Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Physiol Mol Biol Plants ; 30(2): 269-285, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38623159

RESUMEN

The plant Sesuvium portulacastrum L., commonly referred to as sea purslane, is a perennial halophytic species with significant potential for development in marine ecological restoration. However, its growth is limited in high-latitude regions with lower temperatures due to its subtropical nature. Furthermore, literature on its cold tolerance is scarce. This study, therefore, focused on sea purslane plants naturally overwintering in Ningbo (29°77'N), investigating their morphological, histological, rooting, and physiological responses to low temperatures (7 °C, 11 °C, 15 °C, and 19 °C). The findings indicated an escalation in cold damage severity with decreasing temperatures. At 7 °C, the plants failed to root and subsequently perished. In contrast, at 11 °C, root systems developed, while at 15 °C and 19 °C, the plants exhibited robust growth, outperforming the 11 °C group in terms of leaf number and root length significantly (P < 0.05). Histological analyses showed a marked reduction in leaf thickness under cold stress (P < 0.05), with disorganized leaf structure observed in the 7 °C group, whereas it remained stable at higher temperatures. No root primordia were evident in the vascular cambium of the 7 and 11 °C groups, in contrast to the 15 and 19 °C groups. Total chlorophyll content decreased with temperature, following the order: 19 °C > 15 °C > 11 °C > 7 °C. Notably, ascorbic acid levels were significantly higher in the 7 and 11 °C groups than in the 15 and 19 °C groups. Additionally, the proline concentration in the 7 °C group was approximately fourfold higher than in the 19 °C group. Activities of antioxidant enzymes-superoxide dismutase, peroxidase, and catalase-were significantly elevated in the 7 and 11 °C groups compared to the 15 and 19 °C groups. Moreover, the malondialdehyde content in the 7 °C group (36.63 ± 1.75 nmol/g) was significantly higher, about 5.5 and 9.6 times, compared to the 15 °C and 19 °C groups, respectively. In summary, 7 °C is a critical threshold for sea purslane stem segments; below this temperature, cellular homeostasis is disrupted, leading to an excessive accumulation of lipid peroxides and subsequent death due to an inability to neutralize excess reactive oxygen species. At 11 °C, although photosynthesis is impaired, self-protective mechanisms such as enhanced antioxidative systems and osmoregulation are activated. However, root development is compromised, resulting in stunted growth. These results contribute to expanding the geographic distribution of sea purslane and provide a theoretical basis for its ecological restoration in high-latitude mariculture. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01429-6.

2.
J Plant Physiol ; 294: 154193, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422632

RESUMEN

Androgenetically-derived haploids can be obtained by inducing embryogenesis in microspores. Thus, full homozygosity is achieved in a single generation, oppositely to conventional plant breeding programs. Here, the metabolite profile of embryogenic microspores of Triticum aestivum was acquired and integrated with transcriptomic existing data from the same samples in an effort to identify the key metabolic processes occurring during the early stages of microspore embryogenesis. Primary metabolites and transcription profiles were identified at three time points: prior to and immediately following a low temperature pre-treatment given to uninuclear microspores, and after the first nuclear division. This is the first time an integrative -omics analysis is reported in microspore embryogenesis in T. aestivum. The key findings were that the energy produced during the pre-treatment was obtained from the tricarboxylic acid (TCA) cycle and from starch degradation, while starch storage resumed after the first nuclear division. Intermediates of the TCA cycle were highly demanded from a very active amino acid metabolism. The transcription profiles of genes encoding enzymes involved in amino acid synthesis differed from the metabolite profiles. The abundance of glutamine synthetase was correlated with that of glutamine. Cytosolic glutamine synthetase isoform 1 was found predominantly after the nuclear division. Overall, energy production was shown to represent a major component of the de-differentiation process induced by the pre-treatment, supporting a highly active amino acid metabolism.


Asunto(s)
Glutamato-Amoníaco Ligasa , Triticum , Triticum/genética , Glutamato-Amoníaco Ligasa/metabolismo , Polen , Desarrollo Embrionario , Almidón/metabolismo , Aminoácidos/metabolismo
3.
Braz J Microbiol ; 54(1): 371-383, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36740643

RESUMEN

Low-temperature stress can seriously impair plant physiology. Chilling injury leads to a complex array of cellular dysfunctions, and symptoms include chlorosis, sterility, loss of vigor, wilting, and even death of the plants. Furthermore, phosphorus limitations additionally halt the growth of plants. Low-temperature adaptive plant growth-promoting microbes through various direct and indirect mechanisms help in the survival of plants under stress conditions. The present investigation deals with isolation of P-solubilizing psychrotrophic bacteria from diverse cultivars of wheat grown in the Keylong region of Himachal Pradesh. A total of 33 P-solubilizing bacterial isolates were obtained. P-solubilizers were screened for different plant growth-promoting (PGP) attributes of K and Zn solubilization, production of IAA, siderophores, and different hydrolytic enzymes. Among 33 P-solubilizers, 8 efficient strains exhibiting multiple PGP attributes were used as bioinoculants for wheat under low-temperature stress in different in vitro and in vivo experiments. The psychrotrophic bacterial isolates positively influenced the growth and physiological parameters as well as nutrient uptake and yield of wheat and efficiently alleviated low-temperature stress. The potential of low-temperature stress adaptive and PGP microbes can be utilized in agricultural sector for amelioration of low-temperature stress and plant growth promotion. The present study deals with the isolation of psychrotrophic P-solubilizers with multiple PGP attributes and their role in alleviation of cold stress in wheat.


Asunto(s)
Fósforo , Triticum , Triticum/microbiología , Respuesta al Choque por Frío , Bacterias , Plantas , Microbiología del Suelo
4.
Fish Shellfish Immunol ; 132: 108459, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36455776

RESUMEN

This study was conducted to assess the effects of dietary copper source and level on hematological parameters, copper accumulation and transport, resistance to low temperature, antioxidant capacity and immune response of white shrimp (Litopenaeus vannamei Boone, 1931). Seven experimental diets with different copper sources and levels were formulated: C, no copper supplementation; S, 30 mg/kg copper in the form of CuSO4·5H2O; SO, 15 mg/kg copper in CuSO4·5H2O + 7.5 mg/kg copper in Cu-proteinate; O1, O2, O3 and O4, 10, 20, 30 and 40 mg/kg copper in the form of Cu-proteinate, respectively. A total of 840 shrimp (5.30 ± 0.04 g) were randomly distributed to 21 tanks (3 tanks/diet, 40 shrimp/tank). An 8-week feeding trial was conducted. The results showed that there was no significant difference in growth performance and whole shrimp chemical compositions among all groups. Compared with inorganic copper, dietary organic copper (O2 and O3) increased total protein, albumin, and glucose content of plasma, while decreased triglyceride and total cholesterol of plasma. Copper concentration in plasma and muscle and gene expression of metallothionein and copper-transporting ATPase 2 like in hepatopancreas were higher in shrimp fed organic copper (SO, O2, O3 and O4). The lowest mortality after low temperature (10 °C) challenge test was observed in the O2 and O3 groups. Organic copper (SO, O2, O3 and O4) significantly enhanced the antioxidant capacity (in terms of higher activities of total superoxide dismutase, copper zinc superoxide dismutase, catalase, glutathione peroxidase and total antioxidant capacity, lower malondialdehyde concentration of plasma, and up-regulated gene expression of superoxide dismutase, copper zinc superoxide dismutase, catalase and glutathione peroxidase of hepatopancreas). Organic copper (SO, O2, O3 and O4) enhanced the immune response (in terms of higher number of total hemocytes, higher activities of acid phosphatase, alkaline phosphatase, phenoloxidase, hemocyanin and lysozyme in plasma, and higher gene expressions of alkaline phosphatase, lysozyme and hemocyanin in hepatopancreas). Inorganic copper (Diet S) also had positive effects on white shrimp compared with the C diet, but the SO, O2, O3 and O4 diets resulted in better results, among which the O2 diet appeared to be the best one. In conclusion, organic copper was more beneficial to shrimp health than copper sulfate.


Asunto(s)
Antioxidantes , Penaeidae , Animales , Fosfatasa Alcalina , Alimentación Animal/análisis , Antioxidantes/metabolismo , Catalasa , Cobre/metabolismo , Dieta/veterinaria , Glutatión Peroxidasa/metabolismo , Hemocianinas/farmacología , Inmunidad Innata , Muramidasa/farmacología , Superóxido Dismutasa/metabolismo , Temperatura , Zinc/farmacología
5.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499255

RESUMEN

Oil palm (Elaeis guineensis Jacq.) is an economically important tropical oil crop widely cultivated in tropical zones worldwide. Being a tropical crop, low-temperature stress adversely affects the oil palm. However, integrative leaf transcriptomic and proteomic analyses have not yet been conducted on an oil palm crop under cold stress. In this study, integrative omics transcriptomic and iTRAQ-based proteomic approaches were employed for three oil palm varieties, i.e., B × E (Bamenda × Ekona), O × G (E. oleifera × Elaeis guineensis), and T × E (Tanzania × Ekona), in response to low-temperature stress. In response to low-temperature stress at (8 °C) for 5 days, a total of 5175 up- and 2941 downregulated DEGs in BE-0_VS_BE-5, and a total of 3468 up- and 2443 downregulated DEGs for OG-0_VS_OG-5, and 3667 up- and 2151 downregulated DEGs for TE-0_VS_TE-5 were identified. iTRAQ-based proteomic analysis showed 349 up- and 657 downregulated DEPs for BE-0_VS_BE-5, 372 up- and 264 downregulated DEPs for OG-0_VS_OG-5, and 500 up- and 321 downregulated DEPs for TE-0_VS_TE-5 compared to control samples treated at 28 °C and 8 °C, respectively. The KEGG pathway correlation of oil palm has shown that the metabolic synthesis and biosynthesis of secondary metabolites pathways were significantly enriched in the transcriptome and proteome of the oil palm varieties. The correlation expression pattern revealed that TE-0_VS_TE-5 is highly expressed and BE-0_VS_BE-5 is suppressed in both the transcriptome and proteome in response to low temperature. Furthermore, numerous transcription factors (TFs) were found that may regulate cold acclimation in three oil palm varieties at low temperatures. Moreover, this study identified proteins involved in stresses (abiotic, biotic, oxidative, and heat shock), photosynthesis, and respiration in iTRAQ-based proteomic analysis of three oil palm varieties. The increased abundance of stress-responsive proteins and decreased abundance of photosynthesis-related proteins suggest that the TE variety may become cold-resistant in response to low-temperature stress. This study may provide a basis for understanding the molecular mechanism for the adaptation of oil palm varieties in response to low-temperature stress in China.


Asunto(s)
Arecaceae , Proteómica , Frío , Arecaceae/genética , Arecaceae/metabolismo , Transcriptoma , Respuesta al Choque por Frío/genética , Proteoma/genética , Proteoma/metabolismo , Regulación de la Expresión Génica de las Plantas , Aceite de Palma
6.
Food Res Int ; 161: 111823, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192892

RESUMEN

Garlic stored at low temperature (0-13 ℃) for some times and subsequently crushed and placed at room temperature would turn green, while the one stored at high temperature (30 ℃) would not. In order to elucidate the regulatory mechanism of low temperature on garlic greening, transcriptome and proteome profiles of garlic stored at 4 ℃ and 30 ℃ were explored by RNA-seq and iTRAQ techniques. Principal component analysis showed that garlic at different storage temperatures were of significant differences on both gene and protein levels. 14,381 and 861 differential expression genes (DEGs) and proteins (DEPs) were identified respectively, in which 268 factors were shared according to their joint analysis, including 186 (144) up-regulated genes (proteins) and 82 (124) down-regulated genes (proteins) in comparing garlic stored at 4 ℃ with ones at 30 ℃. These 268 factors were mainly attributed to biological process (metabolic process) and molecular function (catalytic activity, binding) categories by Gene Ontology classification. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways enrichment of DEGs and DEPs revealed that GSSG production, GSH degradation, amino acid biosynthesis (cysteine and methionine) and energy metabolism (TCA and HMP cycles) were promoted by low-temperature storage to responding to oxidative stress and prepared for pigment synthesis in garlic. These results provide valuable information for the regulation of garlic greening during processing.


Asunto(s)
Ajo , Transcriptoma , Cisteína , Ajo/química , Ajo/genética , Disulfuro de Glutatión/genética , Metionina , Proteoma/metabolismo , Temperatura
7.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4908-4918, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36164900

RESUMEN

With prominent medicinal value, Gelsemium elegans has been overexploited, resulting in the reduction of the wild resource. As a result, artificial cultivation turns out to be a solution. However, this medicinal species is intolerant to low temperature, and thus genes responding to the low temperature are important for the cultivation of this species. Based on the transcriptome database of G. elegans at 4 ℃, 29 differentially expressed GeERF genes were identified. Bioinformatics analysis of 21 GeERF gene sequences with intact open reading frames showed that 12 and 9 of the GeERF proteins respectively clustered in DREB subgroup and ERF subgroup. GeDREB1 A-1-GeERF6 B-1, with molecular weight of 23.78-50.96 kDa and length of 212-459 aa, were all predicted to be hydrophilic and in nucleus. Furthermore, the full-length cDNA sequence of GeERF2B-1 was cloned from the leaves of G. elegans. Subcellular localization suggested that GeERF2B-1 was located in the nucleus. According to the quantitative reverse-transcription PCR(qRT-PCR), GeERF2B-1 showed constitutive expression in roots, stems, and leaves of G. elegans, and the expression was the highest in roots. In terms of the response to 4 ℃ treatment, the expression of GeERF2B-1 was significantly higher than that in the control and peaked at 12 h, suggesting a positive response to low temperature. This study lays a scientific basis for the functional study of GeERF transcription factors and provides gene resources for the improvement of stress resistance of G. elegans.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , ADN Complementario , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
BMC Plant Biol ; 22(1): 125, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35300606

RESUMEN

BACKGROUND: Potato (Solanum tuberosum L.) is one of the world's most important crops, the cultivated potato is frost-sensitive, and low-temperature severely influences potato production. However, the mechanism by which potato responds to low-temperature stress is unclear. In this research, we apply a combination of second-generation sequencing and third-generation sequencing technologies to sequence full-length transcriptomes in low-temperature-sensitive cultivars to identify the important genes and main pathways related to low-temperature resistance. RESULTS: In this study, we obtained 41,016 high-quality transcripts, which included 15,189 putative new transcripts. Amongst them, we identified 11,665 open reading frames, 6085 simple sequence repeats out of the potato dataset. We used public available genomic contigs to analyze the gene features, simple sequence repeat, and alternative splicing event of 24,658 non-redundant transcript sequences, predicted the coding sequence and identified the alternative polyadenylation. We performed cluster analysis, GO, and KEGG functional analysis of 4518 genes that were differentially expressed between the different low-temperature treatments. We examined 36 transcription factor families and identified 542 transcription factors in the differentially expressed genes, and 64 transcription factors were found in the AP2 transcription factor family which was the most. We measured the malondialdehyde, soluble sugar, and proline contents and the expression genes changed associated with low temperature resistance in the low-temperature treated leaves. We also tentatively speculate that StLPIN10369.5 and StCDPK16 may play a central coordinating role in the response of potatoes to low temperature stress. CONCLUSIONS: Overall, this study provided the first large-scale full-length transcriptome sequencing of potato and will facilitate structure-function genetic and comparative genomics studies of this important crop.


Asunto(s)
Solanum tuberosum , Perfilación de la Expresión Génica , Plantones/genética , Solanum tuberosum/fisiología , Temperatura , Transcriptoma
9.
Plant Dis ; 106(4): 1134-1142, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34752126

RESUMEN

Microbial communities are essential for soil health, but fungicide application may have significant effects on their structure. It is difficult to predict whether nontarget pathogens of applied fungicides in the soil will cause crop damage. Tebuconazole is a triazole fungicide that can be used as a seed treatment and, thereby, introduced to the soil. However, seed-applied tebuconazole has a potential risk of causing poor emergence of corn (Zea mays) seedlings. Using soil with a history of poor corn seedling emergence, we demonstrate through TA cloning and isolation that the poor emergence of corn seedlings from tebuconazole-coated corn seeds was primarily because of infection by surviving soil pathogens, specifically Pythium species that are not targeted by tebuconazole, rather than the phytotoxic effects of tebuconazole. Bioassay tests on tebuconazole-amended media showed that tebuconazole can suppress soil fungi while allowing Pythium to grow. Pythium species primarily contributing to the corn seed rot were more pathogenic at cooler temperatures. Furthermore, the nontarget biocontrol agent of Trichoderma spp. was strongly inhibited by tebuconazole. Taken together, the nontarget effects of tebuconazole are likely not significant under favorable plant growing conditions but are considerable because of low-temperature stress.


Asunto(s)
Fungicidas Industriales , Pythium , Fungicidas Industriales/farmacología , Prevalencia , Plantones , Semillas/microbiología , Suelo , Triazoles/farmacología , Zea mays
10.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2213-2218, 2019 Jun.
Artículo en Chino | MEDLINE | ID: mdl-31359644

RESUMEN

The aim of the study is to explore exogenous S3307 on alleviating low-temperature stress of coix seedlings. The coix cultivar, "No 5 Yiliao", was selected as the plant material, through nutrient solution cultivating in greenhouse, the effect of different S3307 concentrations(1, 3, 5, 7, 9 mg·L~(-1)) on coix seedlings traits and physiological indicators were explored under low-temperature stress. The results showed, under low-temperature 5 mg·L~(-1) S3307 could significantly increase coix seedlings stem diameter and biomass, which stem diameter and above-ground biomass, low-ground biomass separately were enhanced 11.90%, 13.59%, 10.99%. Leaf width and lateral root number separately were enhanced 7.63%, 37.52%. Meanwhile, addition of 5 mg·L~(-1) S3307 could significantly reduce relative conductivity and MDA, separately being reduced 23.33%, 17.42% compared to CKL. S3307 could also significantly increase soluble sugar and proline content, which leaf soluble sugar and proline content separately were enhanced 17.16%, 11.87%, which root soluble sugar and proline content separately were enhanced 20.00%, 33.42%. Additionally, S3307 could alleviate the cells destroy in ultra-structure level by improving cell membrane structure and chloroplast capsule layer structure. 5 mg·L~(-1) S3307 could enhance the low temperature tolerance of coix seedlings by regulating the growth and physiological indexes, and thus alleviate the damage caused by low-temperature to the coix seedlings.


Asunto(s)
Coix/efectos de los fármacos , Frío , Plantones/efectos de los fármacos , Estrés Fisiológico , Triazoles/farmacología
11.
Zhongguo Zhong Yao Za Zhi ; 44(7): 1305-1313, 2019 Apr.
Artículo en Chino | MEDLINE | ID: mdl-31090285

RESUMEN

As an important signal molecule, extracellular ATP(eATP) can regulate many physiological and biochemical responses to plant stress. In this study, the regulation of extracellular ATP(eATP) on chlorophyll content and chlorophyll fluorescence parameters of Angelica sinensis seedlings were studied under drought and low temperature stress. The results showed that all the chlorophyll content, the actual photochemical efficiency [Y(Ⅱ)], the electron transfer rate(ETR), the photochemical quenching coefficient(qP and qL) of A. sinensis leaves were significantly decreased under drought and low temperature stress, respectively. At the same time, non-photochemical quenching(NPQ and qN) were also all significantly increased, respectively. The application of eATP alleviated the decrease of chlorophyll content, Y(Ⅱ), ETR, qP and qL of A. sinensis leaves under drought and low temperature stress, and eliminated the increase of qN and NPQ. The results indicated that eATP could effectively increase the open ratio of PSⅡ reaction centers, and improve the electron transfer rate and light energy conversion efficiency of PSⅡ of A. sinensis leaves under drought and low temperature stress. It is beneficial to enhance the chlorophyll synthesis and the adaptability of PSⅡ about A. sinensis seedlings to drought and low temperature stress.


Asunto(s)
Adenosina Trifosfato/farmacología , Angelica sinensis/química , Clorofila/análisis , Frío , Sequías , Estrés Fisiológico , Angelica sinensis/fisiología , Fluorescencia , Fotosíntesis , Hojas de la Planta/química , Plantones/química , Plantones/fisiología , Agua
12.
Ying Yong Sheng Tai Xue Bao ; 27(10): 3114-3122, 2016 Oct.
Artículo en Chino | MEDLINE | ID: mdl-29726135

RESUMEN

The leaves of four evergreen plants, i.e., Fatsia japonica, Nerium indicum, Mahonia bealei and Acer cinnamomifolium were used as the experimental materials. By measuring the changes of in vitro leaf in soluble sugar, soluble protein, free proline, POD activity, chlorophyll content and relative electrolytic conductivity under aritificial simulated low temperature, combining the measurements of SPAD, leaf surface features and anatomical changes in organizational structure in the process of natural wintering, the cold resistance of four evergreen tree species was evaluated comprehensively. The results showed that in the process of artificial low temperature stress, the chlorophyll content of the leaves of four evergreen species decreased, the content of soluble protein pea-ked at -20 ℃, and the soluble sugar, free proline, POD activity and relative electrolytic conductivity showed an overall upward trend. The semilethal temperatures of four species were -8.0, -13.4, -19.4 and -14.8 ℃, respectively. During the winter, the leaf SPAD of the four species changed markedly, reflecting that the change of relative chlorophyll content was related to the change of temperature. Meanwhile, the leaf thickness, cutin layer thickness, stockade tissue thickness and tightness of four species increased and the plasmolysis occurred thereafter. Also the content of starch grains and calcium oxalate cluster crystal increased. The typical stomatal pits and the intensive non-glandular trichome within the pits of N. indicum and the sclerenchyma of M. Bealei could improve the cold resistance of plants to some extent. In addition, the phenomena like the breakage of wax layer in leaf surface, the fracture of epidermal hair and the deformation of palisade tissue indicated that plants were damaged to a certain extent by low temperature.


Asunto(s)
Frío , Hojas de la Planta/fisiología , Árboles/fisiología , Acer/fisiología , Araliaceae/fisiología , Clorofila/análisis , Mahonia/fisiología , Nerium/fisiología , Hojas de la Planta/química , Estaciones del Año
13.
Fish Shellfish Immunol ; 36(2): 475-84, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24412164

RESUMEN

The effect of Ec-FABP10 (Epinephelus coiodes-FABP10) on growth performance, enzyme activity, respiratory burst, MDA level, ATP content, immune-related gene expression of juvenile orange-spotted grouper (E. coioides). The commercial diet supplemented with FABP10 protein was feed to orange-spotted grouper for six weeks. No significant difference was observed in the specific growth rates, while the survival rate in the FABP10 additive group was significantly higher. After the feeding trial, the groupers were exposed to acute low temperature challenge. The decreased level of respiratory burst activity was observed in the FABP10 additive group after the exposure to the acute low temperature stress, while the blood cell count increased significantly at 15 °C and a significant increase of ATP content was observed at 10 °C. Higher enzymatic activities of CAT and SOD were observed at 20 °C and 15 °C, respectively. Meanwhile, the lower level of MDA was observed after the exposure to acute low temperature challenge by comparing with the controls. Further transcript expression analyses of FABP10, SOD2, GPX4, HSPA4 and LIPC in liver by quantitative real-time PCR demonstrated that the up-regulated transcript expression of FABP10, SOD2, HSPA4 and LIPC was observed in FABP10 additive group at 15 °C, while the transcript expression of GPX4 increased significantly at 20 °C. Western blotting analysis confirmed that FABP10 protein expression strongly increased at 15 ± 0.5 °C in FABP10 additive group. These results showed that FABP10 additive diet could moderate the metabolic and immune abilities mainly via ROS pathway in the orange-spotted grouper.


Asunto(s)
Lubina/fisiología , Frío , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Alimentación Animal/análisis , Animales , Lubina/crecimiento & desarrollo , Lubina/inmunología , Dieta/veterinaria , Suplementos Dietéticos/análisis , Proteínas de Unión a Ácidos Grasos/administración & dosificación , Proteínas de Peces/administración & dosificación , Explotaciones Pesqueras , Perfilación de la Expresión Génica/veterinaria , Pruebas Hematológicas/veterinaria , Inmunidad Innata , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA