Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(7): 4004-4014, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38252708

RESUMEN

BACKGROUND: Licorice extract is an important raw material for food additives and medicine. The quality of licorice extract is dictated by the drying process. The commonly used drying methods of licorice extract are not efficient in obtaining high-quality products so alternative techniques need to be developed and researched. In this study, ultrasound-assisted vacuum drying (UAVD) was first utilized to improve drying efficiency and produce a higher-quality product. The changes in water mobility of licorice extract during drying were characterized using low-field nuclear magnetic resonance. In addition, the effects of ultrasonic power on the drying dynamics, the contents of liquiritin and glycyrrhizic acid, the antioxidant capacity and the microstructure formation of licorice extract during the whole drying process were investigated. RESULTS: The drying times for licorice extract to reach equilibrium moisture content were reduced by 9.09-69.70% with UAVD at 40-200 W compared with that without ultrasonic treatment (0 W). Moreover, the proportions of bound water and semi-bound water in fresh concentrate were 3.75% and 96.25%. It was also found that high ultrasonic power promoted the flow of water and the formation of porous structure in licorice extract, which led to the improvement of drying efficiency. The contents of liquiritin (2.444%) and glycyrrhizic acid (6.514%) were retained to a large degree in the dried product at an ultrasonic power of 80 W. The DPPH inhibition rate of UAVD samples with different ultrasonic powers ranged from 84.07 ± 0.46% to 90.65 ± 0.22%. CONCLUSION: UAVD has the advantages of high efficiency and low energy consumption, which may be an alternative technology for vacuum drying widely used in industry. © 2024 Society of Chemical Industry.


Asunto(s)
Glycyrrhiza , Ácido Glicirrínico , Extractos Vegetales , Ultrasonido , Vacio , Desecación/métodos , Cinética , Agua
2.
Phytother Res ; 38(1): 174-186, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37849425

RESUMEN

Psoriasis is a common immune-mediated inflammatory skin disease, caused by disturbed interactions between keratinocytes and immune cells. Chinese medicine shows potential clinical application for its treatment. Liquiritin is a flavone compound extracted from licorice and shows potential antitussive, antioxidant and antiinflammatory effects, and therefore may have potential as a psoriasis therapeutic. The aim of this work was to examine the possible roles that liquiritin may have in treating psoriasis. HaCaT cells were stimulated by TNF-α with or without liquiritin, harvested for analysis by western blots and RT-qPCR, and the cellular supernatants were collected and analyzed by ELISA for cytokines. In addition, 4 groups of mice were examined: Normal, Vehicle, LQ-L and LQ-H. The mice were sacrificed after 6 days and analyzed using IHC, ELISA, RT-qPCR and flow cytometry. The results showed that liquiritin could significantly inhibit the progression of psoriasis both in vitro and in vivo. Liquiritin strongly suppressed the proliferation of HaCaT keratinocytes but did not affect cell viability. Moreover, liquiritin alleviated imiquimod-induced psoriasis-like skin inflammation and accumulation of Th17 cells and DCs in vivo. In TNF-α-induced HaCaT keratinocytes, both protein and mRNA expression levels of inflammatory cytokines were sharply decreased. In imiquimod-induced mice, the activation of NF-κB and AP-1 was reduced after treatment with liquiritin. Collectively, our results show that liquiritin might act as a pivotal regulator of psoriasis via modulating NF-κB and AP-1 signal pathways.


Asunto(s)
Flavanonas , Glucósidos , FN-kappa B , Psoriasis , Ratones , Animales , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo , Imiquimod/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Células Th17 , Línea Celular , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Queratinocitos , Citocinas/metabolismo , Proliferación Celular , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
3.
Phytomedicine ; 120: 155039, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37672855

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a significant global health concern that can lead to depression in affected patients. Liquiritin apioside (LA) possesses anti-oxidative and anti-inflammatory properties. However, its anti-inflammatory mechanism in IBD has not been extensively studied. PURPOSE: This study elucidates the pivotal role of LA in alleviating inflammation by regulating gut metabiota-derived metabolites and evaluating its regulative effects on promoting a balance of Th17/Treg cells in colitis mice. METHODS: To evaluate the effect of LA on IBD,16S rRNA gene sequencing and UPLC-QTOF-MS analysis were used to identify the changes of intestinal bacteria and their metabolites. Cytokines levels were determined by ELISA and qPCR, while immune cell ratios were evaluated via flow cytometry. RESULTS: Our findings revealed that LA treatment ameliorated general states of DSS-induced colitis mice and their accompanying depressive behaviors. Moreover, LA restricted the expression of pro-inflammatory cytokines and revised the imbalanced Treg/Th17 differentiation, while promoting SCFAs production in inflamed colon tissues. Fecal microbiota transplantation from LA-fed mice also corrected the imbalanced Treg/Th17 differentiation, indicating that LA-mediated restoration of the colonic Treg/Th17 balance mainly depends on the changes in gut metabolites. CONCLUSION: These results provide scientific evidence explaining the apparent paradox of low bioavailability and high bioactivity in polyphenols, and suggesting that LA could be used as a potential dietary supplement for the prevention and improvement of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Depresión/tratamiento farmacológico , ARN Ribosómico 16S , Linfocitos T Reguladores , Colitis/tratamiento farmacológico , Inflamación , Citocinas
4.
Chin Med ; 18(1): 35, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013552

RESUMEN

BACKGROUND: Licorice (Glycyrrhiza uralensis Fisch.), a well-known traditional medicine, is traditionally used for the treatment of respiratory disorders, such as cough, sore throat, asthma and bronchitis. We aim to investigate the effects of liquiritin (LQ), the main bioactive compound in licorice against acute lung injury (ALI) and explore the potential mechanism. METHODS: Lipopolysaccharide (LPS) was used to induce inflammation in RAW264.7 cells and zebrafish. Intratracheal instillation of 3 mg/kg of LPS was used for induction an ALI mice model. The concentrations of IL-6 and TNF-α were tested using the enzyme linked immunosorbent assay. Western blot analysis was used to detect the expression of JNK/Nur77/c-Jun related proteins. Protein levels in bronchoalveolar lavage fluid (BALF) was measured by BCA protein assay. The effect of JNK on Nur77 transcriptional activity was determined by luciferase reporter assay, while electrophoretic mobility shift assay was used to examine the c-Jun DNA binding activity. RESULTS: LQ has significant anti-inflammatory effects in zebrafish and RAW264.7 cells. LQ inhibited the expression levels of p-JNK (Thr183/Tyr185), p-Nur77 (Ser351) and p-c-Jun (Ser63), while elevated the Nur77 expression level. Inhibition of JNK by a specific inhibitor or small interfering RNA enhanced the regulatory effect of LQ on Nur77/c-Jun, while JNK agonist abrogated LQ-mediated effects. Moreover, Nur77-luciferase reporter activity was suppressed after JNK overexpression. The effects of LQ on the expression level of c-Jun and the binding activity of c-Jun with DNA were attenuated after Nur77 siRNA treatment. LQ significantly ameliorated LPS-induced ALI with the reduction of lung water content and BALF protein content, the downregulation of TNF-α and IL-6 levels in lung BALF and the suppression of JNK/Nur77/c-Jun signaling, which can be reversed by a specific JNK agonist. CONCLUSION: Our results indicated that LQ exerts significant protective effects against LPS-induced inflammation both in vivo and in vitro via suppressing the activation of JNK, and consequently inhibiting the Nur77/c-Jun signaling pathway. Our study suggests that LQ may be a potential therapeutic candidate for ALI and inflammatory disorders.

5.
J Nat Med ; 77(3): 561-571, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37115471

RESUMEN

Nerve inflammation is linked to the development of various neurological disorders. This study aimed to examine whether Glycyrrhizae Radix effectively influences the duration of the pentobarbital-induced loss of righting reflex, which may increase in a mouse model of lipopolysaccharide (LPS)-induced nerve inflammation and diazepam-induced γ-aminobutyric acid receptor hypersensitivity. Furthermore, we examined the anti-inflammatory effects of Glycyrrhizae Radix extract on LPS-stimulated BV2 microglial cells, in vitro. Treatment with Glycyrrhizae Radix significantly decreased the duration of pentobarbital-induced loss of righting reflex in the mouse model. Furthermore, treatment with Glycyrrhizae Radix significantly attenuated the LPS-induced increases in interleukin-1ß, interleukin-6, and tumor necrosis factor-alpha at the mRNA level, and it significantly reduced the number of ionized calcium-binding adapter molecule-1-positive cells in the hippocampal dentate gyrus 24 h after LPS treatment. Treatment with Glycyrrhizae Radix also suppressed the release of nitric oxide, interleukin-1ß, interleukin-6, and tumor necrosis factor protein in culture supernatants of LPS-stimulated BV2 cells. In addition, glycyrrhizic acid and liquiritin, active ingredients of Glycyrrhizae Radix extract, reduced the duration of pentobarbital-induced loss of righting reflex. These findings suggest that Glycyrrhizae Radix, as well as its active ingredients, glycyrrhizic acid and liquiritin, may be effective therapeutic agents for the treatment of nerve inflammation-induced neurological disorders.


Asunto(s)
Medicamentos Herbarios Chinos , Glycyrrhiza , Ratones , Animales , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Ácido Glicirrínico/farmacología , Pentobarbital/farmacología , Pentobarbital/uso terapéutico , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Diazepam/uso terapéutico , Reflejo de Enderezamiento , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hipocampo/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Medicamentos Herbarios Chinos/farmacología
6.
J Food Biochem ; 46(10): e14351, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35929638

RESUMEN

Heart failure (HF) is a serious disease with high mortality. Oxidative stress plays a vital role in its occurrence and development. Licorice is commonly used to treat HF in traditional Chinese medicine. Liquiritin, the main ingredient of licorice, has antioxidant and anti-inflammatory properties, but the mechanism against oxidative stress in cardiomyocytes has not been reported. Establishment of oxidative damage model in H9c2 cells by hydrogen peroxide (H2 O2 ). Liquiritin (5, 10, 20 µmol/L) could significantly prevent the loss of cell viability and decrease the apoptosis rate. It can reduce the levels of reactive oxygen species (ROS), malonedialdehyde (MDA), lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and increase the activity of ATP, superoxidedismutase (SOD), glutathione peroxide (GSH-px), glutathione reductase (GR) and catalase (CAT) to alleviate oxidative stress and inflammation in a dose-dependent manner. Liquiritin was found to be related to AMP-Activated Protein Kinase (AMPK) pathway by molecular docking. Western blotting (WB) and quantitative reverse transcription PCR (RT-qPCR) confirmed that liquiritin could promote AMPKα phosphorylation and sirtuin 1 (SIRT1) protein expression, and inhibit phosphorylation of nuclear factor kappa B p65 (NF-κB p65). Compound C, EX 527, and PDTC can reverse the effects of liquiritin, indicating that its antioxidant effect is achieved by regulating AMPK/SIRT1/NF-κB signaling pathway. PRACTICAL APPLICATIONS: Heart failure is one of the most common cardiovascular diseases, and its treatment remains a worldwide problem. Licorice is a food and dietary supplement that has been used widely in traditional Chinese medicine (TCM). Liquiritin is one of the main active components of licorice, which has antioxidant and anti-inflammatory pharmacological effects. This study revealed the mechanism of licorice against oxidative damage of H9c2 cardiomyocytes, and provided a scientific basis for liquiritin as an antioxidant in the treatment of heart failure.


Asunto(s)
Insuficiencia Cardíaca , FN-kappa B , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/farmacología , Adenosina Trifosfato/metabolismo , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Flavanonas , Glucósidos , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lactato Deshidrogenasas/metabolismo , Simulación del Acoplamiento Molecular , FN-kappa B/genética , FN-kappa B/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
J Ethnopharmacol ; 297: 115572, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35872290

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Srolo Bzhtang (SBT), which consists of Solms-laubachia eurycarpa, Bergenia purpurascens, Glycyrrhiza uralensis, and lac secreted by Laccifer lacca Kerr (Lacciferidae Cockerell), is a well-known traditional Tibetan medicinal formula and was documented to cure "lung-heat" syndrome by eliminating "chiba" in the ancient Tibetan medical work Four Medical Tantras (Rgyud bzhi). Clinically, it is a therapy for pulmonary inflammatory disorders, such as pneumonia, chronic bronchitis, and chronic obstructive pulmonary disease. However, whether and how SBT participates in pulmonary arterial hypertension (PAH) is still unclear. AIM OF THE STUDY: We aimed to determine the role of SBT in attenuating pulmonary arterial pressure and vascular remodeling caused by monocrotaline (MCT) and hypoxia. To elucidate the potential mechanism underlying SBT-mediated PAH, we investigated the changes in inflammatory cytokines and mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) signaling pathway. MATERIALS AND METHODS: MCT- and hypoxia-induced PAH rat models were used. After administering SBT for four weeks, the rats were tested for hemodynamic indicators, hematological changes, pulmonary arterial morphological changes, and the levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in serum and lung tissues. Protein expression of the MAPK/NF-κB signaling pathway was determined using western blotting. RESULTS: SBT reduced pulmonary arterial pressure, vascular remodeling, and the levels of inflammatory cytokines induced by MCT and hypoxia in rats. Furthermore, SBT significantly suppressed the MAPK/NF-κB signaling pathway. CONCLUSIONS: To our knowledge, this is the first study to demonstrate that SBT alleviates MCT- and hypoxia-induced PAH in rats, which is related to its anti-inflammatory actions involving inhibition of the MAPK/NF-κB signaling pathway.


Asunto(s)
FN-kappa B , Hipertensión Arterial Pulmonar , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Inflamación , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Monocrotalina , FN-kappa B/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Necrosis Tumoral alfa , Remodelación Vascular
8.
Plant Biotechnol J ; 20(10): 1874-1887, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35668676

RESUMEN

Glycyrrhiza uralensis Fisch is a medicinal plant widely used to treat multiple diseases in Europe and Asia, and its efficacy largely depends on liquiritin and glycyrrhizic acid. The regulatory pattern responsible for the difference in efficacy between wild and cultivated G. uralensis remains largely undetermined. Here, we collected roots and rhizosphere soils from wild (WT) G. uralensis as well as those farmed for 1 year (C1) and 3 years (C3), generated metabolite and transcript data for roots, microbiota data for rhizospheres and conducted comprehensive multi-omics analyses. We updated gene structures for all 40 091 genes in G. uralensis, and based on 52 differentially expressed genes, we charted the route-map of both liquiritin and glycyrrhizic acid biosynthesis, with genes BAS, CYP72A154 and CYP88D6 critical for glycyrrhizic acid biosynthesis being significantly expressed higher in wild G. uralensis than in cultivated G. uralensis. Additionally, multi-omics network analysis identified that Lysobacter was strongly associated with CYP72A154, which was required for glycyrrhizic acid biosynthesis. Finally, we developed a holistic multi-omics regulation model that confirmed the importance of rhizosphere microbial community structure in liquiritin accumulation. This study thoroughly decoded the key regulatory mechanisms of liquiritin and glycyrrhizic acid, and provided new insights into the interactions of the plant's key metabolites with its transcriptome, rhizosphere microbes and environment, which would guide future cultivation of G. uralensis.


Asunto(s)
Glycyrrhiza uralensis , Plantas Medicinales , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrínico/análisis , Ácido Glicirrínico/metabolismo , Raíces de Plantas/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Suelo
9.
Front Pharmacol ; 13: 870699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592411

RESUMEN

Background: Liquiritin (LQ) is one of the main flavonoids extracted from the roots of Glycyrrhiza spp., which are widely used in traditional Chinese medicine. Studies in both cellular and animal disease models have shown that LQ attenuates or prevents oxidative stress, inflammation, and apoptosis. However, the potential therapeutic effects of LQ on pressure overload-induced cardiac hypertrophy have not been so far explored. Therefore, we investigated the cardioprotective role of LQ and its underlying mechanisms in the aortic banding (AB)-induced cardiac hypertrophy mouse model. Methods and Results: Starting 3 days after AB surgery, LQ (80 mg/kg/day) was administered daily over 4 weeks. Echocardiography and pressure-volume loop analysis indicated that LQ treatment markedly improved hypertrophy-related cardiac dysfunction. Moreover, hematoxylin and eosin, picrosirius red, and TUNEL staining showed that LQ significantly inhibited cardiomyocyte hypertrophy, interstitial fibrosis, and apoptosis. Western blot assays further showed that LQ activated LKB1/AMPKα2/ACC signaling and inhibited mTORC1 phosphorylation in cardiomyocytes. Notably, LQ treatment failed to prevent cardiac dysfunction, hypertrophy, and fibrosis in AMPKα2 knockout (AMPKα2-/-) mice. However, LQ still induced LKB1 phosphorylation in AMPKα2-/- mouse hearts. In vitro experiments further demonstrated that LQ inhibited Ang II-induced hypertrophy in neonatal rat cardiomyocytes (NRCMs) by increasing cAMP levels and PKA activity. Supporting the central involvement of the cAMP/PKA/LKB1/AMPKα2 signaling pathway in the cardioprotective effects of LQ, inhibition of Ang II-induced hypertrophy and induction of LKB1 and AMPKα phosphorylation were no longer observed after inhibiting PKA activity. Conclusion: This study revealed that LQ alleviates pressure overload-induced cardiac hypertrophy in vivo and inhibits Ang II-induced cardiomyocyte hypertrophy in vitro via activating cAMP/PKA/LKB1/AMPKα2 signaling. These findings suggest that LQ might be a valuable adjunct to therapeutic approaches for treating pathological cardiac remodeling.

10.
J Ethnopharmacol ; 293: 115257, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35395381

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Liquiritin is a flavonoid derived from Radix et Rhizoma Glycyrrhizae, which is a widely used traditional Chinese medicine with the effects of invigorating spleen qi, clearing heat, resolving toxins, and dispelling phlegm to stop coughs. AIM OF THE STUDY: In this review,the pharmacokinetics and pharmacological activities of liquiritin have been summarized. MATERIALS AND METHODS: The information on liquiritin up to 2021 was collected from PubMed, Web of Science, Springer Link, and China National Knowledge Infrastructure databases. The key words were "liquiritin", "nerve", "tumor", "cardiac", etc. RESULTS: The absorption mechanism of liquiritin conforms to the passive diffusion and first-order kinetics while with low bioavailability. Liquiritin can penetrate the blood-brain-barrier. Besides, liquiritin displays numerous pharmacological effects including anti-Alzheimer's disease, antidepressant, antitumor, anti-inflammatory, cardiovascular protection, antitussive, hepatoprotection, and skin protective effects. In addition, the novel preparations, new pharmacological effects,and cdusafty of liquiritin are also discussed in this review. CONCLUSION: This review provides a comprehensive state of knowledge on the pharmacokinetics and pharmacological activities of liquiritin, and makes a forecast for its research directions and applications in clinic.


Asunto(s)
Medicamentos Herbarios Chinos , Flavanonas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Flavanonas/farmacología , Glucósidos , Medicina Tradicional China
11.
Phytomedicine ; 100: 154083, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35413645

RESUMEN

BACKGROUND: The high incidence of thrombotic events is one of the clinical characteristics of coronavirus disease of 2019 (COVID-19), due to a hyperinflammatory response caused by the virus. Gegen Qinlian Pills (GQP) is a Traditional Chinese Medicine that is included in the Chinese Pharmacopoeia and played an important role in the clinical fight against COVID-19. Although GQP has shown the potential to treat thrombosis, there is no relevant research on its treatment of thrombosis so far. HYPOTHESIS: We hypothesized that GQP may be capable inhibit inflammation-induced thrombosis. STUDY DESIGN: We tested our hypothesis in a carrageenan-induced thrombosis mouse model in vivo and lipopolysaccharide (LPS)-induced human endothelial cells (HUVECs) in vitro. METHODS: We used a carrageenan-induced mouse thrombus model to confirm the inhibitory effect of GQP on inflammation-induced thrombus. In vitro, studies in human umbilical vein endothelial cells (HUVECs) and in silico network pharmacology analyses were performed to reveal the underlying mechanisms of GQP and determine the main components, targets, and pathways of GQP, respectively. RESULTS: Oral administration of 227.5 mg/kg, 445 mg/kg and 910 mg/kg of GQP significantly inhibited thrombi in the lung, liver, and tail and augmented tail blood flow of carrageenan-induced mice with reduced plasma tumor necrosis factor α (TNF-α) and diminished expression of high mobility group box 1 (HMGB1) in lung tissues. GQP ethanol extract (1, 2, or 5 µg/ml) also reduced the adhesion of platelets to LPS stimulated HUVECs. The TNF-α and the expression of HMGB1, nuclear factor kappa B (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) in LPS stimulated HUVECs were also attenuated. Moreover, we analyzed the components of GQP and inferred the main targets, biological processes, and pathways of GQP in the treatment of inflammation-induced thrombosis through network pharmacology. CONCLUSION: Overall, we demonstrated that GQP could reduce inflammation-induced thrombosis by inhibiting HMGB1/NFκB/NLRP3 signaling and provided an accurate explanation for the multi-target, multi-function mechanism of GQP in the treatment of thromboinflammation, and provides a reference for the clinical usage of GQP.


Asunto(s)
Medicamentos Herbarios Chinos , Proteína HMGB1 , Trombosis , Animales , Carragenina , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos , Ratones , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trombosis/inducido químicamente , Trombosis/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo
12.
Pharmacol Res ; 176: 106083, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35033647

RESUMEN

The pathogenic hyper-inflammatory response has been revealed as the major cause of the severity and death of the Corona Virus Disease 2019 (COVID-19). Xuanfei Baidu Decoction (XFBD) as one of the "three medicines and three prescriptions" for the clinically effective treatment of COVID-19 in China, shows unique advantages in the control of symptomatic transition from moderate to severe disease states. However, the roles of XFBD to against hyper-inflammatory response and its mechanism remain unclear. Here, we established acute lung injury (ALI) model induced by lipopolysaccharide (LPS), presenting a hyperinflammatory process to explore the pharmacodynamic effect and molecular mechanism of XFBD on ALI. The in vitro experiments demonstrated that XFBD inhibited the secretion of IL-6 and TNF-α and iNOS activity in LPS-stimulated RAW264.7 macrophages. In vivo, we confirmed that XFBD improved pulmonary injury via down-regulating the expression of proinflammatory cytokines such as IL-6, TNF-α and IL1-ß as well as macrophages and neutrophils infiltration in LPS-induced ALI mice. Mechanically, we revealed that XFBD treated LPS-induced acute lung injury through PD-1/IL17A pathway which regulates the infiltration of neutrophils and macrophages. Additionally, one major compound from XFBD, i.e. glycyrrhizic acid, shows a high binding affinity with IL17A. In conclusion, we demonstrated the therapeutic effects of XFBD, which provides the immune foundations of XFBD and fatherly support its clinical applications.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Interleucina-17/metabolismo , Macrófagos/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/efectos de los fármacos , Lesión Pulmonar Aguda/metabolismo , Animales , COVID-19/metabolismo , Línea Celular , China , Citocinas/metabolismo , Recuento de Leucocitos/métodos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Células RAW 264.7 , Tratamiento Farmacológico de COVID-19
13.
Pharmacol Res ; 176: 106081, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35033650

RESUMEN

To enhance therapeutic efficacy and reduce adverse effects, ancient practitioners of traditional Chinese medicine (TCM) prescribe combinations of plant species/animal species and minerals designated "TCM formulae" developed based on TCM theory and clinical experience. TCM formulae have been shown to exert curative effects on complex diseases via immune regulation but the underlying mechanisms remain unknown at present. Considerable progress in the field of immunometabolism, referring to alterations in the intracellular metabolism of immune cells that regulate their function, has been made over the past decade. The core context of immunometabolism is regulation of the allocation of metabolic resources supporting host defense and survival, which provides a critical additional dimension and emerging insights into how the immune system and metabolism influence each other during disease progression. This review summarizes research findings on the significant association between the immune function and metabolic remodeling in health and disease as well as the therapeutic modulatory effects of TCM formulae on immunometabolism. Progressive elucidation of the immunometabolic mechanisms involved during the course of TCM treatment continues to aid in the identification of novel potential targets against pathogenicity. In this report, we have provided a comprehensive overview of the benefits of TCM based on regulation of immunometabolism that are potentially applicable for the treatment of modern diseases.


Asunto(s)
Medicina Tradicional China , Animales , Humanos , Sistema Inmunológico , Inmunomodulación , Redes y Vías Metabólicas
14.
J Pharm Biomed Anal ; 205: 114298, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34428739

RESUMEN

Xiaochaihu granules (XCHG), a famous Chinese patent medicine with high sales, have more than 100 approved number by China Food and Drug Administration (CFDA). Therefore, it is important to evaluate the quality of XCHG from different pharmaceutical companies. The data fusion of electronic eye (e-eye), electronic nose (e-nose) and electronic tongue (e-tongue) combined with chemometrics were applied for qualitative identification and quantitative prediction of XCHG quality. Firstly, main chemical constituents, such as saikosaponin b2, baicalin and glycyrrhizin were quantified with ultra-high-performance liquid chromatography (UHPLC). Secondly, the characteristic features of odor, color, and taste of XCHG were measured by e-nose, e-eye and e-tongue, and the Pearson correlation between constituents and e-signals was analyzed. Thirdly, partial least squares discrimination analysis (PLS-DA) of e-eye, e-nose and e-tongue were classified by the hierarchical clustering analysis (HCA) results of the main constituents of XCHG separately. Finally, partial least-squares regression (PLSR) was used to build the prediction model between components and data fusion of e-eye, e-nose and e-tongue. The results showed that saikosaponin b2, baicalin and glycyrrhizin were the three main components in XCHG samples. in which saikosaponin b2 ranged from 0.280 to 2.186 mg (relative standard deviation (RSD), 62.10 %), baicalin range from 25.883 mg to 49.108 mg (RSD, 16.64 %), and glycyrrhizin ranged from 0.897 mg to 6.052 mg (RSD, 40.32 %) of 31 batches of XCHG in each bag. Pearson correlation results showed that the main constituents were related to the core e-signals of XCHG, such as Eab, bitterness and R2 (odor sensitive to nitrogen oxide). Data fusion of e-eye, e-nose and e-tongue with main constitutes of XCHG using the PLSR model showed that the root mean square error (RMSE) values were 0.320 and 0.090 for saikosaponin b2 and licoricesaponin G2 (P < 0.000). The saikosaponin b2 and licoricesaponin G2 contents in XCHG could be predicted with integrated data of e-nose, e-eye, and e-tongue using the PLSR model.


Asunto(s)
Medicamentos Herbarios Chinos , Nariz Electrónica , Electrónica , Lengua
15.
Front Pharmacol ; 12: 671783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295249

RESUMEN

Background: Stroke is the second leading cause of death in human life health, but current treatment strategies are limited to thrombolytic therapy, and because of the tight time window, many contraindications, and only a very small number of people can benefit from it, new therapeutic strategies are needed to solve this problem. As a physical barrier between the central nervous system and blood, the blood-brain barrier (BBB) maintains the homeostasis of the central nervous system. Maintaining the integrity of the BBB may emerge as a new therapeutic strategy. Liquiritin (LQ) is a flavonoid isolated from the medicinal plant Glycyrrhiza uralensis Fisch. ex DC. (Fabaceae), and this study aims to investigate the protective effects of LQ on brain microvascular endothelial cells (BMECs), to provide a new therapeutic strategy for stroke treatment, and also to provide research ideas for the development of traditional Chinese medicine (TCM). Methods: The protective effects of LQ on HBMECs under the treatment of hypoxia reoxygenation (H/R) were investigated from different aspects by establishing a model of H/R injury to mimic ischemia-reperfusion in vivo while administrating different concentrations of LQ, which includes: cell proliferation, migration, angiogenesis, mitochondrial membrane potential as well as apoptosis. Meanwhile, the mechanism of LQ to protect the integrity of BBB by antioxidation and inhibiting endoplasmic reticulum (ER) stress was also investigated. Finally, to search for possible targets of LQ, a proteomic analysis approach was employed. Results: LQ can promote cell proliferation, migration as well as angiogenesis and reduce mitochondrial membrane potential damage and apoptosis. Meanwhile, LQ can also reduce the expression of related adhesion molecules, and decrease the production of reactive oxygen species. In terms of mechanism study, we demonstrated that LQ could activate Keap1/Nrf2 antioxidant pathway, inhibit ER stress, and maintain the integrity of BBB. Through differential protein analysis, 5 disease associated proteins were found. Conclusions: Studies have shown that LQ can promote cell proliferation, migration as well as angiogenesis, and reduce cell apoptosis, which may be related to its inhibition of oxidative and ER stress, and then maintain the integrity of BBB. Given that five differential proteins were found by protein analysis, future studies will revolve around the five differential proteins.

16.
Front Pharmacol ; 12: 648688, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054527

RESUMEN

Background: Liquiritin (LIQ) is a traditional Chinese medicine that has been reported to regulate inflammation, oxidative stress and cell apoptosis. However, the beneficial effects of LIQ in lipopolysaccharides (LPS)-induced septic cardiomyopathy (SCM) has not been reported. The primary goal of this study was to investigate the effects of LIQ in LPS-induced SCM model. Methods: Mice were pre-treated with LIQ for 7 days before they were injected with LPS (10 mg/kg) for inducing SCM model. Echocardiographic analysis was used to evaluate cardiac function after 12 h of LPS injection. Thereafter, mice were sacrificed to collect hearts for molecular and histopathologic assays by RT-PCR, western-blots, immunohistochemical and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining analysis respectively. AMPKα2 knockout (AMPKα2-/-) mice were used to elucidate the mechanism of LIQ Neonatal rat cardiomyocytes (NRCMs) treated with or without LPS were used to further investigate the roles and mechanisms of LIQ in vitro experiments. Results: LIQ administration attenuated LPS-induced mouse cardiac dysfunction and reduced mortality, based upon the restoration of EF, FS, LVEDs, heart rate, dp/dt max and dp/dt min deteriorated by LPS treatment. LIQ treatment also reduced mRNA expression of TNFα, IL-6 and IL-1ß, inhibited inflammatory cell migration, suppressed cardiac oxidative stress and apoptosis, and improved metabolism. Mechanistically, LIQ enhanced the phosphorylation of AMP-activated protein kinase α2 (AMPKα2) and decreased the phosphorylation of mTORC1, IκBα and NFκB/p65. Importantly, the beneficial roles of LIQ were not observed in AMPKα2 knockout model, nor were they observed in vitro model after inhibiting AMPK activity with an AMPK inhibitor. Conclusion: We have demonstrated that LIQ exerts its protective effects in an SCM model induced by LPS administration. LIQ reduced inflammation, oxidative stress, apoptosis and metabolic alterations via regulating AMPKα2 dependent signaling pathway. Thus, LIQ might be a potential treatment or adjuvant for SCM treatment.

17.
J Ethnopharmacol ; 270: 113773, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33388430

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qingxue jiedu Formulation (QF) is composed of two classic prescriptions which have been clinically used for more than 5 centuries and appropriately modified through basic theory of traditional Chinese medicine for treating various skin inflammation such as atopic dermatitis (AD), acute dermatitis and rash. Although QF possesses a prominent clinical therapeutic effect, seldom pharmacological studies on its anti-AD activity are conducted. AIM OF THE STUDY: We used AD mice model to investigate the anti-AD activities of QF, as well as its underlying molecular mechanisms which involved signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. MATERIALS AND METHODS: 2,4-dinitrofluorobenzene (DNFB)-induced AD mice were used to collect serum and skin tissues for consequential determination. The levels of various inflammatory factors [interleukin (IL)-12, Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-4, IL-6 and immunoglobulin E (IgE)] were determined by enzyme-linked immunosorbent assay (ELISA). Real-time polymerase chain reaction (RT-PCR) was contributed to detect the effects of relevant inflammatory factors on mRNA. The roles of STAT3, NF-κB and MAPK signaling pathways in AD response were analyzed by Western blotting (WB), and the thickening of mice dorsal skin and inflammatory cell infiltration were observed by hematoxylin and eosin (H&E) staining. RESULTS: QF significantly reduced the skin thickening, inflammatory cell infiltration and other symptoms in AD mice. The levels of IL-12, TNF-α, IL-4, IL-6 and IgE were decreased, while IFN-γ was increased by QF in the ELISA analysis. QF lessened the levels of lL-6 and elevated IFN-γ on the mRNA level. In addition, WB analysis showed QF thoroughly inhibited the activation of NF-κB, STAT3 and phosphorylation of JAK1, JAK2, JAK3, while partially suppressed MAPK signaling pathways. CONCLUSIONS: QF inhibited the activations of STAT3, MAPK and NF-κB signaling pathways and possessed a significant therapeutic effect on AD. Therefore, QF deserves our continuous attention and research as a prominent medicine for AD.


Asunto(s)
Dermatitis Atópica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Citocinas/sangre , Citocinas/genética , Dermatitis Atópica/sangre , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/patología , Dinitrofluorobenceno/toxicidad , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Inmunoglobulina E/sangre , Masculino , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo
18.
Comb Chem High Throughput Screen ; 24(4): 591-597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32807047

RESUMEN

AIM AND OBJECTIVE: At present, the world is facing a global pandemic threat of SARSCoV- 2 or COVID-19 and to date, there are no clinically approved vaccines or antiviral drugs available for the treatment of coronavirus infections. Studies conducted in China recommended the use of liquorice (Glycyrrhiza species), an integral medicinal herb of traditional Chinese medicine, in the deactivation of COVID-19. Therefore, the present investigation was undertaken to identify the leads from the liquorice plant against COVID-19 using molecular docking simulation studies. MATERIALS AND METHODS: A set of reported bioactive compounds of liquorice were investigated for COVID-19 main protease (Mpro) inhibitory potential. The study was conducted on Autodock vina software using COVID-19 Mpro as a target protein having PDB ID: 6LU7. RESULTS: Out of the total 20 docked compounds, only six compounds showed the best affinity towards the protein target, which included glycyrrhizic acid, isoliquiritin apioside, glyasperin A, liquiritin, 1-methoxyphaseollidin and hedysarimcoumestan B. From the overall observation, glycyrrhizic acid followed by isoliquiritin apioside demonstrated the best affinity towards Mpro representing the binding energy of -8.6 and -7.9 Kcal/mol, respectively. Nevertheless, the other four compounds were also quite comparable with the later one. CONCLUSION: From the present investigation, we conclude that the compounds having oxane ring and chromenone ring substituted with hydroxyl 3-methylbut-2-enyl group could be the best alternative for the development of new leads from liquorice plant against COVID-19.


Asunto(s)
Proteasas 3C de Coronavirus/efectos de los fármacos , Glycyrrhiza/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , COVID-19/virología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/metabolismo
19.
J Biomol Struct Dyn ; 39(13): 4686-4700, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32552462

RESUMEN

At present, the world is facing a pandemic named as COVID-19, caused by SARS-CoV-2. Traditional Chinese medicine has recommended the use of liquorice (Glycyrrhiza species) in the treatment of infections caused by SARS-CoV-2. Therefore, the present investigation was carried out to identify the active molecule from the liquorice against different protein targets of COVID-19 using an in-silico approach. The molecular docking simulation study of 20 compounds along with two standard antiviral drugs (Lopinavir and Rivabirin) was carried out with the help of Autodock vina software using two protein targets from COVID-19 i.e. spike glycoprotein (PDB ID: 6VSB) and Non-structural Protein-15 (Nsp15) endoribonuclease (PDB ID: 6W01). From the observed binding energy and the binding interactions, glyasperin A showed high affinity towards Nsp15 endoribonuclease with uridine specificity, while glycyrrhizic acid was found to be best suited for the binding pocket of spike glycoprotein and also prohibited the entry of the virus into the host cell. Further, the dynamic behavior of the best-docked molecules inside the spike glycoprotein and Nsp15 endoribonuclease were explored through all-atoms molecular dynamics (MD) simulation study. Several parameters from the MD simulation have substantiated the stability of protein-ligand stability. The binding free energy of both glyasperin A and glycyrrhizic acid was calculated from the entire MD simulation trajectory through the MM-PBSA approach and found to high binding affinity towards the respective protein receptor cavity. Thus, glyasperin A and glycyrrhizic acid could be considered as the best molecule from liquorice, which could find useful against COVID-19. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Glycyrrhiza , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , COVID-19 , Glicoproteínas , Glycyrrhiza/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
20.
Molecules ; 25(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255802

RESUMEN

The growth and quality of licorice depend on various environmental factors, including the local climate and soil properties; therefore, its cultivation is often unsuccessful. The current study investigated the key factors that affect the contents of bioactive compounds of Glycyrrhiza glabra L. root and estimated suitable growth zones from collection sites in the Hatay region of Turkey. The contents of three bioactive compounds (glycyrrhizic acid, glabridin, and liquiritin), soil factors (pH, soil bearing capacity, and moisture content), and geographical information (slope, aspect, curvature, elevation, and hillshade) were measured. Meteorological data (temperature and precipitation) were also obtained. An analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA) were performed on the data. The soil bearing capacity, moisture content, slope, aspect, curvature, and elevation of the study area showed statistically significant effects on the glycyrrhizic acid and liquiritin contents. A habitat suitability zone map was generated using a GIS-based frequency ratio (FR) model with spatial correlations to the soil, topographical, and meteorological data. The final map categorized the study area into four zones: very high (15.14%), high (31.50%), moderate (40.25%), and low suitability (13.11%). High suitability zones are recommended for further investigation and future cultivation of G. glabra.


Asunto(s)
Ecosistema , Glycyrrhiza/química , Fitoquímicos/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Geografía , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Curva ROC , Suelo/química , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA