Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.117
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1374445, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650626

RESUMEN

The death of cells can occur through various pathways, including apoptosis, necroptosis, mitophagy, pyroptosis, endoplasmic reticulum stress, oxidative stress, ferroptosis, cuproptosis, and disulfide-driven necrosis. Increasing evidence suggests that mitophagy and ferroptosis play crucial regulatory roles in the development of stroke. In recent years, the incidence of stroke has been gradually increasing, posing a significant threat to human health. Hemorrhagic stroke accounts for only 15% of all strokes, while ischemic stroke is the predominant type, representing 85% of all stroke cases. Ischemic stroke refers to a clinical syndrome characterized by local ischemic-hypoxic necrosis of brain tissue due to various cerebrovascular disorders, leading to rapid onset of corresponding neurological deficits. Currently, specific therapeutic approaches targeting the pathophysiological mechanisms of ischemic brain tissue injury mainly include intravenous thrombolysis and endovascular intervention. Despite some clinical efficacy, these approaches inevitably lead to ischemia-reperfusion injury. Therefore, exploration of treatment options for ischemic stroke remains a challenging task. In light of this background, advancements in targeted therapy for cerebrovascular diseases through mitophagy and ferroptosis offer a new direction for the treatment of such diseases. In this review, we summarize the progress of mitophagy and ferroptosis in regulating ischemia-reperfusion injury in stroke and emphasize their potential molecular mechanisms in the pathogenesis. Importantly, we systematically elucidate the role of medicinal plants and their active metabolites in targeting mitophagy and ferroptosis in ischemia-reperfusion injury in stroke, providing new insights and perspectives for the clinical development of therapeutic drugs for these diseases.

2.
Phytomedicine ; 129: 155649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653154

RESUMEN

BACKGROUND: Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE: MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS: A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS: Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS: At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.


Asunto(s)
Daño por Reperfusión Miocárdica , Estrés Oxidativo , Humanos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Estrés Oxidativo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Autofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Piroptosis/efectos de los fármacos
3.
Phytomedicine ; 129: 155578, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38621328

RESUMEN

BACKGROUND: Microglial activation plays a crucial role in injury and repair after cerebral ischemia, and microglial pyroptosis exacerbates ischemic injury. NOD-like receptor protein 3 (NLRP3) inflammasome activation has an important role in microglial polarization and pyroptosis. Aloe-emodin (AE) is a natural anthraquinone compound originated from rhubarb and aloe. It exerts antioxidative and anti-apoptotic effects during cerebral ischemia/reperfusion (I/R) injury. However, whether AE affects microglial polarization, pyroptosis, and NLRP3 inflammasome activation remains unknown. PURPOSE: This study aimed to explore the effects of AE on microglial polarization, pyroptosis, and NLRP3 inflammasome activation in the cerebral infarction area after I/R. METHODS: The transient middle cerebral artery occlusion (tMCAO) and oxygen-glucose deprivation/re-oxygenation (OGD/R) methods were used to create cerebral I/R models in vivo and in vitro, respectively. Neurological scores and triphenyl tetrazolium chloride and Nissl staining were used to assess the neuroprotective effects of AE. Immunofluorescence staining, quantitative polymerase chain reaction and western blot were applied to detect NLRP3 inflammasome activation and microglial polarization and pyroptosis levels after tMCAO or OGD/R. Cell viability and levels of interleukin (IL)-18 and IL-1ß were measured. Finally, MCC950 (an NLRP3-specific inhibitor) was used to evaluate whether AE affected microglial polarization and pyroptosis by regulating the activation of the NLRP3 inflammasome. RESULTS: AE improved neurological function scores and reduced the infarct area, brain edema rate, and Nissl-positive cell rate following I/R injury. It also showed a protective effect on BV-2 cells after OGD/R. AE inhibited microglial pyroptosis and induced M1 to M2 phenotype transformation and suppressed microglial NLRP3 inflammasome activation after tMCAO or OGD/R. The combined administration of AE and MCC950 had a synergistic effect on the inhibition of tMCAO- or OGD/R-induced NLRP3 inflammasome activation, which subsequently suppressed microglial pyroptosis and induced microglial phenotype transformation. CONCLUSION: AE exerts neuroprotective effects by regulating microglial polarization and pyroptosis through the inhibition of NLRP3 inflammasome activation after tMCAO or OGD/R. These findings provide new evidence of the molecular mechanisms underlying the neuroprotective effects of AE and may support the exploration of novel therapeutic strategies for cerebral ischemia.


Asunto(s)
Antraquinonas , Inflamasomas , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Daño por Reperfusión , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Piroptosis/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Microglía/efectos de los fármacos , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Antraquinonas/farmacología , Masculino , Ratones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Furanos/farmacología , Línea Celular
4.
J Ethnopharmacol ; 330: 118211, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636580

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qilong capsule (QC) is developed from the traditional Chinese medicine formula Buyang Huanwu Decoction, which has been clinically used to invigorate Qi and promote blood circulation to eliminate blood stasis. Myocardial ischemia‒reperfusion injury (MIRI) can be attributed to Qi deficiency and blood stasis. However, the effects of QC on MIRI remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect and possible mechanism of QC on platelet function in MIRI rats. MATERIALS AND METHODS: The left anterior descending artery of adult Sprague‒Dawley rats was ligated for 30 min and then reperfused for 120 min with or without QC treatment. Then, the whole blood viscosity, plasma viscosity, coagulation, platelet adhesion rate, platelet aggregation, and platelet release factors were evaluated. Platelet CD36 and its downstream signaling pathway-related proteins were detected by western blotting. Furthermore, the active components of QC and the molecular mechanism by which QC regulates platelet function were assessed via molecular docking, platelet aggregation tests in vitro and BLI analysis. RESULTS: We found that QC significantly reduced the whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation induced by ADP or AA in rats with MIRI. The inhibition of platelet activation by QC was associated with reduced levels of ß-TG, PF-4, P-selectin and PAF. Mechanistically, QC effectively attenuated the expression of platelet CD36 and thus inhibited the activation of Src, ERK5, and p38. The active components of QC apparently suppressed platelet aggregation in vitro and regulated the CD36 signaling pathway. CONCLUSIONS: QC improves MIRI-induced hemorheological disorders, which might be partly attributed to the inhibition of platelet activation via CD36-mediated platelet signaling pathways.


Asunto(s)
Plaquetas , Antígenos CD36 , Medicamentos Herbarios Chinos , Daño por Reperfusión Miocárdica , Activación Plaquetaria , Agregación Plaquetaria , Ratas Sprague-Dawley , Transducción de Señal , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Transducción de Señal/efectos de los fármacos , Masculino , Activación Plaquetaria/efectos de los fármacos , Antígenos CD36/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Ratas , Simulación del Acoplamiento Molecular
5.
Phytomedicine ; 128: 155390, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569296

RESUMEN

BACKGROUND: Well-defined and effective pharmacological interventions for clinical management of myocardial ischemia/reperfusion (MI/R) injury are currently unavailable. Shexiang Baoxin Pill (SBP), a traditional Chinese medicine Previous research on SBP has been confined to single-target treatments for MI/R injury, lacking a comprehensive examination of various aspects of MI/R injury and a thorough exploration of its underlying mechanisms. PURPOSE: This study aimed to investigate the therapeutic potential of SBP for MI/R injury and its preventive effects on consequent chronic heart failure (CHF). Furthermore, we elucidated the specific mechanisms involved, contributing valuable insights into the potential pharmacological interventions for the clinical treatment of MI/R injury. METHODS: We conducted a comprehensive identification of SBP components using high-performance liquid chromatography. Subsequently, we performed a network pharmacology analysis based on the identification results, elucidating the key genes influenced by SBP. Thereafter, through bioinformatics analysis of the key genes and validation through mRNA and protein assays, we ultimately determined the centralized upstream targets. Lastly, we conducted in vitro experiments using myocardial and endothelial cells to elucidate and validate potential underlying mechanisms. RESULTS: SBP can effectively mitigate cell apoptosis, oxidative stress, and inflammation, as well as promote vascular regeneration following MI/R, resulting in improved cardiac function and reduced CHF risk. Mechanistically, SBP treatment upregulates sphingosine-1-phosphate receptor 1 (S1PR1) expression and activates the S1PR1 signaling pathway, thereby regulating the expression of key molecules, including phosphorylated Protein Kinase B (AKT), phosphorylated signal transducer and activator of transcription 3, epidermal growth factor receptor, vascular endothelial growth factor A, tumor necrosis factor-α, and p53. CONCLUSION: This study elucidated the protective role of SBP in MI/R injury and its potential to reduce the risk of CHF. Furthermore, by integrating downstream effector proteins affected by SBP, this research identified the upstream effector protein S1PR1, enhancing our understanding of the pharmacological characteristics and mechanisms of action of SBP. The significance of this study lies in providing compelling evidence for the use of SBP as a traditional Chinese medicine for MI/R injury and consequent CHF prevention.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Daño por Reperfusión Miocárdica , Receptores de Esfingosina-1-Fosfato , Animales , Humanos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Farmacología en Red , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo
6.
J Ethnopharmacol ; 329: 118157, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588987

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus mongholicus Bunge (AMB) is a herb with wide application in traditional Chinese medicine, exerting a wealth of pharmacological effects. AMB has been proven to have an evident therapeutic effect on ischemic cerebrovascular diseases, including cerebral ischemia-reperfusion injury (CIRI). However, the specific mechanism underlying AMB in CIRI remains unclear. AIM OF THE STUDY: This study aimed to investigate the potential role of AMB in CIRI through a comprehensive approach of network pharmacology and in vivo experimental research. METHODS: The intersection genes of drugs and diseases were obtained through analysis of the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Gene Expression Omnibus (GEO) database. The protein-protein interaction (PPI) network was created through the string website. Meanwhile, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out using R studio, and thereafter the key genes were screened. Then, the molecular docking prediction was made between the main active ingredients and target genes, and hub genes with high binding energy were obtained. In addition, molecular dynamic (MD) simulation was used to validate the result of molecular docking. Based on the results of network pharmacology, we used animal experiments to verify the predicted hub genes. First, the rat middle cerebral artery occlusion and reperfusion (MACO/R) model was established and the effective dose of AMB in CIRI was determined by behavioral detection and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Then the target proteins corresponding to the hub genes were measured by Western blot. Moreover, the level of neuronal death was measured using hematoxylin and eosin (HE) and Nissl staining. RESULTS: Based on the analysis of the TCMSP database and GEO database, a total of 62 intersection target genes of diseases and drugs were obtained. The KEGG enrichment analysis showed that the therapeutic effect of AMB on CIRI might be realized through the advanced glycation endproduct-the receptor of advanced glycation endproduct (AGE-RAGE) signaling pathway in diabetic complications, nuclear factor kappa-B (NF-κB) signaling pathway and other pathways. Molecular docking results showed that the active ingredients of AMB had good binding potential with hub genes that included Prkcb, Ikbkb, Gsk3b, Fos and Rela. Animal experiments showed that AWE (60 g/kg) could alleviate CIRI by regulating the phosphorylation of PKCß, IKKß, GSK3ß, c-Fos and NF-κB p65 proteins. CONCLUSION: AMB exerts multi-target and multi-pathway effects against CIRI, and the underlying mechanism may be related to anti-apoptosis, anti-inflammation, anti-oxidative stress and inhibiting calcium overload.


Asunto(s)
Planta del Astrágalo , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Planta del Astrágalo/química , Masculino , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Simulación de Dinámica Molecular
7.
Zhongguo Zhong Yao Za Zhi ; 49(3): 798-808, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621884

RESUMEN

This study employed network pharmacology to investigate the effect of Guizhi Gancao Decoction(GGD) on myocardial ischemia-reperfusion injury(MI/RI) in rats and decipher the underlying mechanism. Firstly, the chemical components and targets of GGD against MI/RI were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), SwissTargetPrediction, and available articles. STRING and Cytoscape 3.7.2 were used to establish the protein-protein interaction(PPI) network for the common targets, and then Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were carried out for the core targets. The "drug-active component-target-pathway" network was built. Furthermore, molecular docking between key active components and targets was conducted in AutoDock Vina. Finally, the rat model of MI/RI was established, and the myocardial infarction area was measured. Hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM) were employed to detect cardiomyocyte pathology and ultrastructural changes. Western blot was employed to determine the expression of related proteins in the myocardial tissue. A total of 75 chemical components of GGD were screened out, corresponding to 318 targets. The PPI network revealed 46 core targets such as tumor protein p53(TP53), serine/threonine kinase 1(AKT1), signal transducer and activator of transcription 3(STAT3), non-receptor tyrosine kinase(SRC), mitogen-activated protein kinase 1(MAPK1), MAPK3, and tumor necrosis factor(TNF). According to GO and KEGG enrichment analyses, the core targets mainly affected the cell proliferation and migration, signal transduction, apoptosis, and transcription, involving advanced glycation end products-receptor(AGE-RAGE), MAPK and other signaling pathways in cancers and diabetes complications. The molecular docking results showed that the core components of GGD, such as licochalcone A,(+)-catechin, and cinnamaldehyde, had strong binding activities with the core target proteins, such as MAPK1 and MAPK3. The results of animal experiments showed that compared with the model group, GGD significantly increase superoxide dismutase, decreased malondialdehyde, lactate dehydrogenase, and creatine kinase-MB, and reduced the area of myocardial infarction. HE staining and TEM results showed that GGD pretreatment restored the structure of cardiomyocytes and alleviated the pathological changes and ultrastructural damage of mitochondria in the model group. In addition, GGD significantly down-regulated the phosphorylation of c-Jun N-terminal kinase and p38 and up-regulate that of extracellular regulated kinases 1/2 in the myocardial tissue. The results suggested that GGD may exert the anti-MI/RI effect by regulating the MAPK signaling pathway via the synergistic effects of Cinnamomi Ramulus and Glycyrrhizae Radix et Rhizoma.


Asunto(s)
Medicamentos Herbarios Chinos , Glycyrrhiza , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Ratas , Farmacología en Red , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Simulación del Acoplamiento Molecular , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , Medicamentos Herbarios Chinos/farmacología
8.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621906

RESUMEN

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Daño por Reperfusión , Ratas , Animales , Microglía/metabolismo , Gliosis/patología , Ratas Sprague-Dawley , Hiperplasia , Interleucina-4 , Interleucina-6 , Neurocano , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Infarto de la Arteria Cerebral Media , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621984

RESUMEN

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Especies Reactivas de Oxígeno , Ratas Sprague-Dawley , Caspasa 3/metabolismo , Transducción de Señal , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , ARN Mensajero , Apoptosis
10.
Am J Chin Med ; 52(2): 433-451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577825

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury is the leading cause of death worldwide. Ginsenoside Rd (GRd) has cardioprotective properties but its efficacy and mechanism of action in myocardial I/R injury have not been clarified. This study investigated GRd as a potent therapeutic agent for myocardial I/R injury. Oxygen-glucose deprivation and reperfusion (OGD/R) and left anterior descending (LAD) coronary artery ligation were used to establish a myocardial I/R injury model in vitro and in vivo. In vivo, GRd significantly reduced the myocardial infarct size and markers of myocardial injury and improved the cardiac function in myocardial I/R injury mice. In vitro, GRd enhanced cell viability and protected the H9c2 rat cardiomyoblast cell line from OGD-induced injury GRd. The network pharmacology analysis predicted 48 potential targets of GRd for the treatment of myocardial I/R injury. GO and KEGG enrichment analysis indicated that the cardioprotective effects of GRd were closely related to inflammation and apoptosis mediated by the PI3K/Akt signaling pathway. Furthermore, GRd alleviated inflammation and cardiomyocyte apoptosis in vivo and inhibited OGD/R-induced apoptosis and inflammation in cardiomyocytes. GRd also increased PI3K and Akt phosphorylation, suggesting activation of the PI3K/Akt pathway, whereas LY294002, a PI3K inhibitor, blocked the GRd-induced inhibition of OGD/R-induced apoptosis and inflammation in H9c2 cells. The therapeutic effect of GRd in vivo and in vitro against myocardial I/R injury was primarily dependent on PI3K/Akt pathway activation to inhibit inflammation and cardiomyocyte apoptosis. This study provides new evidence for the use of GRd as a cardiovascular drug.


Asunto(s)
Ginsenósidos , Daño por Reperfusión Miocárdica , Ratas , Ratones , Animales , Daño por Reperfusión Miocárdica/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Apoptosis , Miocitos Cardíacos/metabolismo
11.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611878

RESUMEN

Exosomes are multifunctional, cell-derived nanoscale membrane vesicles. Exosomes derived from certain mammalian cells have been developed as angiogenesis promoters for the treatment of myocardial ischemia-reperfusion injury, as they possess the capability to enhance endothelial cell proliferation, migration, and angiogenesis. However, the low yield of exosomes derived from mammalian cells limits their clinical applications. Therefore, we chose to extract exosome-like nanoparticles from the traditional Chinese medicine Salvia miltiorrhiza, which has been shown to promote angiogenesis. Salvia miltiorrhiza-derived exosome-like nanoparticles offer advantages, such as being economical, easily obtainable, and high-yielding, and have an ideal particle size, Zeta potential, exosome-like morphology, and stability. Salvia miltiorrhiza-derived exosome-like nanoparticles can enhance the cell viability of Human Umbilical Vein Endothelial Cells and can promote cell migration and improve the neovascularization of the cardiac tissues of myocardial ischemia-reperfusion injury, indicating their potential as angiogenesis promoters for the treatment of myocardial ischemia-reperfusion injury.


Asunto(s)
Exosomas , Daño por Reperfusión Miocárdica , Nanopartículas , Salvia miltiorrhiza , Humanos , Animales , Angiogénesis , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana , Factores de Transcripción , Mamíferos
12.
Mol Nutr Food Res ; 68(8): e2300671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566522

RESUMEN

SCOPE: Cerebral ischemia-reperfusion (IR) injury stands as a prominent global contributor to disability and mortality. Nervonic acid (NA), a bioactive elongated monounsaturated fatty acid, holds pivotal significance in human physiological well-being. This research aims to explore the prophylactic effects and fundamental mechanisms of NA in a rat model of cerebral IR injury. METHODS AND RESULTS: Through the induction of middle cerebral artery occlusion, this study establishes a rat model of cerebral IR injury and comprehensively assesses the pharmacodynamic impacts of NA pretreatment. This evaluation involves behavioral analyses, histopathological examinations, and quantification of serum markers. Detailed mechanisms of nervonic acid's prophylactic effects are revealed through fecal metabolomics and 16S rRNA sequencing analyses. Our findings robustly support nervonic acid's capacity to ameliorate neurological impairments in rats afflicted with cerebral IR injury. Beyond its neurological benefits, NA demonstrates its potential by rectifying metabolic perturbations across diverse pathways, particularly those pertinent to unsaturated fatty acid metabolism. Additionally, NA emerges as a modulator of gut microbiota composition, notably by selectively enhancing vital genera like Lactobacillus. CONCLUSION: These comprehensive findings highlight the potential of incorporating NA as a functional component in dietary interventions aimed at targeting cerebral IR injury.


Asunto(s)
Suplementos Dietéticos , Heces , Microbioma Gastrointestinal , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Heces/microbiología , Heces/química , Ratas , Infarto de la Arteria Cerebral Media , Isquemia Encefálica , Modelos Animales de Enfermedad
13.
Phytomedicine ; 128: 155335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518648

RESUMEN

BACKGROUND: Stroke is a complex physiological process associated with intestinal flora dysbiosis and metabolic disorders. Dan-deng-tong-nao capsule (DDTN) is a traditional Chinese medicine used clinically to treat cerebral ischemia-reperfusion injury (CIRI) for many years. However, little is known about the effects of DDTN in the treatment of CIRI from the perspective of gut microbiota and metabolites. PURPOSE: This study aimed to investigate the regulatory roles of DDTN in endogenous metabolism and gut microbiota in CIRI rats, thus providing a basis for clinical rational drug use and discovering natural products with potential physiological activities in DDTN for the treatment of CIRI. METHODS: The chemical composition of DDTN in vitro and in vivo was investigated using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS), followed by target prediction using reverse molecular docking. Secondly, a biological evaluation of DDTN ameliorating neural damage in CIRI was performed at the whole animal level. Then, an integrated omics approach based on UHPLCHRMS and 16S rRNA sequencing was proposed to reveal the anti-CIRI effect and possible mechanism of DDTN. Finally, exploring the intrinsic link between changes in metabolite profiles, changes in the intestinal flora, and targets of components to reveal DDTN for the treatment of CIRI. RESULTS: A total of 112 chemical components of DDTN were identified in vitro and 10 absorbed constituents in vivo. The efficacy of DDTN in the treatment of CIRI was confirmed by alleviating cerebral infarction and neurological deficits. After the DDTN intervention, 21 and 26 metabolites were significantly altered in plasma and fecal, respectively. Based on the fecal microbiome, a total of 36 genera were enriched among the different groups. Finally, the results of the network integration analysis showed that the 10 potential active ingredients of DDTN could mediate the differential expression of 24 metabolites and 6 gut microbes by targeting 25 target proteins. CONCLUSION: This study was the first to outline the landscapes of metabolites as well as gut microbiota regulated by DDTN in CIRI rats using multi-omics data, and comprehensively revealed the systematic relationships among ingredients, targets, metabolites, and gut microbiota, thus providing new perspectives on the mechanism of DDTN in the treatment of CIRI.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Daño por Reperfusión , Animales , Masculino , Ratas , Isquemia Encefálica/tratamiento farmacológico , Cápsulas , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Microbioma Gastrointestinal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Multiómica , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , ARN Ribosómico 16S
14.
Phytomedicine ; 128: 155300, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518639

RESUMEN

BACKGROUND: This study was conducted to elucidate the critical molecular pathways underlying the protective effects of remifentanil against hepatic ischemia-reperfusion injury in rats. Our approach integrated network pharmacology analysis with high-throughput sequencing to achieve a comprehensive understanding of the mechanisms involved. STUDY DESIGN/METHODS: The study utilized GSE24430 gene expression data from GEO to investigate remifentanil's impact on Hepatic Ischemia-Reperfusion Injury in rats. Weighted Correlation Network Analysis (WGCNA) was employed to pinpoint crucial genes and identify modules of co-expressed genes. Differential analysis with the "Limma" package revealed genes differentially expressed in IRI vs. control groups. PubChem and PharmMapper provided target genes affected by remifentanil. Protein-protein interaction networks were constructed via GeneCards and STRING. Functional analysis pinpointed core genes involved in remifentanil's IRI alleviation. IRI rat models were established, and hepatic injury indicators, liver structure via H&E staining, autophagosome counts via electron microscopy, and gene/protein expression via RT-qPCR and Western blot were assessed. High-throughput sequencing analyzed molecular pathways affected by varying remifentanil doses in IRI rats. RESULTS: In the study, we discovered four primary co-expression modules associated with hepatic IRI, and the grey module exhibited the highest correlation with hepatic IRI.A total of sixty-eight genes that were differentially expressed were found to have a connection with hepatic IRI.Network pharmacology analysis found that remifentanil may alleviate hepatic IRI through Fmol.found that the Fmol/Parkin signaling pathway may alleviate hepatic IRI via Additionally, the database autophagy. The established hepatic IRI rat models further confirmed the above findings. CONCLUSION: Our study established that remifentanil triggers the Fmol/Parkin signaling cascade, amplifying the expression levels of Fmol and Parkin. This process culminates in the activation of autophagy within hepatic cells, ultimately alleviating hepatic ischemia-reperfusion injury (IRI).


Asunto(s)
Hígado , Farmacología en Red , Ratas Sprague-Dawley , Remifentanilo , Daño por Reperfusión , Transducción de Señal , Ubiquitina-Proteína Ligasas , Animales , Daño por Reperfusión/tratamiento farmacológico , Remifentanilo/farmacología , Transducción de Señal/efectos de los fármacos , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratas , Ubiquitina-Proteína Ligasas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Mapas de Interacción de Proteínas
15.
Phytomedicine ; 128: 155365, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552436

RESUMEN

BACKGROUND: Ferroptosis, a form of regulated cell death (RCD) that relies on excessive reactive oxygen species (ROS) generation, Fe2+accumulation, abnormal lipid metabolism and is involved in various organ ischemia/reperfusion (I/R) injury, expecially in myocardium. Mitochondria are the powerhouses of eukaryotic cells and essential in regulating multiple RCD. However, the links between mitochondria and ferroptosis are still poorly understood. Salidroside (Sal), a natural phenylpropanoid glycoside isolated from Rhodiola rosea, has mult-bioactivities. However, the effects and mechanism in alleviating ferroptosis caused by myocardial I/R injury remains unclear. PURPOSE: This study aimed to investigate whether pretreated with Sal could protect the myocardium against I/R damage and the underlying mechanisms. In particular, the relationship between Sal pretreatment, AMPKα2 activity, mitochondria and ROS generation was explored. STUDY DESIGN AND METHODS: Firstly, A/R or I/R injury models were employed in H9c2 cells and Sprague-Dawley rats. And then the anti-ferroptotic effects and mechanism of Sal pretreatment was detected using multi-relevant indexes in H9c2 cells. Further, how does Sal pretreatment in AMPKα2 phosphorylation was explored. Finally, these results were validated by I/R injury in rats. RESULTS: Similar to Ferrostatin-1 (a ferroptosis inhibitor) and MitoTEMPO, a mitochondrial free radical scavenger, Sal pretreatment effectively alleviated Fe2+ accumulation, redox disequilibrium and maintained mitochondrial energy production and function in I/R-induced myocardial injury, as demonstrated using multifunctional, enzymatic, and morphological indices. However, these effects were abolished by downregulation of AMPKα2 using an adenovirus, both in vivo and in vitro. Moreover, the results also provided a non-canonical mechanism that, under mild mitochondrial ROS generation, Sal pretreatment upregulated and phosphorylated AMPKα2, which enhanced mitochondrial complex I activity to activate innate adaptive responses and increase cellular tolerance to A/R injury. CONCLUSION: Overall, our work highlighted mitochondria are of great impotance in myocardial I/R-induced ferroptosis and demonstrated that Sal pretreatment activated AMPKα2 against I/R injury, indicating that Sal could become a candidate phytochemical for the treatment of myocardial I/R injury.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ferroptosis , Glucósidos , Daño por Reperfusión Miocárdica , Fenoles , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Rhodiola , Ferroptosis/efectos de los fármacos , Fenoles/farmacología , Animales , Glucósidos/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Ratas , Masculino , Rhodiola/química , Proteínas Quinasas Activadas por AMP/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos
16.
Zhen Ci Yan Jiu ; 49(3): 238-246, 2024 Mar 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500320

RESUMEN

OBJECTIVES: To observe the effect of moxibustion preconditioning on inflammatory response in rats with cerebral ischemia reperfusion injury (CIRI), so as to explore its mechanisms underlying improving CIRI. METHODS: Seventy-five male SD rats were randomly divided into sham operation, model, moxibustion preconditioning 3 days (Moxi 1), moxibustion preconditioning 5 days (Moxi 2) and moxibustion preconditioning 7 days (Moxi 3) groups, with 15 rats in each group. Moxibustion was applied at "Baihui"(GV20), "Dazhui"(GV14) and "Zusanli"(ST36) for 20 min once a day, totally for 3, 5 or 7 days. Thirty minutes after the last moxibustion treatment, the CIRI model was established by occlusion of the middle cerebral artery. The neurological deficit score was assessed by using Longa's method. The infarct size of the brain assessed after staining with 2% triphenyltetrazolium chloride (TTC). The morphological changes of cortical neurons were observed by HE staining. The contents of inflammatory factors interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), S-100ß protein (S-100ß) and neuron-specific enolase (NSE) were detected by ELISA. The expression of phosphatidylinositol-3-kinase (PI3K), p-PI3K, protein kinase B (AKT) and mammalian target of rapamycin (mTOR) proteins in the ischemic cortex tissues were detected by immunohistochemistry and Western blot. RESULTS: Compared with the sham operation group, the neurological function score and the percentage of cerebral ischemic volume were increased (P<0.01). The contents of serum IL-1ß, TNF-α, S-100ß and NSE were significantly increased (P<0.01), while the protein expressions of PI3K, p-PI3K, AKT and mTOR in the cerebral cortex were significantly decreased (P<0.01) in the model group. Compared with the model group, the neurological function score and the percentage of cerebral ischemic volume were significantly decreased (P<0.01). The contents of serum IL-1ß, TNF-α, S-100ß and NSE were significantly decreased (P<0.01), and the expressions of PI3K, p-PI3K, AKT and mTOR proteins in the cerebral cortex were significantly increased (P<0.01) in three moxibustion groups. Compared with the Moxi 1 and Moxi 2 groups, the above indicators were significantly improved in rats of the Moxi 3 group (P<0.01, P<0.05). CONCLUSIONS: Moxibustion preconditioning can significantly improve the neurological function of rats after ischemia-reperfusion, inhibit serum inflammatory factors IL-1 ß and TNF-α, inhibit brain tissue injury markers S-100ß and NSE, which may be related to the activation of PI3K/AKT/mTOR signaling pathway. The protective effect of moxibustion preconditioning for 7 days on CIRI was better than that of 5 days and 3 days.


Asunto(s)
Isquemia Encefálica , Moxibustión , Daño por Reperfusión , Ratas , Masculino , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Ratas Sprague-Dawley , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasa/farmacología , Factor de Necrosis Tumoral alfa/genética , Subunidad beta de la Proteína de Unión al Calcio S100/farmacología , Transducción de Señal , Daño por Reperfusión/genética , Daño por Reperfusión/terapia , Serina-Treonina Quinasas TOR/genética , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Infarto Cerebral , Mamíferos
17.
Zhen Ci Yan Jiu ; 49(3): 302-306, 2024 Mar 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500328

RESUMEN

Ischemic stroke is currently the most common type of stroke, and the key pathological link is cerebral ischemia-reperfusion injury (CIRI), while the key factor leading to apoptosis and necrosis of ischemic nerve cells is calcium overload. Current studies have confirmed that acupuncture therapy has a good modulating effect on calcium homeostasis and can reduce cerebral ischemia-reperfusion induced damage of neuronal cells by inhibiting calcium overload. After reviewing the relevant literature published in the past 15 years, we find that acupuncture plays a role in regulating the pathological mechanism of calcium overload after CIRI by inhibiting the opening of connexin 43 hemichannels, regulating the intracellular free calcium ion concentration, suppressing the expression of calmodulin, and blocking the function of L-type voltage-gated calcium channels, thereby inhibiting calcium overload, regulating calcium homeostasis and antagonizing neuronal damage resulted from cerebral ischemia-reperfusion, which may provide ideas for future research.


Asunto(s)
Terapia por Acupuntura , Acupuntura , Isquemia Encefálica , Daño por Reperfusión , Humanos , Calcio/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto Cerebral
18.
Heliyon ; 10(6): e27045, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38500994

RESUMEN

Background: Imbalances between Bcl-2 and caspase-3 are significant evidence of apoptosis, which is considered an influential factor in rapidly occurring neuronal cell death and the decline of neurological function after stroke. Studies have shown that acupuncture can reduce poststroke brain cell damage via either an increase in Bcl-2 or a reduction in caspase-3 exposure. The current study aimed to investigate whether acupuncture could modulate Bcl-2 and caspase-3 expression through histone acetylation modifications, which could potentially serve as a neuroprotective mechanism. Methods: This study used TTC staining, Nissl staining, Clark neurological system score, and Evans Blue (EB) extravasation to evaluate neurological damage following stroke. The expression of Bcl-2/caspase-3 mRNA was detected by real-time fluorescence quantification of PCR (real-time PCR), whereas the protein expression levels of Bcl-2, Bax, caspase-3, and cleaved caspase-3 were assessed using western blotting. TUNEL staining of the ischemic cortical neurons determined apoptosis in the ischemic cortex. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities, along with the protein performance of AceH3, H3K9ace, and H3K27ace, were detected to evaluate the degree of histone acetylation. The acetylation enrichment levels of H3K9 and K3K27 in the Bcl-2/caspase-3 gene were assessed using Chromatin Immunoprecipitation (ChIP) assay. Results: Our data demonstrated that electroacupuncture (EA) exerts a significant neuroprotective effect in middle cerebral artery occlusion (MCAO) rats, as evidenced by a reduction in infarct volume, neuronal damage, Blood-Brain Barrier (BBB) disruption, and decreased apoptosis of ischemic cortical neurons. EA treatment can promote the mRNA and protein expression of the Bcl-2 gene in the ischemic brain while reducing the mRNA and protein expression levels of caspase-3 and effectively decreasing the protein expression levels of Bax and cleaved caspase-3. More importantly, EA treatment enhanced the level of histone acetylation, including Ace-H3, H3K9ace, and H3K27ace, significantly enhanced the occupancy of H3K9ace/H3K27ace at the Bcl-2 promoter, and reduced the enrichment of H3K9ace and H3K27ace at the caspase-3 promoter. However, the Histone Acetyltransferase inhibitor (HATi) treatment reversed these effects. Conclusions: Our data demonstrated that EA mediated the expression levels of Bcl-2 and caspase-3 in MCAO rats by regulating the occupancy of acetylated H3K9/H3K27 at the promoters of these two genes, thus exerting a cerebral protective effect in ischemic reperfusion (I/R) injury.

19.
Chin Med ; 19(1): 43, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448912

RESUMEN

BACKGROUND: Myocardial ischemia-reperfusion can further exacerbate myocardial injury and increase the risk of death. Our previous research found that the paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in the improvement of myocardial ischemia-reperfusion injury (MIRI) by electroacupuncture (EA) pretreatment, but its mechanism of action is still unclear. CRH neurons exhibit periodic concentrated expression in PVN, but further research is needed to determine whether they are involved in the improvement of MIRI by EA pretreatment. Meanwhile, numerous studies have shown that changes in sympathetic nervous system innervation and activity are associated with many heart diseases. This study aims to investigate whether EA pretreatment improves MIRI through sympathetic nervous system mediated by PVNCRH neurons. METHODS: Integrated use of fiber-optic recording, chemical genetics and other methods to detect relevant indicators: ECG signals were acquired through Powerlab standard II leads, and LabChart 8 calculated heart rate, ST-segment offset, and heart rate variability (HRV); Left ventricular ejection fraction (LVEF), left ventricular short-axis shortening (LVFS), left ventricular end-systolic internal diameter (LVIDs) and interventricular septal thickness (IVSs) were measured by echocardiography; Myocardial infarct area (IA) and area at risk (AAR) were calculated by Evans-TTC staining. Pathological changes in cardiomyocytes were observed by HE staining; Changes in PVNCRH neuronal activity were recorded by fiber-optic photometry; Sympathetic nerve discharges were recorded for in vivo electrophysiology; NE and TH protein expression was assayed by Western blot. RESULTS: Our data indicated that EA pretreatment can effectively alleviate MIRI. Meanwhile, we found that in the MIRI model, the number and activity of CRH neurons co labeled with c-Fos in the PVN area of the rat brain increased, and the frequency of sympathetic nerve discharge increased. EA pretreatment could reverse this change. In addition, the results of chemical genetics indicated that inhibiting PVNCRH neurons has a similar protective effect on MIRI as EA pretreatment, and the activation of PVNCRH neurons can counteract this protective effect. CONCLUSION: EA pretreatment can inhibit PVNCRH neurons and improve MIRI by inhibiting sympathetic nerve, which offers fresh perspectives on the application of acupuncture in the management of cardiovascular disease.

20.
Cell Mol Biol Lett ; 29(1): 31, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439028

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is a common clinical disorder with complex etiology and poor prognosis, and currently lacks specific and effective treatment options. Mitochondrial dynamics dysfunction is a prominent feature in AKI, and modulation of mitochondrial morphology may serve as a potential therapeutic approach for AKI. METHODS: We induced ischemia-reperfusion injury (IRI) in mice (bilateral) and Bama pigs (unilateral) by occluding the renal arteries. ATP depletion and recovery (ATP-DR) was performed on proximal renal tubular cells to simulate in vitro IRI. Renal function was evaluated using creatinine and urea nitrogen levels, while renal structural damage was assessed through histopathological staining. The role of Drp1 was investigated using immunoblotting, immunohistochemistry, immunofluorescence, and immunoprecipitation techniques. Mitochondrial morphology was evaluated using confocal microscopy. RESULTS: Renal IRI induced significant mitochondrial fragmentation, accompanied by Dynamin-related protein 1 (Drp1) translocation to the mitochondria and Drp1 phosphorylation at Ser616 in the early stages (30 min after reperfusion), when there was no apparent structural damage to the kidney. The use of the Drp1 inhibitor P110 significantly improved kidney function and structural damage. P110 reduced Drp1 mitochondrial translocation, disrupted the interaction between Drp1 and Fis1, without affecting the binding of Drp1 to other mitochondrial receptors such as MFF and Mid51. High-dose administration had no apparent toxic side effects. Furthermore, ATP-DR induced mitochondrial fission in renal tubular cells, accompanied by a decrease in mitochondrial membrane potential and an increase in the translocation of the pro-apoptotic protein Bax. This process facilitated the release of dsDNA, triggering the activation of the cGAS-STING pathway and promoting inflammation. P110 attenuated mitochondrial fission, suppressed Bax mitochondrial translocation, prevented dsDNA release, and reduced the activation of the cGAS-STING pathway. Furthermore, these protective effects of P110 were also observed renal IRI model in the Bama pig and folic acid-induced nephropathy in mice. CONCLUSIONS: Dysfunction of mitochondrial dynamics mediated by Drp1 contributes to renal IRI. The specific inhibitor of Drp1, P110, demonstrated protective effects in both in vivo and in vitro models of AKI.


Asunto(s)
Lesión Renal Aguda , Animales , Ratones , Porcinos , Proteína X Asociada a bcl-2 , Dinaminas , Nucleotidiltransferasas , Adenosina Trifosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA