RESUMEN
Background: Obesity is one of the most prevalent and perilous health affairs. Male obesity-associated secondary hypogonadism (MOSH) is one of many of its complexities, which is mounting in parallel with the aggravation of obesity. Magnetic nanoparticles seem to be an advanced favorable trend in multiple biomedical fields. Aim: In this study, we explore the therapeutic effects of superparamagnetic iron oxide nanoparticles (SPIONs) coated with carboxymethyl cellulose (CMC) on an obese male rat model with MOSH syndrome, comparing their impacts with a well-known anti-obesity medication (Orlistat). Methods: 42 male albino rats split into 7 equal groups: 1-negative control: nonobese, untreated; 35 rats fed the high fat-high fructose (HFHF) diet for a period of 12 weeks. Obese rats splitted into 6 equal groups; 2-positive control: obese untreated; 3-obese given Orlistat (30 mg/kg); 4-obese given CMC-SPIONs (25 mgFe/kg); 5-obese given CMC-SPIONs (50 mgFe/kg); 6-obese given CMC-SPIONs(25 mgFe/kg) + Orlistat (30 mg/kg), 7-obese given CMC-SPIONs (50 mgFe/kg) + Orlistat (30 mg/kg); all treatments given orally for 4 weeks. During sacrifice, blood serum and sectioned hypothalamic, pituitary, testicular, and adipose tissues were collected for biochemical and biomolecular assessments. Results: The HFHF diet for 12 weeks resulted in a significant upsurge in body weight, body mass index, serum fasting glucose, insulin resistance, TAG, total cholesterol, and LDL-c; HDL-c was dropped. Serum FSH, LH, and testosterone values declined. A significant disorder in expression levels of genes regulating the hypothalamic-pituitary-testicular-axis pathway. Hypothalamic GnRH, Kisspeptin-1, Kisspeptin-r1, and Adipo-R1 values declined. GnIH and Leptin-R1 values raised up. Pituitary GnRH-R values declined. Testicular tissue STAR, HSD17B3, and CYP19A1 values declined. Adipose tissue adiponectin declined, while leptin raised up. CMC-SPIONs 25-50 mg could modulate the deranged biochemical parameters and correct the deranged expression levels of all previous genes. Co-treatments revealed highly synergistic effects on all parameters. Overall, CMC-SPIONs have significant efficiency whether alone or with Orlisat in limiting obesity and consequence subfertility. Conclusion: CMC-SPIONs act as an incoming promising contender for obesity and MOSH disorders management, and need more studies on their mechanisms.
Asunto(s)
Hipogonadismo , Obesidad , Enfermedades de los Roedores , Ratas , Masculino , Animales , Leptina/metabolismo , Leptina/uso terapéutico , Orlistat/metabolismo , Orlistat/farmacología , Orlistat/uso terapéutico , Testículo/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/veterinaria , Hipogonadismo/metabolismo , Hipogonadismo/veterinaria , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/uso terapéutico , Nanopartículas Magnéticas de Óxido de HierroRESUMEN
Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.
Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , Modelos Animales de Enfermedad , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Hierro , Almidón , Nanopartículas Magnéticas de Óxido de HierroRESUMEN
Breast cancer (BC) presents a growing global concern, mainly for the female population of working age. Their pathophysiology shows challenges when attempting to ensure conventional treatment efficacy without adverse effects. This study aimed to evaluate the efficacy of magneto-hyperthermia (MHT) therapy associated with supplementation with omega-3 polyunsaturated fatty acid (w-3 PUFA) and engagement in physical training (PT) for the triple-negative BC (TNBC) model. First, we assessed the physicochemical properties of iron oxide nanoparticles (ION) in biological conditions, as well as their heating potential for MHT therapy. Then, a bioluminescence (BLI) evaluation of the best tumor growth conditions in the TNBC model (the quantity of implanted cells and time), as well as the efficacy of MHT therapy (5 consecutive days) associated with the previous administration of 8 weeks of w-3 PUFA and PT, was carried out. The results showed the good stability and potential of ION for MHT using 300 Gauss and 420 kHz. In the TNBC model, adequate tumor growth was observed after 14 days of 2 × 106 cells implantation by BLI. There was a delay in tumor growth in animals that received w-3 and PT and a significant decrease associated with MHT. This pioneering combination therapy approach (MHT, omega-3, and exercise) showed a positive effect on TNBC tumor reduction and demonstrated promise for pre-clinical and clinical studies in the future.
RESUMEN
Iron oxide nanoparticles (Fe2O3NPs) were synthesized utilizingMentha spicatasourced from Cyprus as a stabilizing agent. The study delved into assessing the antimicrobial, cytotoxic, anti-proliferative, and anti-migratory potential of Fe2O3 NPs through disc diffusion, trypan blue, and 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, respectively. Characterization of the synthesized Fe2O3 NPs was conducted using Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), UV-vis spectroscopy (UV-vis), scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDX). The FTIR, XRD, and SEM-EDX spectra confirmed the successful formation of Fe2O3 NPs. The analysis of UV-vis spectra indicates an absorption peak at 302 nm, thereby confirming both the successful synthesis and remarkable stability of the nanoparticles. The nanoparticles exhibited uniform spherical morphology and contained Fe, O, and N, indicating the synthesis of Fe2O3NPs. Additionally, the Fe2O3NPs formed through biosynthesis demonstrated antimicrobial capabilities againstEscherichia coliandBacillus cereus. The significant anti-migratory potential on MDA-MB 231 human breast cancer cells was observed with lower concentrations of the biosynthesized Fe2O3NPs, and higher concentrations revealed cytotoxic effects on the cells with an IC50of 95.7µg/ml. Stable Fe2O3NPs were synthesized usingMentha spicataaqueous extract, and it revealed antimicrobial activity onE. coliandB. cereus, cytotoxic, anti-proliferative and anti-migratory effect on highly metastatic human breast cancer cell lines.
Asunto(s)
Antiinfecciosos , Neoplasias de la Mama , Nanopartículas del Metal , Humanos , Femenino , Compuestos Férricos/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas Magnéticas de Óxido de HierroRESUMEN
In recent years, there has been a growing interest in plant pigments as readily available nutraceuticals. Photosynthetic pigments, specifically chlorophylls and carotenoids, renowned for their non-toxic antioxidant properties, are increasingly finding applications beyond their health-promoting attributes. Consequently, there is an ongoing need for cost-effective methods of isolation. This study employs a co-precipitation method to synthesize magnetic iron oxide nanoparticles. Scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) confirms that an aqueous environment and oxidizing conditions yield nanosized iron oxide with particle sizes ranging from 80 to 140 nm. X-ray photoelectron spectroscopy (XPS) spectra indicate the presence of hydrous iron oxide FeO(OH) on the surface of the nanosized iron oxide. The Brunauer-Emmett-Teller (BET) surface area of obtained nanomaterial was 151.4 m2 g-1, with total pore volumes of pores 0.25 cm3 g-1 STP. The material, designated as iron oxide nanoparticles (IONPs), serves as an adsorbent for magnetic solid phase extraction (MSPE) and isolation of photosynthetic pigments (chlorophyll a, lutein) from extracts of higher green plants (Mentha piperita L., Urtica dioica L.). Sorption of chlorophyll a onto the nanoparticles is confirmed using UV-vis spectroscopy, Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS), and high-performance liquid chromatography (HPLC). Selective sorption of chlorophyll a requires a minimum of 3 g of IONPs per 12 mg of chlorophyll a, with acetone as the solvent, and is dependent on a storage time of 48 h. Extended contact time of IONPs with the acetone extract, i.e., 72 h, ensures the elimination of remaining components except lutein, with a spectral purity of 98%, recovered with over 90% efficiency. The mechanism of chlorophyll removal using IONPs relies on the interaction of the pigment's carbonyl (C=O) groups with the adsorbent surface hydroxyl (-OH) groups. Based on molecular dynamics (MD) simulations, it has been proven that the selective adsorption of pigments is also influenced by more favorable dispersion interactions between acetone and chlorophyll in comparison with other solutes. An aqueous environment significantly promotes the removal of pigments; however, it results in a complete loss of selectivity.
Asunto(s)
Compuestos Férricos , Luteína , Extractos Vegetales , Extractos Vegetales/química , Clorofila A , Clorofila , Espectroscopía Infrarroja por Transformada de Fourier , Acetona , Agua , Adsorción , Extracción en Fase Sólida/métodos , Nanopartículas Magnéticas de Óxido de Hierro , Fenómenos MagnéticosRESUMEN
Adansonia digitata L. is a royal tree that is highly valued in Africa for its medicinal and nutritional properties. The objective of this study was to use its fruit shell extract to develop new, powerful mono and bimetallic nanoparticles (NPs) and biochar (BC) using an eco-friendly approach. Silver (Ag), iron oxide (FeO), the bimetallic Ag-FeO NPs, as well as (BC) were fabricated by A. digitata fruit shell extract through a reduction process and biomass pyrolysis, respectively, and their activity against tomato pathogenic fungi Alternaria sp., Sclerotinia sclerotiorum, Fusarium equiseti, and Fusarium venenatum were detected by agar dilution method. The Ag, FeO, Ag-FeONPs, and BC were characterized using a range of powerful analytical techniques such as ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform-Infra Red (FT-IR), dynamic light scatter (DLS), and zeta potential analysis. The fabricated Ag, FeO and Ag-FeO NPs have demonstrated a remarkable level of effectiveness in combating fungal strains. UV-Vis spectra ofAg, FeO, Ag-FeONPs, and BC show broad exhibits peaks at 338, 352, 418, and 480 nm, respectively. The monometallic, bimetallic NPs, and biochar have indicated the presence in various forms mostly in Spherical-shaped. Their size varied from 102.3 to 183.5 nm and the corresponding FTIR spectra suggested that the specific organic functional groups from the plant extract played a significant role in the bio-reduction process. Ag and Ag-FeO NPs exhibited excellent antifungal activity against pathogenic fungi Alternaria sp., S. sclerotiorum, F. equiseti, and F. venenatum. The current study could be a significant achievement in the field of antifungal agents since has the potential to develop new approaches for treating fungal infections.
Asunto(s)
Adansonia , Carbón Orgánico , Solanum lycopersicum , Espectroscopía Infrarroja por Transformada de Fourier , Antifúngicos/farmacología , Alternaria , Rayos Infrarrojos , Extractos VegetalesRESUMEN
PURPOSE: Lidocaine microspheres can prolong the analgesic time to 24-48 h, which still cannot meet the need of postoperative analgesia lasting more than 3 days. Therefore, we added Fe3O4 to the lidocaine microspheres and used an applied magnetic field to attract Fe3O4 to fix the microspheres around the target nerves, reducing the diffusion of magnetic lidocaine microspheres to the surrounding tissues and prolonging the analgesic time. METHODS: Fe3O4-lidocaine-PLGA microspheres were prepared by the complex-emulsion volatilization method to characterize and study the release properties in vitro. The neural anchoring properties and in vivo morphology of the drug were obtained by magnetic resonance imaging. The nerve blocking effect and analgesic effect of magnetic lidocaine microspheres were evaluated by animal experiments. RESULTS: The mean diameter of magnetically responsive lidocaine microspheres: 9.04 ± 3.23 µm. The encapsulation and drug loading of the microspheres were 46.18 ± 3.26% and 6.02 ± 1.87%, respectively. Magnetic resonance imaging showed good imaging of Fe3O4-Lidocain-PLGA microspheres, a drug-carrying model that slowed down the diffusion of the microspheres in the presence of an applied magnetic field. Animal experiments demonstrated that this preparation had a significantly prolonged nerve block, analgesic effect, and a nerve anchoring function. CONCLUSION: Magnetically responsive lidocaine microspheres can prolong analgesia by slowly releasing lidocaine, which can be immobilized around the nerve by a magnetic field on the body surface, avoiding premature diffusion of the microspheres to surrounding tissues and improving drug targeting.
Asunto(s)
Anestesia Local , Lidocaína , Animales , Lidocaína/farmacología , Ácido Láctico , Microesferas , AnalgésicosRESUMEN
Harnessing the potential of tumor-associated macrophages (TAMs) to engulf tumor cells offers promising avenues for cancer therapy. Targeting phagocytosis checkpoints, particularly the CD47-signal regulatory protein α (SIRPα) axis, is crucial for modulating TAM activity. However, single checkpoint inhibition has shown a limited efficacy. In this study, we demonstrate that ferrimagnetic vortex-domain iron oxide (FVIO) nanoring-mediated magnetic hyperthermia effectively suppresses the expression of CD47 protein on Hepa1-6 tumor cells and SIRPα receptor on macrophages, which disrupts CD47-SIRPα interaction. FVIO-mediated magnetic hyperthermia also induces immunogenic cell death and polarizes TAMs toward M1 phenotype. These changes collectively bolster the phagocytic ability of macrophages to eliminate tumor cells. Furthermore, FVIO-mediated magnetic hyperthermia concurrently escalates cytotoxic T lymphocyte levels and diminishes regulatory T cell levels. Our findings reveal that magnetic hyperthermia offers a novel approach for dual down-regulation of CD47 and SIRPα, reshaping the tumor microenvironment to stimulate immune responses, culminating in significant antitumor activity.
Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Antígeno CD47 , Regulación hacia Abajo , Inmunoterapia , Fagocitosis , Fenómenos Magnéticos , Neoplasias/patología , Microambiente TumoralRESUMEN
The impact of integrated nutrient management seems crucial for the sustainability of crop production as revealed by studies on long-term experiments. It provided the opportunity to monitor long-term variations in crop yields and associated factors. The impacts of various nutrient management strategies on yields and soil attributes in a rice-wheat system have been researched under a long-term experiment that has been running since 1983 at Punjab Agricultural University, Ludhiana. Further, a positive correlation has been observed between crop yields and soil properties such as soil organic carbon (SOC), nitrogen (N), phosphorus (P), potassium (K) and zinc (Zn). The negative correlation with K could be attributed to soil becoming deficient in K and necessitating the application of potassium fertilizer. The treatments receiving organic manures (green manure, farmyard manure and wheat cut straw) showed a better population of soil microorganisms in comparison to the treatments receiving chemical fertilizers, thereby proving as precursors of sustaining soil health. The best soil characteristics (water-soluble aggregates, exchangeable and non-exchangeable K, fixed and total K) after rice and wheat harvesting were found where 50 % of the recommended NPK was supplemented with farmyard manure (FYM). The build-up of trace elements particularly for Fe and Zn was also noticed. In crystalline Fe oxide bound fraction (CFeOX), Fe increased between 717.1 and 984.8 mg kg-1, while Zn increased between 2.64 and 3.08 mg kg-1. Furthermore, amorphous iron oxide (AFeOX), CFeOX, carbonate (CARB), organic matter (OM) bound and exchangeable (EXCH) Fe and Zn were higher in treatments where organic manures were supplemented with 50 and 25 % N. Farmyard manure showed an incremental trend, followed by wheat cut straw and green manure (GM). The incremental trend in soil quality was noticed with FYM followed by wheat cut straw and GM.
RESUMEN
In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on T1 and T2 signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the T1 relaxation time and contrast and a parallel decrease in the T2 signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 µg mL-1, which also corresponds to a iron dose of 52 µg mL-1. Nontoxic nanostructures with such enzyme-triggered release mechanisms and T1 signal enhancement are desirable for tracking tumor microenvironment release with remote T1-guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.
Asunto(s)
Hipertermia Inducida , Nanoestructuras , Medios de Contraste/química , Gadolinio/química , Nanoestructuras/química , Imagen por Resonancia Magnética/métodos , Péptido HidrolasasRESUMEN
Although iron(III) oxide nanoparticles (IONPs) are widely used in diverse applications ranging from food to biomedicine, the effects of IONPs on different locations of gut microbiota and short-chain fatty acids (SCFAs) are unclear. So, a subacute repeated oral toxicity study on Sprague Dawley (SD) rats was performed, administering low (50â mg/kg·bw), medium (100â mg/kg·bw), and high (200â mg/kg·bw) doses of IONPs. In this study, we found that a high dose of IONPs increased animal weight, and 16S rRNA sequencing revealed that IONPs caused intestinal flora disorders in both the cecal digesta- and mucosa-associated microbiota. However, only high-dose IONP exposure changed the abundance and composition of the mucosa-associated microbiota. IONPs increased the relative abundances of Firmicutes, Ruminococcaceae_UCG-014, Ruminiclostridium_9, Romboutsia, and Bilophila and decreased the relative abundance of Bifidobacterium, and many of these microorganisms are associated with weight gain, obesity, inflammation, diabetes, and mucosal damage. Functional analysis showed that changes in the gut microbiota induced by a high dose of IONPs were mainly related to metabolism, infection, immune, and endocrine disease functions. IONPs significantly elevated the levels of valeric, isobutyric, and isovaleric acid, promoting the absorption of iron. This is the first description of intestinal microbiota dysbiosis in SD rats caused by IONPs, and the effects and mechanisms of action of IONPs on intestinal and host health need to be further studied and confirmed.
RESUMEN
The study investigated removal of hexavalent chromium Cr (VI) from aqueous solution using graphene oxideiron oxide reinforced pectin/polyvinyl alcohol magnetic gel beads prepared through co-precipitation and freeze-drying technique. Scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, N2 adsorption-desorption isotherm, and zeta potential are used for characterization. The surface area of magnetic gel beads calculated by BET method was determined to be 100.95 m2/g, significantly higher than that of GO and GO-Fe3O4. The optimum removal efficiency of GO-Fe3O4/Pec/PVA was assessed by batch method at variables such as pH(1-6), adsorption time(0-180 min), and temperature(25-35 °C). Accordingly, 0.2 g GO-Fe3O4/Pec/PVA dose, pH 2, contact time: 120 min at 25 °C were found to be the optimal conditions, and maximum adsorption capacity of GO, GO-Fe3O4 and GO-Fe3O4/Pec/PVA toward Cr(VI) removal was found to be 39.5, 62.5 and 78.55 mg g-1, respectively. Kinetic and isotherm studies indicate adsorption data follow pseudo-second-order kinetic and Langmuir isotherm models. Thermodynamic studies showed adsorption capacities of adsorbents decreased when temperature increased which indicated adsorption for Cr (VI) was an exothermic process. The activation energies were found to be 34.92, 26.57, and 35.23 KJ mol-1 for GO, GO-Fe3O4, and GO-Fe3O4/Pec/PVA, respectively, which illustrated adsorption of Cr(VI) onto the surface of adsorbents was a physical process. The beads exhibit excellent recoverability and reusability over five cycles. Overall, GO-Fe3O4/Pec/PVA demonstrates exceptional adsorption properties and can serve as an efficient, stable, less toxic, and magnetically separable adsorbent for removal of Cr(VI) from aqueous solution.
Asunto(s)
Compuestos Férricos , Grafito , Alcohol Polivinílico , Contaminantes Químicos del Agua , Pectinas , Agua/química , Cromo/química , Adsorción , Fenómenos Magnéticos , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de HidrógenoRESUMEN
INTRODUCTION: Sentinel lymph node biopsy for breast cancer is a method to localize and excise the first draining lymph node from an invasive cancer of the breast. The histopathologic evaluation of the sentinel lymph node is used for predicting recurrence and survival and thus, guiding oncologists for treatment-decision making to administer adjuvant therapies. The ability to identify the sentinel node depends on methods to map lymphatic drainage from the breast to the sentinel node and accurately discriminate that node from other non-sentinel lymph nodes of the axilla. AREAS COVERED: This review covers the clinical demand for technologies to assist the surgeon in intraoperative lymphatic mapping to specifically identify the sentinel lymph node in patients with breast cancer. Performance characteristics are reviewed for superparamagnetic iron oxide tracers used in lymphatic mapping compared to other current available technologies for lymphatic mapping. EXPERT OPINION: The Magtrace (superparamagnetic iron oxide tracer) Sentimag (handheld magnetic probe) system is an FDA-approved technology for intraoperative lymphatic mapping to facilitate sentinel lymph node biopsy in breast cancer with technologic performance characteristics that are equivalent to 99Technetium-sulfur colloid. Barriers to broader utilization primarily center around the need for nonmetallic devices to be used for the conduct of surgery, which would interfere with the paramagnetic method for tracer localization.
Asunto(s)
Neoplasias de la Mama , Biopsia del Ganglio Linfático Centinela , Humanos , Femenino , Biopsia del Ganglio Linfático Centinela/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Metástasis Linfática , Compuestos Férricos , Ganglios Linfáticos/patología , Axila/patologíaRESUMEN
A versatile nano-delivery platform was reported to enhance the tumor suppression effect of chemotherapy by augmenting tumor cells' ferroptosis. The platform consists of pomegranate-like magnetic nanoparticles (rPAE@SPIONs) fabricated by encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) within a reduced poly(ß-amino ester)s-PEG amphiphilic copolymer (rPAE). The resulting platform exhibits several functionalities. Firstly, it promotes the doxorubicin (DOX) release by leveraging the mild hyperthermia generated by NIR irradiation. Secondly, it triggers ferroptosis in tumor cells, inducing their demise. Thirdly, it induces polarization of macrophages towards an anti-tumor M1 phenotype, contributing to ferroptosis of tumor cells and enhanced tumor cell suppression. This study effectively capitalizes on the versatility of SPIONs and offers a simple yet powerful strategy for developing a new nanosized ferroptosis-inducing agent, ultimately improving the inhibition of bladder cancer cells.
Asunto(s)
Ferroptosis , Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias de la Vejiga Urinaria , Humanos , Doxorrubicina , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Fenómenos Magnéticos , Línea Celular TumoralRESUMEN
The potential of Ferrimagnetic vortex iron oxide nanoring-mediated mild magnetic hyperthermia (FVIO-MHT) in solid tumor therapy has been demonstrated. However, the impact of FVIO-MHT on the tumor microenvironment (TME) remains unclear. This study utilized single-cell transcriptome sequencing to examine the alterations in the TME in response to FVIO-MHT in breast cancer. The results revealed the cellular composition within the tumor microenvironment (TME) was primarily modified due to a decrease in tumor cells and an increased infiltration of myeloid cells. Subsequently, an enhancement in active oxygen (ROS) metabolism was observed, indicating oxidative damage to tumor cells. Interestingly, FVIO-MHT reprogrammed the macrophages' phenotypes, as evidenced by alterations in the transcriptome characteristics associated with both classic and alternative activated phenotypes. And an elevated level of ROS generation and oxidative phosphorylation suggested that activated phagocytosis and inflammation occurred in macrophages. Additionally, cell-cell communication analysis revealed that FVIO-MHT attenuated the suppression between tumor cells and macrophages by inhibiting phagocytic checkpoint and macrophage migration inhibitory factor signaling pathways. Inhibition of B2m, an anti-phagocytosis checkpoint, could promote macrophage-mediated phagocytosis and significantly inhibit tumor growth. These data emphasize FVIO-MHT may promote the antitumor capabilities of macrophages by alleviating the suppression between tumor cells and macrophages.
Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Especies Reactivas de Oxígeno/farmacología , Macrófagos , Fenómenos Magnéticos , Perfilación de la Expresión Génica , Microambiente TumoralRESUMEN
The development of external stimuli-controlled payload systems has been sought after with increasing interest toward magnetothermally-triggered drug release (MTDR) carriers due to their non-invasive features. However, current MTDR carriers present several limitations, such as poor heating efficiency caused by the aggregation of iron oxide nanoparticles (IONPs) or the presence of antiferromagnetic phases which affect their efficiency. Herein, a novel MTDR carrier is developed using a controlled encapsulation method that fully fixes and confines IONPs of various sizes within the metal-organic frameworks (MOFs). This novel carrier preserves the MOF's morphology, porosity, and IONP segregation, while enhances heating efficiency through the oxidation of antiferromagnetic phases in IONPs during encapsulation. It also features a magnetothermally-responsive nanobrush that is stimulated by an alternating magnetic field to enable on-demand drug release. The novel carrier shows improved heating, which has potential applications as contrast agents and for combined chemo and magnetic hyperthermia therapy. It holds a great promise for magneto-thermally modulated drug dosing at tumor sites, making it an exciting avenue for cancer treatment.
Asunto(s)
Antineoplásicos , Hipertermia Inducida , Estructuras Metalorgánicas , Portadores de Fármacos , Campos MagnéticosRESUMEN
A new approach to treating vascular blockages has been developed to overcome the limitations of current thrombolytic therapies. This approach involves biosafety and multimodal plasma-derived theranostic platelet vesicle incorporating iron oxide constructed nano-propellers platformed technology that possesses fluorescent and magnetic features and manifold thrombus targeting modes. The platform is capable of being guided and visualized remotely to specifically target thrombi, and it can be activated using near-infrared phototherapy along with an actuated magnet for magnetotherapy. In a murine model of thrombus lesion, this proposed multimodal approach showed an approximately 80 % reduction in thrombus residues. Moreover, the new strategy not only improves thrombolysis but also boosts the rate of lysis, making it a promising candidate for time-sensitive thrombolytic therapy.
RESUMEN
Selenium is an essential nutrient for biological function. However, there is a detrimental effect on the aquatic environment associated with higher concentrations of > 40 µg/L. The utilization of waste shrimp shells for the removal of high-concentrated selenium from wastewater is a commendable strategy in both the pollution control and waste management sectors. In the present study, a chitin-iron polymer complex hybrid material (Fe@SHC) was prepared from shrimp shell-derived hydrochar (SHC), and the synthesized composite was successfully employed to uptake selenium from wastewater. The highest removal performance of 79.18 mg/g was attained by Fe@SHC, whereas the capacity of SHC was 15.30 mg/g. It was found that the calcium content of Fe@SHC (1.98%) was lower than that of SHC (25.20%) and pHzpc of Fe@SHC was extended to 7.78 compared with that of SHC (2.00). The abundance of protonated hydroxyl (-OH2+) and amine (-NH3+) functional groups that developed through the iron co-precipitations resulted in the improved adsorption performance of Fe@SHC. XPS analysis demonstrated that the captured Se(IV) species were converted into less hazardous Se(0), which is accompanied by the electron transfer with both N-C = O (acetyl amine) and -NH2 (amine) functional groups. Adsorption kinetics disclosed that the adsorption process was governed by chemical sorption, and the Sips isotherm model provided the most accurate description of the isotherm equilibrium. This study proposed an inexpensive and environmentally friendly method for effective decontamination of Se from wastewater.
Asunto(s)
Nanopartículas , Selenio , Contaminantes Químicos del Agua , Hierro/química , Aguas Residuales , Selenio/análisis , Adsorción , Quitina , Cinética , Nanopartículas/química , Aminas , Contaminantes Químicos del Agua/análisisRESUMEN
Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.
Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Fotoquimioterapia , Compuestos Férricos , Fenómenos Magnéticos , Neoplasias/tratamiento farmacológicoRESUMEN
Cancer vaccines combined with immune checkpoint blockades (ICB) represent great potential application, yet the insufficient tumor antigen presentation and immature dendritic cells hinder improved efficacy. Here, a hybrid nano vaccine composed by hyper branched poly(beta-amino ester), modified iron oxide nano adjuvant and messenger RNA (mRNA) encoded with model antigen ovalbumin (OVA) is presented. The nano vaccine outperforms three commercialized reagents loaded with the same mRNA, including Lipofectamine MessengerMax, jetPRIME, and in vivo-jetRNA in promoting dendritic cells' transfection, maturation, and peptide presentation. In an OVA-expressing murine model, intratumoral administration of the nano vaccine significantly induced macrophages and dendritic cells' presenting peptides and expressing co-stimulatory CD86. The nano vaccine also elicited strong antigen-specific splenocyte response and promoted CD8+ T cell infiltration. In combination with ICB, the nano vaccine aroused robust tumor suppression in murine models with large tumor burdens (initial volume >300 mm3 ). The hybrid mRNA vaccine represents a versatile and readily transformable platform and augments response to ICB.