Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 149: 109555, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615703

RESUMEN

Developing a low-protein feed is important for the sustainable advancement of aquaculture. The aim of this study was to investigate the effects of essential amino acid (EAA) supplementation in a low-protein diet on the growth, intestinal health, and microbiota of the juvenile blotched snakehead, Channa maculata in an 8-week trial conducted in a recirculating aquaculture system. Three isoenergetic diets were formulated to include a control group (48.66 % crude protein (CP), HP), a low protein group (42.54 % CP, LP), and a low protein supplementation EAA group (44.44 % CP, LP-AA). The results showed that significantly lower weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), and feed efficiency ratio (FER) were observed in fish that were fed LP than in the HP and LP-AA groups (P < 0.05). The HP and LP-AA groups exhibited a significant increase in intestinal villus length, villus width, and muscular thickness compared to the LP group (P < 0.05). Additionally, the HP and LP-AA groups demonstrated significantly higher levels of intestinal total antioxidant capacity (T-AOC), catalase (CAT), and superoxide dismutase (SOD) and lower levels of malondialdehyde (MDA) compared to the LP group (P < 0.05). The apoptosis rate of intestinal cells in the LP group was significantly higher than those in the LP and HP groups (P < 0.05). The mRNA expression levels of superoxide dismutase (sod), nuclear factor kappa B p65 subunit (nfκb-p65), heat shock protein 70 (hsp70), and inhibitor of NF-κBα (iκba) in the intestine were significantly higher in the LP group than those in the HP and LP-AA groups (P < 0.05). The 16s RNA analysis indicated that EAA supplementation significantly increased the growth of Desulfovibrio and altered the intestinal microflora. The relative abundances of Firmicutes and Cyanobacteria were positively correlated with antioxidant parameters (CAT and T-AOC), whereas Desulfobacterota was negatively correlated with sod and T-AOC. The genera Bacillus, Bacteroides, and Rothia were associated with the favorable maintenance of gut health. In conclusion, dietary supplementation with EAAs to achieve a balanced amino acid profile could potentially reduce the dietary protein levels from 48.66 % to 44.44 % without adversely affecting the growth and intestinal health of juvenile blotched snakeheads.


Asunto(s)
Aminoácidos Esenciales , Alimentación Animal , Suplementos Dietéticos , Microbioma Gastrointestinal , Intestinos , Animales , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Aminoácidos Esenciales/administración & dosificación , Perciformes/crecimiento & desarrollo , Perciformes/inmunología , Dieta con Restricción de Proteínas/veterinaria , Dieta/veterinaria , Distribución Aleatoria , Peces/crecimiento & desarrollo , Acuicultura , Channa punctatus
2.
J Anim Sci Technol ; 66(1): 145-155, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38618035

RESUMEN

This study was conducted to determine the effects of amino acid (AA) supplementation in low-protein (LP) diets on growth performance and nitrogen (N) excretion. A total of 175 7-day-old Ross 308 male broilers, with a mean body weight (BW) of 165 g (standard deviation = 11.2 g), were grouped into five blocks by BW and allocated to seven treatments according to a randomized complete block design with five replicate cages at five birds per cage. Dietary treatments comprised a control diet containing 20.0% crude protein (CP) and six LP diets containing either 18.5% or 17.0% CP. These LP diets were supplemented with either no AA supplementation, indispensable AA, or both indispensable and dispensable AA (glutamic acid and glycine). Birds were fed experimental grower diets from day 7 to 21 and then commercial finisher diets until day 28. During the grower period (day 7 to 21), birds fed LP diets supplemented with indispensable AA exhibited greater (p < 0.05) BW, body weight gain (BWG), feed intake (FI), and gain-to-feed ratio (G:F) than birds fed LP diets without crystalline AA and were comparable to birds fed the control diet. During the finisher period (day 21 to 28), birds fed LP diets supplemented with indispensable AA showed greater (p < 0.05) BW than birds fed LP diets without crystalline AA, and their growth performance was comparable to birds fed the control diet. Throughout the overall period, supplementing indispensable AA in LP diets resulted in elevated (p < 0.05) BWG, FI, and G:F more than those of LP diets without crystalline AA and were comparable to those of the control diet. Supplementing indispensable AA in LP diets decreased amount and coefficient of N excretion as much as the control diet. Dispensable AA supplementation in LP diets did not influence growth performance and N excretion. In conclusion, supplementing indispensable AA in LP diets maintains growth performance and N excretion until the dietary CP lowers from 20.0% to 17.0% during the grower period. As long as dietary CP is above 17.0%, dispensable AA may not be deficient in LP diets during the grower period.

3.
Curr Med Sci ; 44(1): 93-101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38393524

RESUMEN

OBJECTIVE: Keshan disease (KD) is a myocardial mitochondrial disease closely related to insufficient selenium (Se) and protein intake. PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body. This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury. METHODS: A low Se and low protein animal model was established. One hundred Wistar rats were randomly divided into 5 groups (control group, low Se group, low protein group, low Se + low protein group, and corn from KD area group). The JC-1 method was used to detect the mitochondrial membrane potential (MMP). ELISA was used to detect serum creatine kinase MB (CK-MB), cardiac troponin I (cTnI), and mitochondrial-glutamicoxalacetic transaminase (M-GOT) levels. RT-PCR and Western blot analysis were used to detect the expression of PINK1, Parkin, sequestome 1 (P62), and microtubule-associated proteins1A/1B light chain 3B (MAP1LC3B). RESULTS: The MMP was significantly decreased and the activity of CK-MB, cTnI, and M-GOT significantly increased in each experimental group (low Se group, low protein group, low Se + low protein group and corn from KD area group) compared with the control group (P<0.05 for all). The mRNA and protein expression levels of PINK1, Parkin and MAP1LC3B were profoundly increased, and those of P62 markedly decreased in the experimental groups compared with the control group (P<0.05 for all). CONCLUSION: Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.


Asunto(s)
Cardiomiopatías , Infecciones por Enterovirus , Proteínas Quinasas , Selenio , Ubiquitina-Proteína Ligasas , Animales , Ratas , Autofagia/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ratas Wistar , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Dairy Sci ; 107(7): 4509-4523, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38369111

RESUMEN

Lowering dietary protein content is a promising strategy to reduce N excretions in cattle but it requires improved N utilization by the animal. Feed enzymes (e.g., exogenous α-amylase) and plant extracts (e.g., essential oils [EO]) are 2 additives that may enhance rumen function and possibly also microbial protein yield. This may increase fat- and protein-corrected milk yield (MY) and milk nitrogen efficiency and thus lower N losses from dairy cows. Both types of additives were studied in an experiment including 39 Holstein cows that had (average ± SD) 40.7 ± 7.95 kg/d MY, 89 ± 43 DIM, 2.7 ± 1.5 lactations, and 677 ± 68.6 kg of BW, consisting of a covariate (4 wk) and treatment period (5 wk). During the whole experiment cows were fed a typical Benelux diet (CTRL), supplemented with concentrates to meet individual requirements for energy and MP, which were fulfilled for 100% and 101%, respectively. The total diet was low in CP (15.5%) and relatively high in starch (22.6% and 6.6% rumen bypass starch). Cows were balanced for parity, DIM, MY, and roughage intake and randomly assigned to one of 3 groups, which received the following treatments in the treatment period: (1) CTRL (n = 13); (2) CTRL + 14 g/cow per day Ronozyme RumiStar α-amylase enzyme (AMEZ, n = 13; DSM); and (3) CTRL + 2.5 g/cow per day Crina Protect, a blend of EO components (ESOL, n = 13; DSM). Animal performance, ruminal pH, and enteric gas emissions were monitored throughout the experiment. During the last week of the covariate and treatment periods, nitrogen balances were conducted, total-tract nutrient digestibility was determined, and urinary allantoin and uric acid were determined as indicators for microbial N production. The statistical model applied to these variables contained group and DIM during treatment period as fixed effects and the values from the covariate period as covariate. Post hoc Dunnet-corrected comparisons between each treatment group and the control group were explored. The α-amylase enzyme tended to increase apparent total-tract starch digestibility and increased milk lactose concentration. The EO blend tended to increase MY and increased milk N output, milk nitrogen efficiency, and feed efficiency. Therefore, when feeding reduced dietary protein levels, EO have potential to improve the N-use efficiency in cattle, whereas the α-amylase enzyme might increase starch digestibility and milk lactose. However, additional research is necessary to substantiate our findings.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Nitrógeno , Aceites Volátiles , alfa-Amilasas , Animales , Bovinos , Femenino , alfa-Amilasas/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Digestión/efectos de los fármacos , Lactancia , Leche/química , Nitrógeno/metabolismo , Nutrientes/metabolismo , Rumen/metabolismo
5.
J Dairy Sci ; 107(4): 2087-2098, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37923213

RESUMEN

Low crude protein (CP) diets might be fed to dairy cows without affecting productivity if the balance of absorbed AA were improved, which would decrease the environmental effect of dairy farms. The aim of this study was to investigate the effects of supplementing ruminally protected Lys (RPL) and Met (RPM) at 2 levels of dietary CP on nutrient intake, milk production, milk composition, milk N efficiency (MNE), and plasma concentrations of AA in lactating Holstein cows and to evaluate these effects against the predictions of the new NASEM (2021) model. Fifteen multiparous cows were used in a replicated 3 × 3 Latin square design with 21-d periods. The 3 treatments were (1) a high-protein (HP) basal diet containing 16.4% CP (metabolizable protein [MP] balance of -130 g/d; 95% of target values), (2) a medium-protein diet containing 15% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; MPLM; MP balance of -314 g/d; 87% of target values), and (3) a low-protein diet containing 13.6% CP plus RPL (60 g/cow per day) and RPM (25 g/cow per day; LPLM; MP balance of -479 g/d; 80% of target values). Dry matter intake was less for cows fed MPLM and LPLM diets compared with those fed the HP diet. Compared with the HP diet, the intake of CP, neutral detergent fiber, acid detergent fiber, and organic matter, but not starch, was lower for cows fed MPLM and LPLM diets. Milk production and composition were not affected by MPLM or LPLM diets relative to the HP diet. Milk urea N concentrations were reduced for the MPLM and LPLM diets compared with the HP diet, indicating that providing a low-protein diet supplemented with rumen-protected AA led to greater N efficiency. There was no significant effect of treatment on plasma AA concentrations except for proline, which significantly increased for the MPLM treatment compared with the other 2 treatments. Overall, the results supported the concept that milk performance might be maintained when feeding lactating dairy cows with low CP diets if the absorbed AA balance is maintained through RPL and RPM feeding. Further investigations are needed to evaluate responses over a longer time period with consideration of all AA rather than on the more aggregated MP and the ratio between Lys and Met.


Asunto(s)
Lisina , Metionina , Femenino , Bovinos , Animales , Dieta con Restricción de Proteínas/veterinaria , Lactancia/fisiología , Rumen/metabolismo , Nitrógeno/metabolismo , Detergentes/metabolismo , Proteínas de la Leche/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Leche/química , Racemetionina/metabolismo , Racemetionina/farmacología , Proteínas en la Dieta/metabolismo
6.
BMC Nephrol ; 24(1): 372, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097963

RESUMEN

BACKGROUND: Although combining a low-protein diet (LPD) with oral nutritional supplements increases treatment adherence and nutritional status in patients with chronic kidney disease (CKD), the effect of this combination approach in older adults remains unclear. This study examined the impact of a 6% low-protein formula (6% LPF) with diet counseling in older adults with stage 3-5 CKD. METHODS: In this three-month randomized controlled study, 66 patients (eGFR < 60 mL/min/1.73 m2, non-dialysis, over 65 years of age) were randomly assigned to an intervention group (LPD plus a 6% LPF) or control group (LPD alone). The 6% LPF comprised 400 kcal, 6 g of protein, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and various micronutrients. All data were collected at baseline and after three months, including physical performance based on hand grip strength (HGS) and gait speed, nutritional status using Mini Nutritional Assessment-Short Form (MNA-SF) scores, body composition through bioelectrical impedance analysis, and dietary intake from 24-h dietary records. RESULTS: This study incorporated 47 participants (median age, 73; median eGFR, 36 ml/min/1.73 m2; intervention group: 24; control group: 23). The intervention group exhibited significant differences in HGS and gait speed, and micronutrient analysis revealed significantly higher monounsaturated fatty acids (MUFA), EPA, DHA, calcium, iron, zinc, copper, thiamine, riboflavin, niacin, B6, B12, and folic acid intake than the control group. MNA-SF scores, macronutrient intake, and body composition did not differ significantly between the two groups. CONCLUSIONS: Compared to LPD counseling alone, an LPD prescription with 6% LPF in older adults with CKD stages 3-5 helped relieve physical deterioration and increased micronutrient intake after three months. TRIAL REGISTRATION: ClinicalTrials.gov NCT05318014 (retrospectively registered on 08/04/2022).


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Anciano , Dieta con Restricción de Proteínas , Fuerza de la Mano , Estado Nutricional , Insuficiencia Renal Crónica/terapia , Consejo , Suplementos Dietéticos
7.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139420

RESUMEN

This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.


Asunto(s)
Ácidos Grasos Omega-3 , Microbiota , Animales , Porcinos , Ácido Butírico , Dieta con Restricción de Proteínas , Ácidos Grasos Omega-3/farmacología , Receptor Toll-Like 4/genética , Ácidos Grasos , Antioxidantes/metabolismo , ARN Mensajero , Inmunidad
8.
Cureus ; 15(9): e45518, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37868473

RESUMEN

Obesity, a condition primarily resulting from positive energy balance, has become a significant global health concern. Numerous studies have demonstrated that obesity is a major risk factor for various illnesses, including different types of cancer, coronary heart disease, sleep apnea, CV stroke, type II diabetes mellitus, etc. To effectively address this issue, prevention and treatment approaches to manage body weight are crucial. There are several evidence-based approaches available for the treatment and management of obesity, taking into account factors such as body mass index classification, individual weight history, and existing comorbidities. To facilitate successful obesity treatment and management, there are pragmatic approaches and tools available, including the reduction of energy density, portion control, and diet quality enhancement. These approaches encompass the use of medications, lifestyle interventions, bariatric surgery, and formula diets. Regardless of the specific method employed, behavior change, reduction of energy intake, and increased energy expenditure are integral components for successful treatment and management of obesity. These measures allow patients to personalize and customize their dietary patterns, leading to effective and sustainable weight reduction. Incorporating physical activities and self-monitoring of individual diets are effective techniques for promoting behavior change in obesity and weight management. The main objective of this systematic review is to evaluate the effectiveness of dietary/nutritional interventions in the treatment and management of obesity through provision of valuable insights into the effectiveness of such nutritional strategies. To attain this, a comprehensive analysis of various dietary approaches and their impacts on weight will be conducted.

9.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37658823

RESUMEN

Low protein diets supplemented with essential amino acids (EAA) fed to pigs reduce the excess supply of EAA and nitrogen (N). However, low protein diets may become limiting in non-essential amino acids (NEAA) and N, thus affecting the utilization of EAA for N retention. It has been suggested that the EAA-N:total N (E:T) ratio can give an indication of dietary N sufficiency. An N-balance study was conducted to determine the effect of E:T ratio on the Lys requirement for maximum N retention. A total of 80 growing barrows (19.3 ±â€…0.21 kg initial body weight) were randomly assigned to 1 of 10 diets (n = 8) in 8 blocks in a 2 × 5 factorial arrangement. Diets consisted of a low ratio (LR; E:T of 0.33) or a high ratio (HR; E:T of 0.36) with graded Lys content (0.82%, 0.92%, 1.02%, 1.12%, and 1.22% standardized ileal digestible [SID]). After a 7-d adaptation, a 4-d N-balance collection was conducted. Blood samples were obtained on d 2 of the collection period 2 h after the morning meal for plasma urea N (PUN) analysis. Data were analyzed using the MIXED model procedure with fixed effects of ratio (n = 2), Lys (n = 5), and their interactions. The experimental block (room) was included as a random effect (n = 8). The SID Lys requirement was estimated using PROC NLIN linear broken-line breakpoint model. There was a significant interaction between E:T ratio and Lys (P < 0.01), where LR diets had a higher N retention than HR diets, while increasing Lys linearly increased N retention (P = 0.01) in both HR and LR diets. The marginal efficiency of utilizing SID Lys (P < 0.01) reduced with increasing Lys content, while the efficiency of utilizing N (P < 0.05) increased as Lys increased. The SID Lys required to maximize N retention of pigs fed HR diets was estimated at 1.08% (R2 = 0.61) and LR diets at 1.21% (R2 = 0.80). The current results indicate that N may be limiting in diets with a high E:T ratio, limiting N retention. Supplying additional dietary N, as intact protein, can increase N retention, resulting in a greater Lys requirement.


Low protein diets supplemented with essential amino acids (EAA) can improve growth performance, but dietary non-essential amino acids (NEAA) and nitrogen (N) content may be limiting factors. This limitation may ultimately affect the efficient utilization of EAA for optimal N retention and growth performance. As a benchmark, appropriate quantities of EAA and total N (TN) must be provided, using the EAA-N to TN ratio (E:T) to indicate that both are supplied in sufficient amounts. The present study generally observed a linear increase in N retention with increasing dietary Lys, and N retention was greater in the low E:T as compared with high E:T diets. A greater Lys requirement was observed in the low E:T compared with the high E:T-fed pigs. A low E:T ratio with Lys above current recommendations is warranted to maximize N retention.


Asunto(s)
Aminoácidos Esenciales , Lisina , Animales , Porcinos , Aminoácidos , Suplementos Dietéticos , Nitrógeno
10.
Anim Sci J ; 94(1): e13853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37431230

RESUMEN

We fed 330-545 day-old laying hens (later laying period) a low-protein diet supplemented with essential amino acids (LPS) and composted their manure. We then investigated the laying performance of the hens, the nitrogen balance and emission of nitrous oxide (N2 O), methane (CH4 ), and ammonia (NH3 ) from the composting, and several characteristics of the finished compost. There were no significant differences in the egg-laying rate, egg mass, egg weight, proximate compositions in egg yolk and egg white, or feed intake between the laying hens fed a Control diet (Cont) and those fed the LPS diet. However, the LPS-fed hens had lower excreta levels and nitrogen excretion. In addition, the environmental gas emissions per layer from composting of the manure from the LPS-fed laying hens were decreased by 9.7% for N2 O, 40.9% for CH4 , and 24.8% for NH3 compared to the Cont-fed laying hens. The concentrations of total nitrogen in the finished compost were similar between the LPS-fed and Cont-fed laying hens. In a vegetable-growth test, the weights of komatsuna plants grown with compost from LPS-fed and Cont-fed hens were also not significantly different. Feeding an LPS diet to 330-545 day-old laying hens was suggested to reduce environmental gas emissions from manure composting without affecting the egg production performance.


Asunto(s)
Compostaje , Dieta con Restricción de Proteínas , Animales , Femenino , Dieta con Restricción de Proteínas/veterinaria , Estiércol , Aminoácidos Esenciales , Pollos , Lipopolisacáridos , Nitrógeno
11.
Nutrients ; 15(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37432246

RESUMEN

BACKGROUND: Classical homocystinuria (HCU) is an inborn defect of methionine metabolism caused by a deficiency of the enzyme cystathionine ß-synthase (CBS). The main symptoms of classical homocystinuria are lens subluxation, bone lesions, vascular disease and developmental delay/intellectual disability. The treatment method for HCU is a methionine-poor diet supplemented with amino acid preparations. The aim of the study was to examine the relationship of dietary factors, metabolic compensation and selected skeletal parameters in patients with HCU. METHODS: Bone mineral density measurements (DXA) were performed in pediatric patients with HCU, and blood levels of selected amino acids, minerals and vitamins, as well as dietary nutritional value, were analyzed. RESULTS: A total of 11 patients with HCU whose median age was 9.3 years were enrolled in the study. The median DXA total body less head of HCU patients was -0.4 z-score, and the lumbar spine was -1.4 z-score. Despite supplementation, calcium intake was below the age norm. Average vitamin D3 intake was in line with recommendations, but 36% of patients had reduced blood levels. Bone mineral density depended on blood levels of 25-hydroxyvitamin D, homocysteine and methionine, as well as on BMI, age and intake of natural protein (R2 = 98.5%, p = 0.015; R2 = 86.7%, p = 0.0049) and protein from an amino acid preparation (r = 0.69, p = 0.026). CONCLUSION: The results of the study indicate the need for regular densitometry in patients with HCU and also the use of additional calcium and vitamin D3 supplementation. It is also necessary to perform a comprehensive analysis of the diet and metabolic controls.


Asunto(s)
Densidad Ósea , Dieta , Humanos , Masculino , Femenino , Recién Nacido , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Polonia , Dieta/economía , Índice de Masa Corporal , Fenómenos Biomecánicos
12.
Anim Nutr ; 14: 225-234, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37484992

RESUMEN

The alterations in feed ingredients and the nutrient matrix to produce reduced-protein diets may affect bone morphology and mineralization in laying hens. This study was implemented to determine the effects of L-arginine (Arg), guanidinoacetic acid (GAA), and L-citrulline (Cit) supplementation to Arg-deficient reduced-protein diets on bone morphology, strength, and mineralization status of laying hens. Individually housed Hy-Line Brown laying hens were evenly distributed to five dietary treatments with 25 replicates per treatment from 20 to 40 wk of age. Treatments consisted of a standard protein diet (17% crude protein, SP), a reduced-protein diet deficient in Arg (13% crude protein, RP), and RP supplemented with Arg (0.35% Arg, RP-Arg), GAA (0.46% GAA equivalent to 0.35% Arg, RP-GAA), or Cit (0.35% Cit equivalent to 0.35% Arg, RP-Cit) to reach the Arg level of SP diets. Birds fed the SP diet had similar bone weight, ash, length, width, Seedor index, breaking strength, and serum mineral concentration, but higher toe B level (P < 0.001) compared to those fed the RP diet at wk 40. Birds fed the SP diet consumed more but also excreted more K and B compared to those fed the RP diet (P < 0.01). Birds fed the SP diet had lower Cu digestibility (P = 0.01) and higher B retention (P < 0.01) compared to those offered the RP diet. Supplementation of Arg, GAA, and Cit to the RP diet increased relative femur weight and length (P < 0.001). Citrulline supplementation also increased relative tibia and femur ash, and Zn digestibility (P < 0.05). Supplementation of GAA to the RP diet decreased serum Ca, P, and Mg levels, decreased tibia Fe and Mg levels and toe Mg level, but increased Al, Fe, Zn, and Mn digestibility (P < 0.05). The current findings demonstrated the capacity of laying hens to adapt to low mineral intake by increasing mineral utilization. Overall, bone morphology and breaking strength, and serum mineral level in laying hens were not influenced by dietary CP levels. Dietary Arg, GAA, or Cit supplementation were effective in improving bone morphology and mineralization in laying hens fed Arg-deficient RP diets.

13.
Nutrients ; 15(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37375619

RESUMEN

Nutritional and pharmacological therapies represent the basis for non-dialysis management of CKD patients. Both kinds of treatments have specific and unchangeable features and, in certain cases, they also have a synergic action. For instance, dietary sodium restriction enhances the anti-proteinuric and anti-hypertensive effects of RAAS inhibitors, low protein intake reduces insulin resistance and enhances responsiveness to epoetin therapy, and phosphate restriction cooperates with phosphate binders to reduce the net phosphate intake and its consequences on mineral metabolism. It can also be speculated that a reduction in either protein or salt intake can potentially amplify the anti-proteinuric and reno-protective effects of SGLT2 inhibitors. Therefore, the synergic use of nutritional therapy and medications optimizes CKD treatment. Quality of care management is improved and becomes more effective when compared to either treatment alone, with lower costs and fewer risks of unwanted side effects. This narrative review summarizes the established evidence of the synergistic action carried out by the combination of nutritional and pharmacological treatments, underlying how they are not alternative but complementary in CKD patient care.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Sodio en la Dieta , Humanos , Fallo Renal Crónico/metabolismo , Riñón/metabolismo , Antihipertensivos/uso terapéutico , Sodio en la Dieta/uso terapéutico , Fosfatos
14.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239844

RESUMEN

This study was conducted to evaluate the effects of a low-protein (LP) diet supplemented with sodium butyrate (SB), medium-chain fatty acids (MCFAs) and n-3 polyunsaturated fatty acids (PUFAs) on nutrient utilization and lipid and amino acid metabolism in weaned pigs. A total of 120 Duroc × Landrace × Yorkshire pigs (initial body weight: 7.93 ± 0.65 kg) were randomly assigned to five dietary treatments, including the control diet (CON), LP diet, LP + 0.2% SB diet (LP + SB), LP + 0.2% MCFA diet (LP + MCFA) and LP + 0.2% n-3 PUFA diet (LP + PUFA). The results show that the LP + MCFA diet increased (p < 0.05) the digestibility of dry matter and total P in pigs compared with the CON and LP diets. In the liver of the pigs, the metabolites involved in sugar metabolism and oxidative phosphorylation significantly changed with the LP diet compared with the CON diet. Compared with the LP diet, the altered metabolites in the liver of the pigs fed with the LP + SB diet were mainly associated with sugar metabolism and pyrimidine metabolism; the altered metabolites in the liver of pigs fed with the LP + MCFA and LP + PUFA diets were mainly associated with lipid metabolism and amino acid metabolism. In addition, the LP + PUFA diet increased (p < 0.05) the concentration of glutamate dehydrogenase in the liver of pigs compared with the LP diet. Furthermore, the LP + MCFA and LP + PUFA diets increased (p < 0.05) the mRNA abundance of sterol regulatory element-binding protein 1 and acetyl-CoA carboxylase in the liver compared with the CON diet. The LP + PUFA diet increased (p < 0.05) mRNA abundances of fatty acid synthase in the liver compared with the CON and LP diets. Collectively, the LP diet supplemented with MCFAs improved nutrient digestibility, and the LP diet supplemented with MCFAs and n-3 PUFAs promoted lipid and amino acid metabolisms.


Asunto(s)
Ácidos Grasos Omega-3 , Ácidos Grasos , Porcinos , Animales , Ácidos Grasos/farmacología , Dieta con Restricción de Proteínas , Suplementos Dietéticos , Dieta , Nutrientes , Ácidos Grasos Insaturados , Ácido Butírico , Aminoácidos/metabolismo , Azúcares , Alimentación Animal/análisis
15.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36967519

RESUMEN

To reduce the use of antibiotics, research into nutritional strategies designed to improve the gut health of weaned pigs is underway. This study sought to examine the effects of reducing dietary crude protein (CP) and/or supplementing the feed with sodium butyrate protected by the sodium salts of medium-chain fatty acids on the growth performance and gut health of weaned piglets. Ninety-six weaned piglets (Landrace × large white, 21 days of age) were allotted to four experimental treatments for 14 d. The experimental design was factorial with 2 CP levels and 2 feed-additive doses (0 vs. 1 kg/t). Results showed that reducing CP from 22.2% to 18.8% diet had no effect on piglet growth performance parameters during the first post-weaning week (P > 0.05), but did compromise growth in the second week (P = 0.011), impacting overall growth performance results (P = 0.019). Nonetheless, dietary CP level reduction led reducing crypt depth (P = 0.03657). In addition, Lactobacillus counts that were increased in the ileum (P = 0.032) and reduced in the colon (P = 0.032). Furthermore, apparent ileal digestibility of organic matter (P = 0.026) and fecal consistency (P < 0.05) were improved throughout the experiment. Moreover, in piglets fed diets containing 22.2% CP, the use of the feed-additive tended to improve the gain-to-feed ratio (P = 0.091) compared to those fed supplemented diets containing 18.8% CP. In addition, feed supplementation increased ileal numbers of goblet cells (P = 0.036), as well as apparent ileal digestibility of dry matter (P = 0.057) and organic matter (P = 0.003). Supplementation also had beneficial effects on the microbiota of the colon, increasing Lactobacillus counts (P = 0.006) and diminishing Enterobacteriaceae counts (P = 0.003), as well as affecting microbial metabolite profiles in that acetic acid concentrations tended to be increased (P = 0.088) and valeric acid concentrations were reduced (P = 0.002). These findings support the use of both strategies can improve the gut health of weaned piglets and prompt further research into the possible benefits of combining these two nutritional strategies on gut health and growth performance.


Reducing dietary levels of crude protein (CP) and the use of feed-additives such as sodium butyrate protected by medium-chain fatty acid salts are currently under investigation as nutritional strategies with beneficial effects on the intestinal barrier, and consequently on the health of weaned piglets. The intestinal barrier is a dynamic complex ecosystem that includes morphological structure and microbial composition. Reducing CP intake from 22.2% to 18.8% in piglets was found here to compromise their growth 2 wk after weaning. However, considering the effect of reducing CP on gut health, crypt depth was reduced and the Lactobacillus population was expanded in the ileum and diminished in the colon. In addition, organic matter digestibility and fecal consistency were improved. Supplementation with sodium butyrate protected by the sodium salts of medium-chain fatty acids at 1 kg/t increased the number of mucin-secreting cells, thereby reinforcing the intestinal barrier, and improving ileal digestibility. In addition, it modified the microbiota in the colon. These findings on different parameters of intestinal barrier prompt further investigation into the effects of both strategies on gut health and growth performance of piglets.


Asunto(s)
Dieta , Sales (Química) , Animales , Porcinos , Ácido Butírico , Destete , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Proteínas en la Dieta/farmacología , Proteínas en la Dieta/metabolismo , Alimentación Animal/análisis
16.
Reprod Toxicol ; 118: 108367, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36963525

RESUMEN

Proteins are required for biological functions and their inadequacy might impair the growth and development of the reproductive system. The study investigated the effects of fish oil (FO) supplementation on low-protein diet-induced alterations in male and female reproductive organs. Male and female rats were assigned randomly to four groups respectively. The NPD rats had five rats per group and were given 16% casein diet while the LPD rats had eight rats per group and received 5% casein diet. After the 8th week, FO was administered for 3 weeks via oral gavage at a concentration of 400 mg Kg-1 after which the rats were sacrificed and testes and ovaries were excised. LPD-fed rats showed lower body weights for both genders. In LPD-fed rats, NO was significantly increased while GSH, vitamins C and E levels, the activities of CAT (except in ovaries), and GST were significantly reduced in both tissues. The activities of SOD and GPx were only reduced in the testes including sperm count, motility, and increase deformed sperm cells. Testosterone and progesterone levels were also reduced and lipid homeostasis was disrupted in the plasma of LPD-fed rats. FO supplementation reduces the NO, CHOL, TG, LDL (in females), and VLDL but significantly improves HDL (in females), testosterone, and progesterone levels, sperm count, motility, and morphology. The antioxidant status of both tissues also increased significantly in LPD-fed rats. Conclusively, FO might be effective in improving testicular and ovarian functions and for the maintenance of plasma lipid homeostasis in LPD-fed rats.


Asunto(s)
Desnutrición , Testículo , Ratas , Masculino , Femenino , Animales , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Ratas Sprague-Dawley , Ovario/metabolismo , Caseínas/farmacología , Progesterona/farmacología , Semen/metabolismo , Testosterona , Suplementos Dietéticos
17.
Nutrients ; 15(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36839368

RESUMEN

Protein intake is higher in formula-fed than in breast-fed infants during infancy, which may lead to an increased risk of being overweight. Applying alpha-lactalbumin (α-lac)-enriched whey or casein glycomacropeptide (CGMP)-reduced whey to infant formula may enable further reduction of formula protein by improving the amino acid profile. Growth, nutrient intake, and protein metabolites were evaluated in a randomized, prospective, double-blinded intervention trial where term infants received standard formula (SF:2.2 g protein/100 kcal; n = 83) or low-protein formulas with α-lac-enriched whey (α-lac-EW;1.75 g protein/100 kcal; n = 82) or CGMP-reduced whey (CGMP-RW;1.76 g protein/100 kcal; n = 80) from 2 to 6 months. Breast-fed infants (BF; n = 83) served as reference. Except between 4 and 6 months, when weight gain did not differ between α-lac-EW and BF (p = 0.16), weight gain was higher in all formula groups compared to BF. Blood urea nitrogen did not differ between low-protein formula groups and BF during intervention, but was lower than in SF. Essential amino acids were similar or higher in α-lac-EW and CGMP-RW compared to BF. Conclusion: Low-protein formulas enriched with α-lac-enriched or CGMP-reduced whey supports adequate growth, with more similar weight gain in α-lac-enriched formula group and BF, and with metabolic profiles closer to that of BF infants.


Asunto(s)
Caseínas , Lactalbúmina , Lactante , Humanos , Suero Lácteo , Estudios Prospectivos , Fenómenos Fisiológicos Nutricionales del Lactante , Proteína de Suero de Leche , Fórmulas Infantiles/química , Aumento de Peso , Ingestión de Alimentos
18.
Nutrients ; 15(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36771238

RESUMEN

3-Hydroxy-3-Methylglutaryl-CoA Lyase (HMGCL) deficiency can be a very severe disorder that typically presents with acute metabolic decompensation with features of hypoketotic hypoglycemia, hyperammonemia, and metabolic acidosis. A retrospective chart and literature review of Australian patients over their lifespan, incorporating acute and long-term dietary management, was performed. Data from 10 patients contributed to this study. The index case of this disorder was lost to follow-up, but there is 100% survival in the remainder of the cases despite several having experienced life-threatening episodes. In the acute setting, five of nine patients have used 900 mg/kg/day of sodium D,L 3-hydroxybutyrate in combination with intravenous dextrose-containing fluids (delivering glucose above estimated basal utilization requirements). All patients have been on long-term protein restriction, and those diagnosed more recently have had additional fat restriction. Most patients take L-carnitine. Three children and none of the adults take nocturnal uncooked cornstarch. Of the cohort, there were two patients that presented atypically-one with fulminant liver failure and the other with isolated developmental delay. Dietary management in patients with HMGCL deficiency is well tolerated, and rapid institution of acute supportive metabolic treatment is imperative to optimizing survival and improve outcomes in this disorder.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Hiperamonemia , Niño , Adulto , Humanos , Estudios Retrospectivos , Australia , Errores Innatos del Metabolismo de los Aminoácidos/terapia
19.
J Dairy Sci ; 106(3): 1790-1802, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36710179

RESUMEN

Lowering the dietary protein content can reduce N excretions and NH3 emissions from manure and increase milk N efficiency of dairy cows. However, milk yield (MY) and composition can be compromised due to AA deficiency. Methionine and Lys are known as first limiting EAA for dairy cows, and recently His is also mentioned as limiting, especially in grass-based or low-protein diets. To examine this, a trial was conducted with a 3-wk pre-experimental adaptation period (diet 16.5% crude protein), followed by a depletion period of 4 wk, in which 39 cows (average ± standard deviation: 116 ± 29.3 d in milk, 1.8 ± 1.2 lactations, 638 ± 73.2 kg of body weight, and 32.7 ± 5.75 kg MY/d) received a low-protein diet (CTRL) (14.5% crude protein). Then, taking into account parity, His plasma concentration, and MY, cows were randomly assigned to 1 of 3 treatment groups during the rumen-protected (RP) AA period of 7 wk; (1) CTRL; (2) CTRL + RP-Met + RP-Lys (MetLys); (3) CTRL + RP-Met + RP-Lys + RP-His (MetLysHis). Products were dosed, assuming requirements for digestible (d) Met, dLys, and dHis being, respectively, 2.4%, 7.0%, and 2.4% of intestinal digestible protein. In the cross-back period of 5 wk, all cows received the CTRL diet. During the last week of each period, a N balance was conducted by collecting total urine and spot samples of feces. Total feces production was calculated using the inert marker TiO2. Statistical analysis was performed with a linear mixed model with cow as random effect and data of the last week of the pre-experimental period used as covariate for the animal performance variables. No effect of supplementing RP-Met and RP-Lys nor RP-Met, RP-Lys, and RP-His on feed intake, milk performance, or milk N efficiency was observed. However, the plasma AA profile indicated additional supply of dMet, dLys, and dHis. Nevertheless, evaluation of the AA uptake relative to the cow's requirements showed that most EAA (exclusive Arg and Thr) were limiting over the whole experiment. Only dHis was sufficiently supplemented during the RP-AA period due to an overestimation of the diet's dMet and dLys supply in the beginning of the trial. The numerically increased milk urea N and urinary N excretion when RP-Met, RP-Lys, and RP-His were added to the low-protein diet suggest an increased catabolism of the excess His.


Asunto(s)
Lisina , Metionina , Femenino , Bovinos , Animales , Histidina , Dieta con Restricción de Proteínas/veterinaria , Rumen/metabolismo , Proteínas de la Leche/análisis , Dieta/veterinaria , Leche/química , Lactancia , Racemetionina/metabolismo , Racemetionina/farmacología , Nitrógeno/metabolismo
20.
Poult Sci ; 102(3): 102441, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36599221

RESUMEN

This study aimed to evaluate the effect of isoleucine (Ile) on growth performance, meat quality and lipid metabolism of broilers fed a low-protein diet (LPD). The 396 one-day-old male Cobb broilers were allocated to 4 treatment groups as follows: control diet (CON), LPD, LPD + 0.13% Ile (LPD-LI) and LPD + 0.26% Ile (LPD-HI), with nine replicates of 11 broilers each for 42 d. The Ile increased average daily gain, average daily feed intake, fiber density and the mRNA level of myosin heavy chain (MyHC)-I in breast muscle, and decreased feed to gain ratio, shear force, fiber diameter and the mRNA level of MyHC-IIb in breast muscle, which were impaired by the LPD. Compared to the LPD group, broilers in LPD-LI and LPD-HI groups had lower serum lipid levels, liver fat content, abdominal adipose percentage and mRNA levels of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer binding protein-α, ki-67, topoisomerase II alpha (TOP2A) and thioredoxin-dependent peroxidase 2 in abdominal adipose and liver X receptors-α, sterol regulatory element binding protein 1 (SREBP1), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in liver, and higher mRNA levels of peroxisome proliferator activated receptor-α, carnitine palmitoyl-transferase 1 (CPT-1), and acyl-CoA oxidase 1 (ACOX1) in liver, which were equal to the CON levels. A LPD supplemented with Ile decreased enzyme activities of ACC and FAS in liver and glycerol-3-phosphate dehydrogenase and TOP2A in abdominal adipose, and increased enzyme activities of CPT-1 and ACOX1 in liver. Furthermore, Ile supplementation enhanced the mRNA level of leptin receptor and protein levels of phospho-5' adenosine monophosphate-activated protein kinase (AMPK), mechanistic target of rapamycin, ribosomal protein 70 S6 kinase, janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3), and decreased the protein level of SREBP1 in the liver of broilers in LPD group. In conclusion, dietary supplementation with Ile to 0.83% could improve growth performance and meat quality and alleviate lipid deposition of broilers fed a LPD through activating AMPK and JAK2/STAT3 signaling pathways.


Asunto(s)
Pollos , Isoleucina , Masculino , Animales , Isoleucina/metabolismo , Pollos/fisiología , Dieta con Restricción de Proteínas/veterinaria , Proteínas Quinasas Activadas por AMP/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/farmacología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/farmacología , Suplementos Dietéticos , Dieta/veterinaria , Hígado/metabolismo , Transducción de Señal , ARN Mensajero/metabolismo , Lípidos , Metabolismo de los Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA