Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29487, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38665556

RESUMEN

For centuries, Laggera pterodonta (LP), a Chinese herbal medicine, has been widely employed for treating respiratory infectious diseases; however, the mechanism underlying LP's effectiveness against the influenza A/Aichi/2/1968 virus (H3N2) remains elusive. This study aims to shed light on the mechanism by which LP combats influenza in H3N2-infected mice. First, we conducted quasi-targeted metabolomics analysis using liquid chromatography-mass spectrometry to identify LP components. Subsequently, network pharmacology, molecular docking, and simulation were conducted to screen candidate targets associated with AKT and NF-κB. In addition, we conducted a series of experiments including qPCR, hematoxylin-eosin staining, flow cytometry, immunohistochemistry, and enzyme-linked immunosorbent assay to provide evidence that LP treatment in H3N2-infected mice can reduce pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1ß, and MCP-1) while increasing T cells (CD3+, CD4+, and CD8+) and syndecan-1 and secretory IgA expression. This, in turn, aids in the prevention of excessive inflammation and the fortification of immunity, both of which are compromised by H3N2. Finally, we utilized a Western blot assay to confirm that LP indeed inhibits the AKT/NF-κB signaling cascade. Thus, the efficacy of LP serves as a cornerstone in establishing a theoretical foundation for influenza treatment.

2.
Phytomedicine ; 129: 155534, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583346

RESUMEN

BACKGROUND: Severe respiratory system illness caused by influenza A virus infection is associated with excessive inflammation and abnormal apoptosis in alveolar epithelial cells (AEC). However, there are limited therapeutic options for influenza-associated lung inflammation and apoptosis. Pterostilbene (PTE, trans-3,5-dimethoxy-4-hydroxystilbene) is a dimethylated analog of resveratrol that has been reported to limit influenza A virus infection by promoting antiviral innate immunity, but has not been studied for its protective effects on virus-associated inflammation and injury in AEC. PURPOSE: Our study aimed to investigate the protective effects and underlying mechanisms of PTE in modulating inflammation and apoptosis in AEC, as well as its effects on macrophage polarization during influenza virus infection. STUDY DESIGN AND METHODS: A murine model of influenza A virus-mediated acute lung injury was established by intranasal inoculation with 5LD50 of mouse-adapted H1N1 viruses. Hematoxylin and eosin staining, immunofluorescence, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, Luminex and flow cytometry were performed. RESULTS: PTE effectively mitigated lung histopathological changes and injury induced by H1N1 viruses in vivo. These beneficial effects of PTE were attributed to the suppression of inflammation and apoptosis in AEC, as well as the modulation of M1 macrophage polarization. Mechanistic investigations revealed that PTE activated the phosphorylated AMP-activated protein kinase alpha (P-AMPKα)/sirtui1 (Sirt1)/PPARγ coactivator 1-alpha (PGC1α) signal axis, leading to the inhibition of nuclear factor kappa-B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) signaling induced by H1N1 viruses, thereby attenuating inflammation and apoptosis in AEC. PTE also forced activation of the P-AMPKα/Sirt1/PGC1α signal axis in RAW264.7 cells, counteracting the activation of phosphorylated signal transducer and activator of transcription 1 (P-STAT1) induced by H1N1 viruses and the augment of P-STAT1 activation in RAW264.7 cells with interferon-gamma (IFN-γ) pretreatment before viral infection, thereby reducing H1N1 virus-mediated M1 macrophage polarization as well as the enhancement of macrophages into M1 phenotypes elicited by IFN-γ pretreatment. Additionally, the promotion of the transition of macrophages towards the M2 phenotype by PTE was also related to activation of the P-AMPKα/Sirt1/PGC1α signal axis. Moreover, co-culturing non-infected AEC with H1N1 virus-infected RAW264.7 cells in the presence of PTE inhibited apoptosis and tight junction disruption, which was attributed to the suppression of pro-inflammatory mediators and pro-apoptotic factors in an AMPKα-dependent manner. CONCLUSION: In conclusion, our findings suggest that PTE may serve as a promising novel therapeutic option for treating influenza-associated lung injury. Its ability to suppress inflammation and apoptosis in AEC, modulate macrophage polarization, and preserve alveolar epithelial cell integrity highlights its potential as a therapeutic agent in influenza diseases.


Asunto(s)
Lesión Pulmonar Aguda , Apoptosis , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Sirtuina 1 , Estilbenos , Animales , Estilbenos/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/virología , Ratones , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Apoptosis/efectos de los fármacos , Sirtuina 1/metabolismo , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Células RAW 264.7 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Macrófagos/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por AMP/metabolismo , FN-kappa B/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/virología , Pulmón/efectos de los fármacos , Pulmón/virología , Pulmón/patología , Femenino
3.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622728

RESUMEN

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Asunto(s)
Alphainfluenzavirus , Medicamentos Herbarios Chinos , Virus de la Influenza A , Gripe Humana , Orthomyxoviridae , Neumonía , Ratones , Animales , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Gripe Humana/tratamiento farmacológico , Gripe Humana/genética , Neumonía/tratamiento farmacológico , Neumonía/genética , Inflamación , Biología de Sistemas , Perfilación de la Expresión Génica
4.
J Ethnopharmacol ; 328: 118000, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38527574

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoer Niuhuang Qingxin Powder (XNQP) is a classic traditional Chinese medicine formula with significant clinical efficacy for treating febrile convulsions and influenza. AIM OF THE STUDY: This study aims to explore the potential mechanisms of XNQP in combating combating the influenza A virus, providing a theoretical basis for its clinical application. MATERIALS AND METHODS: The present investigation employed network pharmacology and bioinformatics analysis to determine the TLR4/MyD88/NF-κB signaling pathway as a viable target for XNQP intervention in IAV infection.Subsequently, a mouse model of influenza A virus infection was established, and different doses of XNQP were used for intervention. The protein expression levels of TLR4/MyD88/NF-κB were detected using HE staining, Elisa, immunohistochemistry, immunofluorescence, and western blot. RESULTS: The results showed that treatment with XNQP after IAV infection reduced the mortality and prolonged the survival time of infected mice. It reduced the release of TNF-α and IFN-γ in the serum and alleviated pathological damage in the lung tissue following infection. Additionally, the levels of TLR4, MyD88, NF-κB, and p-NF-κB P65 proteins were significantly reduced in lung tissue by XNQP. The inhibitory effect of XNQP on the expression of MyD88 and NF-κB was antagonized when TLR4 signaling was overexpressed. Consequently, the expression levels of MyD88, NF-κB, and p-NF-κB P65 were increased in lung tissue. Conversely, the expression levels of the proteins MyD88, NF-κB, and p-NF-κB P65 were downregulated when TLR4 signaling was inhibited. CONCLUSIONS: XNQP alleviated lung pathological changes, reduced serum levels of inflammatory factors, reduced mortality, and prolonged survival time in mice by inhibiting the overexpression of the TLR4/MyD88/NF-κB signaling pathway in lung tissues after IAV infection.


Asunto(s)
Medicamentos Herbarios Chinos , Virus de la Influenza A , Gripe Humana , Ratones , Animales , Humanos , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Polvos , Transducción de Señal
5.
Cureus ; 16(1): e52315, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38357061

RESUMEN

Recurrent episodes of subglottic stenosis are rare in the literature, and the etiologic causes are misunderstood but can be congenital, idiopathic, or iatrogenic in nature. Complications of intubation can result in subsequent inflammation and reactive processes. This case involves a 16-month-old male who suffered from a recurrent episode of subglottic stenosis in the setting of croup, influenza, and honey consumption. He had presented to the emergency department in respiratory distress after ingesting a home remedy of onion juice and honey. He had been discharged one day prior from the pediatric intensive care unit after four days of intubation and a seven-day hospital course with evidence of croup on imaging. He was readmitted, and subglottic edema and narrowing were confirmed via endoscopy, which prompted antibiotic treatment and close monitoring. After three days of monitoring and re-evaluation by bronchoscopy, the patient's condition began to improve, and no intubation was necessary. It is unclear what the cause of recurrent subglottic stenosis is due to the patient's clinical picture being clouded by a potential allergic reaction to honey versus an inflammatory reactive process post-intubation from the previous admission days prior. This case emphasizes the need for further research on the prevalence and etiology of recurrent subglottic stenosis and a deeper understanding of how to optimize diagnosis and treatment.

6.
J Biomol Struct Dyn ; : 1-10, 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38247233

RESUMEN

Influenza A virus subtype H3N2 is a highly infectious respiratory virus that is responsible for global seasonal flu epidemics. The current study was designed to investigate the antiviral activity of 150 phytocompounds of North Western Himalayas medicinal plants by molecular docking. Two target proteins of hemagglutinin of influenza virus A (PDB ID 4WE8) and Influenza virus H3N2 nucleoprotein - R416A mutant (PDB ID 7NT8) are selected for this study. Molecular docking was done by AutoDock vina tool, toxicity and drug-likeness prediction was done by protox II and Moleinspiration. MD simulation of best protein-ligand complexes was done by using Gromacs, version 2021.5. Molecular docking and toxicity data revealed that clicoemodin and rumexocide showed the best binding with both target proteins 4WEB & 7NT8. Clicoemodin showed the -7.5 KJ/mol binding energy with 4WE8 and 7NT8. Similarly, rumexoside showed the -7.6 KJ/mol binding energy with 4WE8 and -7.6 KJ/mol with 7NT8. Furthermore, Molecular dynamic simulation and MMPBSA binding free energy validated the stability of protein-ligand complexes. The current study suggested that clicoemodin and rumexocide are the promising inhibitors of H3N2 proteins hemagglutinin of influenza virus A and Influenza virus H3N2 nucleoprotein - R416A mutant, though there is further in vitro and in vivo validation is required.Communicated by Ramaswamy H. Sarma.

7.
J Ethnopharmacol ; 323: 117701, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38185258

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qingjin Huatan Decoction (QJHTT) consists of 11 herbal medicines: Scutellaria baicalensis Georgi, Gardenia jasminoides J. Ellis, Platycodon grandiflorus (Jacq.) A. DC., Ophiopogon japonicus (Thunb.) Ker Gawl., Morus alba L., Fritillaria thunbergii Miq., Anemarrhena asphodeloides Bunge, Trichosanthes kirilowii Maxim., Citrus reticulata Blanco, Poria cocos (Schw.) Wolf, and Glycyrrhiza uralensis Fisch. As a traditional Chinese medicinal formula, QJHTT has been used for more than 400 years in China. It has shown promising results in treating influenza A virus (IAV) pneumonia. AIM OF THE STUDY: To elusive the specific pharmacological constituents and mechanisms underlying its anti-IAV pneumonia effects. MATERIALS AND METHODS: The components in QJHTT were analyzed through the use of a serum pharmacology-based ultra high-performance liquid chromatography Q- Exactive Orbitrap mass spectrometry (UHPLC-Q Exactive Orbitrap-MS) method. Simultaneously, the dynamic changes in IAV-infected mouse lung viral load, lung index, and expression of lung inflammation factors were monitored by qRT-PCR. RESULTS: We successfully identified 152 chemical components within QJHTT, along with 59 absorbed chemical prototype constituents found in the serum of mice treated with QJHTT. 43.45% of these chemical components and 43.10% of the prototype constituents were derived from the monarch drugs, namely Huangqin and Zhizi, aligning perfectly with traditional Chinese medicine theory. Notably, our analysis led to the discovery of 14 compounds within QJHTT for the first time, three of which were absorbed into the bloodstream. Simultaneously, we observed that QJHTT not only reduced the viral load but also modulated the expression of inflammation factors in the lung tissue including TNF-α, IL-1ß, IL-4, IL-6, IFN-γ, and IL17A. A time-effect analysis further revealed that QJHTT intervention effectively suppressed the peak of inflammatory responses, demonstrating a robust anti-IAV pneumonia effect. CONCLUSIONS: We comprehensively analyzed the pharmacological material basis of QJHTT by a highly sensitive and high-resolution UHPLC-Q Exactive Orbitrap-MS method, and demonstrated its efficacy in combating IAV pneumonia by reducing lung viral load and inflammatory factors. This study has significant importance for elucidating the pharmacological basis and pharmacological mechanism of QJHTT in combating IAV pneumonia.


Asunto(s)
Medicamentos Herbarios Chinos , Plantas Medicinales , Neumonía Viral , Ratones , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Pulmón , Neumonía Viral/tratamiento farmacológico , Plantas Medicinales/química , Anticuerpos , Cromatografía Líquida de Alta Presión/métodos
8.
Respir Res ; 24(1): 306, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057804

RESUMEN

BACKGROUND: Particulate matter (PM) air pollution poses a significant risk to respiratory health and is especially linked with various infectious respiratory diseases such as influenza. Our previous studies have shown that H5N1 virus infection could induce alveolar epithelial A549 cell death by enhancing lysosomal dysfunction. This study aims to investigate the mechanisms underlying the effects of PM on influenza virus infections, with a particular focus on lysosomal dysfunction. RESULTS: Here, we showed that PM nanoparticles such as silica and alumina could induce A549 cell death and lysosomal dysfunction, and degradation of lysosomal-associated membrane proteins (LAMPs), which are the most abundant lysosomal membrane proteins. The knockdown of LAMPs with siRNA facilitated cellular entry of both H1N1 and H5N1 influenza viruses. Furthermore, we demonstrated that silica and alumina synergistically increased alveolar epithelial cell death induced by H1N1 and H5N1 influenza viruses by enhancing lysosomal dysfunction via LAMP degradation and promoting viral entry. In vivo, lung injury in the H5N1 virus infection-induced model was exacerbated by pre-exposure to silica, resulting in an increase in the wet/dry ratio and histopathological score. CONCLUSIONS: Our findings reveal the mechanism underlying the synergistic effect of nanoparticles in the early stage of the influenza virus life cycle and may explain the increased number of respiratory patients during periods of air pollution.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Lesión Pulmonar , Humanos , Animales , Ratones , Lesión Pulmonar/inducido químicamente , Lisosomas , Óxido de Aluminio , Dióxido de Silicio
9.
Virol J ; 20(1): 260, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957630

RESUMEN

Influenza A viruses (IAV) are a prevalent respiratory pathogen that can cause seasonal flu and global pandemics, posing a significant global public health threat. Emerging research suggests that IAV infections may disrupt the balance of gut microbiota, while gut dysbiosis can affect disease progression in IAV patients. Therefore, restoring gut microbiota balance may represent a promising therapeutic target for IAV infections. Traditional Chinese medicine, with its ability to regulate gut microbiota, offers significant potential in preventing and treating IAV. This article provides a comprehensive review of the relationship between IAV and gut microbiota, highlighting the impact of gut microbiota on IAV infections. It also explores the mechanisms and role of traditional Chinese medicine in regulating gut microbiota for the prevention and treatment of IAV, presenting novel research avenues for traditional Chinese medicine-based IAV treatments.


Asunto(s)
Microbioma Gastrointestinal , Virus de la Influenza A , Gripe Humana , Humanos , Medicina Tradicional China
10.
Front Immunol ; 14: 1147724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928517

RESUMEN

Influenza A, the most common subtype, induces 3 to 5 million severe infections and 250,000 to 500,000 deaths each year. Vaccination is traditionally considered to be the best way to prevent influenza A. Yet because the Influenza A virus (IAV) is highly susceptible to antigenic drift and Antigenic shift, and because of the lag in vaccine production, this poses a significant challenge to vaccine effectiveness. Additionally, much information about the resistance of antiviral drugs, such as Oseltamivir and Baloxavir, has been reported. Therefore, the search for alternative therapies in the treatment of influenza is warranted. Recent studies have found that regulating the gut microbiota (GM) can promote the immune effects of anti-IAV via the gut-lung axis. This includes promoting IAV clearance in the early stages of infection and reducing inflammatory damage in the later stages. In this review, we first review the specific alterations in GM observed in human as well as animal models regarding IAV infection. Then we analyzed the effect of GM on host immunity against IAV, including innate immunity and subsequent adaptive immunity. Finally, our study also summarizes the effects of therapies using probiotics, prebiotics, or herbal medicine in influenza A on intestinal microecological composition and their immunomodulatory effects against IAV.


Asunto(s)
Microbioma Gastrointestinal , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Humanos , Gripe Humana/tratamiento farmacológico , Pulmón
11.
Int Immunopharmacol ; 124(Pt B): 110943, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804654

RESUMEN

Activation of Toll-like receptor (TLR) 4 plays important roles in the influenzaA virus (IAV) infection. To explore TLR4 inhibitors, 161 traditional Chinese medicines (TCMs) were screened. Further, we screened out Ixeris sonchifolia Hance, and its active compound, Apigetrin (apigenin-7-O-glucoside). Antiviral activity of Apigetrin was determined by plaque assay. We also further investigated the influence of Apigetrin on immune signaling pathways including TLRs, MAPK, NF-κB and autophagy pathways. The in-vitro results showed that the extract and its several ingredients could significantly inhibit IAV replication. Apigetrin significantly improved IAV-induced oxidative stress, inhibited the IAV-induced cytokine storm by suppressing the excessive activation of TLR3/4/7, JNK/p38 MAPK and NF-κB. Apigetrin decreased autophagosome accumulation and promoted degradation of IAV protein. Interestingly, Apigetrin antiviral activity was reversed by using H2O2 and the agonists of TLR4, JNK/p38, NF-κB and autophagy. Most important, the in-vitro effective concentration is higher than the reported plasma concentration. The in-vivo test showed that Apigetrin significantly increased the average survival time, reduced the lung edema and IAV replication. In conclusion, we have found that Ixeris sonchifolia Hance and its several ingredients can inhibit IAV infection, and the mechanisms of action of Apigetrin against IAV is by regulating TLR4 and autophagy signaling pathways.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/tratamiento farmacológico , Virus de la Influenza A/fisiología , FN-kappa B/metabolismo , Apigenina/uso terapéutico , Receptor Toll-Like 4/metabolismo , Evaluación Preclínica de Medicamentos , Peróxido de Hidrógeno/farmacología , Replicación Viral , Antivirales/farmacología , Antivirales/uso terapéutico , Autofagia
12.
Phytomedicine ; 120: 155058, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690231

RESUMEN

BACKGROUND: Given the magnitude of influenza pandemics as a threat to the global population, it is crucial to have as many prevention and treatment options as possible. Piceatannol (PIC) is a tetrahydroxylated stilbenoid (trans-3,4,3',5'-tetrahydroxystilbene), also known as 3'- hydroxy resveratrol, which has demonstrated many different biological activities such as anti-inflammatory and antiviral activities. PURPOSE: In this study, the anti-influenza A virus (IAV) activities and mechanisms of PIC in vitro and in vivo were investigated in order to provide reference for the development of novel plant-derived anti-IAV drugs. METHODS: The viral plaque assay, RT-PCR and western blot assay were used to evaluate the anti-IAV effects of PIC in vitro. The anti-IAV mechanism of PIC was determined by HA syncytium assay, DARTS assay and Surface Plasmon Resonance assay. The mouse pneumonia model combined with HE staining were used to study the anti-IAV effects of PIC in vivo. RESULTS: PIC shows inhibition on the multiplication of both H1N1 and H3N2 viruses, and blocks the infection of H5N1 pseudovirus with low toxicity. PIC may directly act on the envelope of IAV to induce the rupture and inactivation of IAV particles. PIC can also block membrane fusion via binding to HA2 rather than HA1 and cleavage site of HA0. PIC may interact with the two residues (HA2-T68 and HA2-I75) of HA2 to block the conformational change of HA so as to inhibit membrane fusion. Importantly, oral therapy of PIC also markedly improved survival and reduced viral titers in IAV-infected mice. CONCLUSION: PIC possesses significant anti-IAV effects both in vitro and in vivo and may block IAV infection mainly through interaction with HA to block membrane fusion. Thus, PIC has the potential to be developed into a new broad-spectrum anti-influenza drug for the prevention and treatment of influenza.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Estilbenos , Animales , Ratones , Humanos , Subtipo H3N2 del Virus de la Influenza A , Hemaglutininas , Gripe Humana/tratamiento farmacológico , Estilbenos/farmacología , Modelos Animales de Enfermedad
13.
Elife ; 122023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698546

RESUMEN

Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.


When you are ill, your behaviour changes. You sleep more, eat less and are less likely to go out and be active. This behavioural change is called the 'sickness response' and is believed to help the immune system fight infection. An area of the brain called the hypothalamus helps to regulate sleep and appetite. Previous research has shown that when humans are ill, the immune system sends signals to the hypothalamus, likely initiating the sickness response. However, it was not clear which brain cells in the hypothalamus are involved in the response and how long after infection the brain returns to its normal state. To better understand the sickness response, Lemcke et al. infected mice with influenza then extracted and analysed brain tissue at different timepoints. The experiments showed that the major changes to gene expression in the hypothalamus early during an influenza infection are not happening in neurons ­ the cells in the brain that transmit electrical signals and usually control behaviour. Instead, it is cells called glia ­ which provide support and immune protection to the neurons ­ that change during infection. The findings suggest that these cells prepare to protect the neurons from influenza should the virus enter the brain. Lemcke et al. also found that the brain takes a long time to go back to normal after an influenza infection. In infected mice, molecular changes in brain cells could be detected even after the influenza infection had been cleared from the respiratory system. In the future, these findings may help to explain why some people take longer than others to fully recover from viral infections such as influenza and aid development of medications that speed up recovery.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Animales , Ratones , Humanos , Hipotálamo , Núcleo Solitario , Apetito
14.
Front Immunol ; 14: 1157506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711616

RESUMEN

Influenza is an acute respiratory disorder caused by the influenza virus and is associated with prolonged hospitalization and high mortality rates in older individuals and chronically ill patients. Vaccination is the most effective preventive strategy for ameliorating seasonal influenza. However, the vaccine is not fully effective in cases of antigenic mismatch with the viral strains circulating in the community. The emergence of resistance to antiviral drugs aggravates the situation. Therefore, developing new vaccines and antiviral drugs is essential. Castanea crenata honey (CH) is an extensively cultivated food worldwide and has been used as a nutritional supplement or herbal medicine. However, the potential anti-influenza properties of CH remain unexplored. In this study, the in vitro and in vivo antiviral effects of CH were assessed. CH significantly prevented influenza virus infection in mouse Raw264.7 macrophages. CH pretreatment inhibited the expression of the viral proteins M2, PA, and PB1 and enhanced the secretion of proinflammatory cytokines and type-I interferon (IFN)-related proteins in vitro. CH increased the expression of RIG-1, mitochondrial antiviral signaling (MAVS) protein, and IFN-inducible transmembrane protein, which interferes with virus replication. CH reduced body weight loss by 20.9%, increased survival by 60%, and decreased viral replication and inflammatory response in the lungs of influenza A virus-infected mice. Therefore, CH stimulates an antiviral response in murine macrophages and mice by preventing viral infection through the RIG-1-mediated MAVS pathway. Further investigation is warranted to understand the molecular mechanisms involved in the protective effects of CH on influenza virus infection.


Asunto(s)
Miel , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Inmunidad Innata , Antivirales/farmacología , Antivirales/uso terapéutico
15.
Viruses ; 15(6)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37376674

RESUMEN

This study investigated the antiviral activity of aqueous leaf extract of Costus speciosus (TB100) against influenza A. Pretreatment of TB100 in RAW264.7 cells enhanced antiviral activity in an assay using the green fluorescence-expressing influenza A/Puerto Rico/8/1934 (H1N1) virus. The fifty percent effective concentration (EC50) and fifty percent cytotoxic concentration (CC50) were determined to be 15.19 ± 0.61 and 117.12 ± 18.31 µg/mL, respectively, for RAW264.7 cells. Based on fluorescent microscopy, green fluorescence protein (GFP) expression and viral copy number reduction confirmed that TB100 inhibited viral replication in murine RAW264.7 and human A549 and HEp2 cells. In vitro pretreatment with TB100 induced the phosphorylation of transcriptional activators TBK1, IRF3, STAT1, IKB-α, and p65 associated with interferon pathways, indicating the activation of antiviral defenses. The safety and protective efficacy of TB100 were assessed in BALB/c mice as an oral treatment and the results confirmed that it was safe and effective against influenza A/Puerto Rico/8/1934 (H1N1), A/Philippines/2/2008 (H3N2), and A/Chicken/Korea/116/2004 (H9N2). High-performance liquid chromatography of aqueous extracts led to the identification of cinnamic, caffeic, and chlorogenic acids as potential chemicals for antiviral responses. Further confirmatory studies using these acids revealed that each of them confers significant antiviral effects against influenza when used as pretreatment and enhances the antiviral response in a time-dependent manner. These findings suggest that TB100 has the potential to be developed into an antiviral agent that is effective against seasonal influenza.


Asunto(s)
Costus , Subtipo H1N1 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana , Plantas Medicinales , Humanos , Animales , Ratones , Plantas Medicinales/química , Gripe Humana/tratamiento farmacológico , Subtipo H3N2 del Virus de la Influenza A , Antivirales/uso terapéutico , Extractos Vegetales/química , Replicación Viral
16.
J Ethnopharmacol ; 317: 116745, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37336335

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qingjin Huatan Decoction (QJHTT) consists of 11 herbal medicines: Scutellaria baicalensis Georgi, Gardenia jasminoides J.Ellis, Platycodon grandiflorus (Jacq.) A.DC., Ophiopogon japonicus (Thunb.) Ker Gawl., Morus alba L., Fritillaria thunbergii Miq., Anemarrhena asphodeloides Bunge, Trichosanthes kirilowii Maxim., Citrus reticulata Blanco, Poria cocos (Schw.) Wolf, and Glycyrrhiza uralensis Fisch. As a traditional compound Chinese medicinal formula, QJHTT has been used for more than 400 years in China. Historically, it was used to treat respiratory diseases and had shown beneficial clinical results for diseases related to lung inflammation. AIM OF THE STUDY: To investigate the therapeutic effect of QJHTT on influenza A virus (IAV) pneumonia in mice and explore its possible mechanism of action. MATERIALS AND METHODS: The components in QJHTT were analyzed by UPLC-Q-TOF-MS and some antiviral active components reported in the literature were determined and quantified by HPLC. The protective effects of QJHTT were investigated using lethal and sublethal doses (2 LD50 or 0.8 LD50 viral suspension, separately) of H1N1-infected mice. Mortality and lung lesions in H1N1-infected mice were used to evaluate the efficacy of QJHTT. The potential mechanism of QJHTT in the treatment of viral pneumonia was determined at the gene level by RNA sequencing and validated by qRT-PCR. Following this, the changes in protein levels of JAK2/STAT3 were analyzed since it is a key downstream target of the chemokine signaling pathways. Preliminary elucidation of the mechanism of QJHTT to protect mice against IAV pneumonia through this pathway was conducted. RESULTS: In this study, 12 antiviral active constituents including baicalin, geniposide, and mangiferin were identified from QJHTT. In vivo treatment of QJHTT reduced the virus titers of lung tissue significantly and improved the survival rate, lung index, and pulmonary histopathological changes; additionally, a reduction in the serum levels of TNF-α, IL-1ß, IL-6, and IFN-γ inflammatory factors in H1N1-infected mice was observed. RNA-seq analysis and qRT-PCR showed that QJHTT primarily reversed the activities CCL2, CCL7, CCR1, and other chemokines and their reception-related genes, suggesting that QJHTT may produce disease-resistant pneumonia by inhibiting the downstream JAK2/STAT3 pathway. Western blot analysis confirmed that QJHTT effectively reduced the protein levels of JAK2, STAT3, and related phosphorylated products in the lung tissue of H1N1-infected mice. CONCLUSIONS: Our results indicated that QJHTT alleviated IAV pneumonia in mice by regulating related chemokines and their receptor-related genes in lung tissue, thereby inhibiting JAK2/STAT3 pathway. This could pave way for the design of novel therapeutic strategies to treat viral pneumonia.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Neumonía Viral , Animales , Ratones , Neumonía Viral/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Quimiocinas , Transducción de Señal
17.
Molecules ; 28(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241923

RESUMEN

Infectious diseases caused by viruses and bacteria are a major public health concern worldwide, with the emergence of antibiotic resistance, biofilm-forming bacteria, viral epidemics, and the lack of effective antibacterial and antiviral agents exacerbating the problem. In an effort to search for new antimicrobial agents, this study aimed to screen antibacterial and antiviral activity of the total methanol extract and its various fractions of Pulicaria crispa (P. crispa) aerial parts. The P. crispa hexane fraction (HF) was found to have the strongest antibacterial effect against both Gram-positive and Gram-negative bacteria, including biofilm producers. The HF fraction reduced the expression levels of penicillin binding protein (PBP2A) and DNA gyrase B enzymes in Staphylococcus aureus and Pseudomonas aeruginosa, respectively. Additionally, the HF fraction displayed the most potent antiviral activity, especially against influenza A virus, affecting different stages of the virus lifecycle. Gas chromatography/mass spectrometry (GC/MS) analysis of the HF fraction identified 27 compounds, mainly belonging to the sterol class, with ß-sitosterol, phytol, stigmasterol, and lupeol as the most abundant compounds. The in silico study revealed that these compounds were active against influenza A nucleoprotein and polymerase, PBP2A, and DNA gyrase B. Overall, this study provides valuable insights into the chemical composition and mechanism of action of the P. crispa HF fraction, which may lead to the development of more effective treatments for bacterial and viral infections.


Asunto(s)
Asteraceae , Pulicaria , Virus , Antibacterianos/farmacología , Antibacterianos/química , Antivirales/farmacología , Pulicaria/química , Girasa de ADN/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Bacterias , Biopelículas , Extractos Vegetales/farmacología , Extractos Vegetales/química
18.
J Ethnopharmacol ; 300: 115743, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36152783

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The flowers of Trollius chinensis Bunge (Ranunculaceae) is a traditional Chinese medicine used to treat various inflammatory diseases, including upper respiratory infections, chronic tonsillitis, and pharyngitis. Recently, there has been growing research on the antiviral role of the flowers of T. chinensis Bunge. However, little is known about its anti-influenza virus effects and the underlying mechanisms. AIM OF THE STUDY: This study aims to evaluate the therapeutic effects of the crude extract from the flowers of T. chinensis Bunge (CEFTC) on mice infected with influenza virus. We further explored its mechanism by detecting the expression of vital proteins (TLR3, TBK1, TAK1, IKKα, IRF3, and IFN-ß) related to TLR3 signaling pathway. MATERIALS AND METHODS: Mice were infected with influenza A virus (H1N1) through the nasal cavity and were intragastrically administered CEFTC at the dose of 0.2 mg/g once daily. The therapeutic effects of CEFTC were evaluated by blood cell count, lung index, spleen index, alveolar lavage fluid testing, and HE staining. Network pharmacology analysis predicted the potential signaling pathway between the flowers of T. chinensis Bunge and pneumonia. The expression of TLR3, TBK1, TAK1, IKKα, IRF3, and IFN-ß in lung tissues were examined by Western blot assay. In addition, the immunofluorescence assay was applied to assess the effect of CEFTC on the distribution of IRF3 and IFN-ß between nuclei and cytoplasm. RESULTS: Compared with the infected group, the lung index was markedly reduced, and the pathological damage of the lungs was also attenuated in the CEFTC treatment group. The network pharmacology analysis indicated that the NF-κB pathway was a potential signaling pathway in the flowers of T. chinensis Bunge for the treatment of pneumonia, TLR3, IRF3, and TBK1 were crucial targets associated with pneumonia. Western blot assay demonstrated that in the high-dose virus infected group, CEFTC reduced the expression of TLR3, TAK1, TBK1, and IRF3. Furthermore, CEFTC could increase the nuclear distribution of IRF3 in alveolar epithelial cells after virus infection. CONCLUSIONS: These results suggested that different doses of influenza virus could cause varying infection symptoms in mice. Moreover, CEFTC could exert anti-influenza virus effects by regulating the expression of TLR3, IRF3, IFN-ß, TAK1, and TBK1 in the TLR3 signaling pathway.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Ranunculaceae , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Mezclas Complejas/farmacología , Flores , Quinasa I-kappa B , Interferón beta , Ratones , FN-kappa B , Extractos Vegetales , Transducción de Señal , Receptor Toll-Like 3
19.
J Ethnopharmacol ; 304: 116070, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36549371

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mahuang Xixin Fuzi Decoction (MXF), as a classical prescription of traditional Chinese medicine (TCM), has been used to treat the immunocompromised individuals infected with influenza A virus (IAV). AIM OF THE STUDY: The study aims to explore the regulatory of MXF on inflammation and secretory immunoglobulin A (SIgA) antibodies immune response in BALB/c-nude mice infected with IAV. MATERIALS AND METHODS: The BALB/c-nude mice were infected with IAV, then different dosages of MXF were orally administrated to the mice. The weight, rectal temperature, spontaneous activity, spleen index, lung index, pathological changes of lung tissues, and the relative mRNA expression level of H1N1 M gene were measured for the purpose of valuing the antiviral effect of MXF. The expression levels of cytokines in lungs and immunoglobulin A (IgA) in serum of BALB/c-nude mice were determined with Cytometric Bead Array System (CBA). SIgA in bronchoalveolar lavage fluids (BALF) was detected with Enzyme-linked Immunosorbent Assay (ELISA). The mRNA and protein expression levels of B cell activating factor (BAFF), chemokine receptors 10 (CCR10), and polymeric immunoglobulin receptor (pIgR) in the lung tissues, which are related to the secretion of SIgA, were determined by using RT-PCR and Western blot. RESULTS: MXF could alleviate the clinical features and reduce the severity of viral lung lesions, including improving the body weight, rectal temperature and spontaneous activity of nude mice infected with IAV, increasing spleen index, decreasing lung index, alleviating pathological damage, and decreasing the relative expression level of H1N1 M gene. Levels of pro-inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), interleukin-12p70 (IL-12p70), and interleukin-17A (IL-17A) were also significantly decreased after treatment with MXF. Interferon-γ (IFN-γ), an antiviral cytokine, was significantly up-regulated in high dose MXF (3.12 g/kg) group. Moreover, after MXF treatment, the expressions of SIgA in BALF and IgA in serum were both at relatively low levels. And the mRNA and protein expressions of BAFF, CCR10, and pIgR were significantly decreased after treatment with MXF. CONCLUSIONS: MXF has obviously protective effects on BALB/c-nude mice infected with IAV by inhibiting virus replication, calming inflammatory cytokine storm, and regulating SIgA immune response weakly.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Ratones , Citocinas/metabolismo , Ratones Desnudos , Inmunoglobulina A Secretora/metabolismo , Antivirales/farmacología , Pulmón , Inmunidad , ARN Mensajero/metabolismo , Ratones Endogámicos BALB C
20.
Int J Gen Med ; 15: 8353-8363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465269

RESUMEN

Coronavirus disease 2019 (COVID-19) remains an uncontained, worldwide pandemic. While battling the disease in China, the Chinese government has actively promoted the use of traditional Chinese medicine, and many studies have been conducted to determine the efficacy of traditional Chinese medicine for treating COVID-19. The present review discusses the effectiveness and safety of traditional Chinese medicine in curing COVID-19 and provides clinical evidence from all confirmed cases in China. Applications of traditional Chinese medicine and specific recipes for treating other viral infections, such as those caused by severe acute respiratory syndrome coronavirus and influenza A viruses (including H1N1), are also discussed. Studies have reported that traditional Chinese medicine treatment plays a significant role in improving clinical symptoms. Therefore, further investigation may be of high translational value in revealing novel targeted therapies for COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA