC-resistant tumors, which forms a barrier to therapeutic antibodies. This finding led us to investigate whether UniCAR T cells, targeted by soluble antibody-derived linkers, could similarly tackle ADCC-resistant tumors where ECM restricts antibody penetration. We engineered UniCAR T cells by incorporating a biotin-binding monomeric streptavidin 2 (mSA2) domain for targeting HER2 via biotinylated trastuzumab (BT). The activation and cytotoxicity of UniCAR T cells in the presence or absence of BT were evaluated in conventional immunoassays. A 3D spheroid coculture was set up to test the capability of UniCAR Ts to access ECM-masked HER2+ cells. For in vivo analysis, we utilized a HER2+ xenograft model in which intravenously administered UniCAR T cells were supplemented with intraperitoneal BT treatments. In vitro, BT-guided UniCAR T cells showed effective activation and distinct anti-tumor response. Upon target recognition, IFNγ secretion correlated with BT concentration. In the presence of BT, UniCAR T cells effectively penetrated HER2+ spheroids and induced cell death in their core regions. In vivo, upon intravenous administration of UniCAR Ts, circulating BT linkers immediately engaged the mSA2 domain and directed effector cells to the HER2+ tumors. However, these co-treated mice died early, possibly due to the lung infiltration of UniCAR T cells that could recognize both native biotin and HER2. Our results suggest that UniCAR T cells guided with soluble linkers present a viable alternative to conventional CAR T cells, especially for patients resistant to antibody therapy and those with solid tumors exhibiting high antigenic variability. Critical to their success, however, is the choice of an appropriate binding domain for the CAR and the corresponding soluble linker, ensuring both efficacy and safety in therapeutic applications.


Asunto(s)
Biotina , Receptor ErbB-2 , Humanos , Ratones , Animales , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Trastuzumab/metabolismo , Biotina/metabolismo , Xenoinjertos , Línea Celular Tumoral , Linfocitos T , Citotoxicidad Celular Dependiente de Anticuerpos
15.
Biochemistry (Mosc) ; 89(Suppl 1): S127-S147, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621748

RESUMEN

The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.


Asunto(s)
Neoplasias , Medicina de Precisión , Animales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Organoides , Evaluación Preclínica de Medicamentos , Microambiente Tumoral
16.
Adv Drug Deliv Rev ; 209: 115306, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38626859

RESUMEN

Cancer immunotherapy represents a revolutionary strategy, leveraging the patient's immune system to inhibit tumor growth and alleviate the immunosuppressive effects of the tumor microenvironment (TME). The recent emergence of immune checkpoint blockade (ICB) therapies, particularly following the first approval of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors like ipilimumab, has led to significant growth in cancer immunotherapy. The extensive explorations on diverse immune checkpoint antibodies have broadened the therapeutic scope for various malignancies. However, the clinical response to these antibody-based ICB therapies remains limited, with less than 15% responsiveness and notable adverse effects in some patients. This review introduces the emerging strategies to overcome current limitations of antibody-based ICB therapies, mainly focusing on the development of small interfering ribonucleic acid (siRNA)-based ICB therapies and innovative delivery systems. We firstly highlight the diverse target immune checkpoint genes for siRNA-based ICB therapies, incorporating silencing of multiple genes to boost anti-tumor immune responses. Subsequently, we discuss improvements in siRNA delivery systems, enhanced by various nanocarriers, aimed at overcoming siRNA's clinical challenges such as vulnerability to enzymatic degradation, inadequate pharmacokinetics, and possible unintended target interactions. Additionally, the review presents various combination therapies that integrate chemotherapy, phototherapy, stimulatory checkpoints, ICB antibodies, and cancer vaccines. The important point is that when used in combination with siRNA-based ICB therapy, the synergistic effect of traditional therapies is strengthened, improving host immune surveillance and therapeutic outcomes. Conclusively, we discuss the insights into innovative and effective cancer immunotherapeutic strategies based on RNA interference (RNAi) technology utilizing siRNA and nanocarriers as a novel approach in ICB cancer immunotherapy.


Asunto(s)
Silenciador del Gen , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias , ARN Interferente Pequeño , Humanos , ARN Interferente Pequeño/administración & dosificación , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Animales , Microambiente Tumoral/inmunología
17.
Photochem Photobiol ; 100(4): 910-922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623955

RESUMEN

Metastatic melanoma is an aggressive skin cancer with high mortality and recurrence rates. Despite the clinical success of recent immunotherapy approaches, prevailing resistance rates necessitate the continued development of novel therapeutic options. Photoimmunotherapy (PIT) is emerging as a promising immunotherapy strategy that uses photodynamic therapy (PDT) to unleash systemic immune responses against tumor sites while maintaining the superior tumor-specificity and minimally invasive nature of traditional PDT. In this review, we discuss recent advances in PIT and strategies for the management of melanoma using PIT. PIT can strongly induce immunogenic cell death, inviting the concomitant application of immune checkpoint blockade or adoptive cell therapies. PIT can also be leveraged to selectively remove the suppressive immune populations associated with immunotherapy resistance. The modular nature of PIT therapy design combined with the potential for patient-specific antigen selection or drug co-delivery makes PIT an alluring option for future personalized melanoma care.


Asunto(s)
Inmunoterapia , Melanoma , Fotoquimioterapia , Humanos , Melanoma/terapia , Melanoma/inmunología , Inmunoterapia/métodos , Fotoquimioterapia/métodos , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/inmunología , Fármacos Fotosensibilizantes/uso terapéutico , Animales
18.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473776

RESUMEN

Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.


Asunto(s)
Glioblastoma , Glioma , Hipertermia Inducida , Humanos , Fosfatidilinositol 3-Quinasas , Terapia Combinada , Microambiente Tumoral
19.
Cancers (Basel) ; 16(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38539569

RESUMEN

During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host's immune response, which is triggered by cancer cells expressing tumor-associated antigens or neoantigens. The responsive immune cytotoxic CD8+ T cells specifically target and kill tumor cells, leading to tumor regression and prolongation of survival in some cancers; however, some cancers may exhibit resistance due to the inactivation of anti-tumor CD8+ T cells. One mechanism by which the anti-tumor CD8+ T cells become dysfunctional is through the activation of the inhibitory receptor programmed death-1 (PD-1) by the corresponding tumor cells (or other cells in the tumor microenvironment (TME)) that express the programmed death ligand-1 (PD-L1). Hence, blocking the PD-1/PD-L1 interaction via specific monoclonal antibodies (mAbs) restores the CD8+ T cells' functions, leading to tumor regression. Accordingly, the Food and Drug Administration (FDA) has approved several checkpoint antibodies which act as immune checkpoint inhibitors. Their clinical use in various resistant cancers, such as metastatic melanoma and non-small-cell lung cancer (NSCLC), has shown significant clinical responses. We have investigated an alternative approach to prevent the expression of PD-L1 on tumor cells, through targeting the oncogenic transcription factor Yin Yang 1 (YY1), a known factor overexpressed in many cancers. We report the regulation of PD-L1 by YY1 at the transcriptional, post-transcriptional, and post-translational levels, resulting in the restoration of CD8+ T cells' anti-tumor functions. We have performed bioinformatic analyses to further explore the relationship between both YY1 and PD-L1 in cancer and to corroborate these findings. In addition to its regulation of PD-L1, YY1 has several other anti-cancer activities, such as the regulation of proliferation and cell viability, invasion, epithelial-mesenchymal transition (EMT), metastasis, and chemo-immuno-resistance. Thus, targeting YY1 will have a multitude of anti-tumor activities resulting in a significant obliteration of cancer oncogenic activities. Various strategies are proposed to selectively target YY1 in human cancers and present a promising novel therapeutic approach for treating unresponsive cancer phenotypes. These findings underscore the distinct regulatory roles of YY1 and PD-L1 (CD274) in cancer progression and therapeutic response.

20.
Biomaterials ; 307: 122514, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38428093

RESUMEN

Surgical intervention followed by chemotherapy is the principal treatment strategy for bladder cancer, which is hindered by significant surgical risks, toxicity from chemotherapy, and high rates of recurrence after surgery. In this context, a novel approach using mild magnetic hyperthermia therapy (MHT) for bladder cancer treatment through the intra-bladder delivery of magnetic nanoparticles is presented for the first time. This method overcomes the limitations of low magnetic thermal efficiency, inadequate tumor targeting, and reduced therapeutic effectiveness associated with the traditional intravenous administration of magnetic nanoparticles. Core-shell Zn-CoFe2O4@Zn-MnFe2O4 (MNP) nanoparticles were developed and further modified with hyaluronic acid (HA) to enhance their targeting ability toward tumor cells. The application of controlled mild MHT using MNP-HA at temperatures of 43-44 °C successfully suppressed the proliferation of bladder tumor cells and tumor growth, while also decreasing the expression levels of heat shock protein 70 (HSP70). Crucially, this therapeutic approach also activated the body's innate immune response involving macrophages, as well as the adaptive immune responses of dendritic cells (DCs) and T cells, thereby reversing the immunosuppressive environment of the bladder tumor and effectively reducing tumor recurrence. This study uncovers the potential immune-activating mechanism of mild MHT in the treatment of bladder cancer and confirms the effectiveness and safety of this strategy, indicating its promising potential for the clinical management of bladder cancer with a high tendency for relapse.


Asunto(s)
Hipertermia Inducida , Neoplasias de la Vejiga Urinaria , Humanos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Hipertermia Inducida/métodos , Recurrencia Local de Neoplasia , Neoplasias de la Vejiga Urinaria/patología , Fenómenos Magnéticos , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA