Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.462
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 460-486, jul. 2024. graf, ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1538009

RESUMEN

This review presents advances in the implementation of high - throughput se quencing and its application to the knowledge of medicinal plants. We conducted a bibliographic search of papers published in PubMed, Science Direct, Google Scholar, Scopus, and Web of Science databases and analyzed the obtained data using VOSviewer (versi on 1.6.19). Given that medicinal plants are a source of specialized metabolites with immense therapeutic values and important pharmacological properties, plant researchers around the world have turned their attention toward them and have begun to examine t hem widely. Recent advances in sequencing technologies have reduced cost and time demands and accelerated medicinal plant research. Such research leverages full genome sequencing, as well as RNA (ribonucleic acid) sequencing and the analysis of the transcr iptome, to identify molecular markers of species and functional genes that control key biological traits, as well as to understand the biosynthetic pathways of bioactive metabolites and regulatory mechanisms of environmental responses. As such, the omics ( e.g., transcriptomics, metabolomics, proteomics, and genomics, among others) have been widely applied within the study of medicinal plants, although their usage in Colombia is still few and, in some areas, scarce. (185)


El extracto de cloroformo (CE) y las fracciones obtenidas de las raíces de Aldama arenaria se evaluaron para determinar su actividad antiproliferativa in vitro contra 10 líneas ce lulares tumorales humanas [leucemia (K - 562), mama (MCF - 7), ovario que expresa un fenotipo resistente a múltiples fármacos (NCI/ADR - RES), melanoma (UACC - 62), pulmón (NCI - H460), próstata (PC - 3), colon (HT29), ovario (OVCAR - 3), glioma (U251) y riñón (786 - 0)]. CE presentó actividad antiproliferativa débil a moderada (log GI 50 medio 1.07), mientras que las fracciones 3 y 4, enriquecidas con diterpenos de tipo pimarane [ent - pimara - 8 (14), ácido 15 - dien - 19 - oico y ent - 8(14),15 - pimaradien - 3 ß - ol], presentaron activid ad moderada a potente para la mayoría de las líneas celulares, con un log GI 50 medio de 0.62 y 0.59, respectivamente. Los resultados mostraron una acción antiproliferativa in vitro prometedora de las muestras obtenidas de A. arenaria , con los mejores resul tados para NCI/ADR - RES, HT29 y OVCAR - 3, y valores de TGI que van desde 5.95 a 28.71 µg.mL - 1, demostrando que los compuestos de esta clase pueden ser prototipos potenciales para el descubrimiento de nuevos agentes terapéuticos


Asunto(s)
Plantas Medicinales , Colombia , Multiómica
2.
Plant Foods Hum Nutr ; 79(2): 497-502, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589624

RESUMEN

Metabolites of the edible and medicinal plant Arctium have been shown to possess beneficial activities. The phytochemical profile of Arctium lappa is well-explored and its fruits are known to contain mainly lignans, fatty acids, and sterols. But the fruits of other Arctium species have not been thoroughly investigated. Therefore, this study compares the metabolic profiles of the fruits of A. lappa, Arctium tomentosum, and Arctium minus. Targeted metabolomics led to the putative identification of 53 metabolites in the fruit extracts, the majority of these being lignans and fatty acids. Quantification of the major lignans showed that the year of collection had a significant effect on the lignan content. Furthermore, A. lappa fruits contained lesser amounts of arctigenin but greater amounts of arctigenin glycoside than A. minus fruits. Regarding the profile of fatty acids, A. minus fruits differed from the others in the presence of linolelaidic acid.


Asunto(s)
Arctium , Ácidos Grasos , Frutas , Lignanos , Extractos Vegetales , Arctium/química , Frutas/química , Lignanos/análisis , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Extractos Vegetales/análisis , Extractos Vegetales/química , Furanos/análisis , Furanos/metabolismo , Fitoquímicos/análisis , Metaboloma , Metabolómica
3.
Phytomedicine ; 129: 155582, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38608595

RESUMEN

BACKGROUND: Recent studies have shown that harringtonine (HT) could specifically bind with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein and host cell transmembrane serine protease 2 (TMPRSS2) to block membrane fusion, which is an effective antagonist for SARS-CoV-2. PURPOSE: Our study focused on in-depth exploration of in vitro pharmacokinetic characteristics of HT in lung. METHODS: HPLC-fluorescence detection method was used to detect changes of HT content. Incubation systems of lung microsomes for phase I metabolism and UGT incubation systems for phase II metabolism were performed to elucidate metabolites and metabolic mechanisms of HT, and then the metabolic enzyme phenotypes for HT were clarified by chemical inhibition method and recombinant enzyme method. Through metabolomics, we comprehensively evaluated the physiological dynamic changes in SD rat and human lung microsomes, and revealed the relationship between metabolomics and pharmacological activity of HT. RESULTS: HPLC-fluorescence detection method showed strong specificity, high accuracy, and good stability for rapid quantification of HT. We confirmed that HT mainly underwent phase I metabolism, and the metabolites of HT in different species were all identified as 4'-demethyl HT, with metabolic pathway being hydrolysis reaction. CYP1A2 and CYP2E1 participated in HT metabolism, but as HT metabolism was not NADPH dependent, the esterase HCES1 in lung also played a role. The main KEGG pathways in SD rat and human lung microsomes were cortisol synthesis and secretion, steroid hormone biosynthesis and linoleic acid metabolism, respectively. The downregulated key biomarkers of 11-deoxycortisol, 21-deoxycortisol and 9(10)-EpOME suggested that HT could prevent immunosuppression and interfere with infection and replication of SARS-CoV-2. CONCLUSION: HT was mainly metabolized into 4'-demethyl HT through phase I reactions, which was mediated by CYP1A2, CYP2E1, and HCES1. The downregulation of 11-deoxycortisol, 21-deoxycortisol and 9(10)-EpOME were key ways of HT against SARS-CoV-2. Our study was of great significance for development and clinical application of HT in the treatment of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Pulmón , Ratas Sprague-Dawley , Animales , Humanos , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Ratas , Administración por Inhalación , SARS-CoV-2 , Masculino , Microsomas/metabolismo , Microsomas/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Biomed Chromatogr ; 38(6): e5859, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38618996

RESUMEN

The clinical effectiveness of nux-vomica in treating rheumatism and arthralgia is noteworthy; however, its nephrotoxicity has sparked global concerns. Hence, there is value in conducting studies on detoxification methods based on traditional Chinese medicine compatibility theory. Blood biochemistry, enzyme-linked immunosorbent assay, and pathological sections were used to evaluate both the nephrotoxicity of nux-vomica and the efficacy of the Jian Pi Tong Luo (JPTL) compound in mitigating this toxicity. Kidney metabolomics, using ultra-high-performance liquid chromatography-quadrupole-time-of-flight-MS (UPLC-Q-TOF-MS), was applied to elucidate the alterations in small-molecule metabolites in vivo. In addition, network pharmacology analysis was used to verify the mechanism and pathways underlying the nephrotoxicity associated with nux-vomica. Finally, essential targets were validated through molecular docking and western blotting. The findings indicated significant nephrotoxicity associated with nux-vomica, while the JPTL compound demonstrated the ability to alleviate this toxicity. The mechanism potentially involves nux-vomica activating the "PTGS2/CYP2C9-phosphatidylcholine-arachidonic acid metabolic pathway." This study establishes a scientific foundation for the clinical use of nux-vomica and lays groundwork for further research and safety assessment of toxic Chinese herbal medicines.


Asunto(s)
Ácido Araquidónico , Ciclooxigenasa 2 , Medicamentos Herbarios Chinos , Riñón , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Riñón/efectos de los fármacos , Riñón/metabolismo , Ácido Araquidónico/metabolismo , Masculino , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2C9/genética , Cromatografía Líquida de Alta Presión/métodos , Ratas Sprague-Dawley , Ratas , Metabolómica/métodos , Ratones
5.
J Psychosom Res ; 181: 111671, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657564

RESUMEN

OBJECTIVE: Immuno-metabolic depression (IMD) is proposed to be a form of depression encompassing atypical, energy-related symptoms (AES), low-grade inflammation and metabolic dysregulations. Light therapy may alleviate AES by modulating inflammatory and metabolic pathways. We investigated whether light therapy improves clinical and biological IMD features and whether effects of light therapy on AES or depressive symptom severity are moderated by baseline IMD features. Associations between changes in symptoms and biomarkers were explored. METHODS: In secondary analyses, clinical trial data was used from 77 individuals with depression and type 2 diabetes mellitus (T2DM) randomized to four weeks of light therapy or placebo. AES severity and depressive symptom severity were based on the Inventory of Depressive Symptomatology. Biomarkers included 73 metabolites (Nightingale) summarized in three principal components and CRP, IL-6, TNF-α, INF-γ. Linear regression analyses were performed. RESULTS: Light therapy had no effect on AES severity, inflammatory markers and metabolite principle components versus placebo. None of these baseline features moderated the effects of light therapy on AES severity. Only a principle component reflecting metabolites implicated in glucose homeostasis moderated the effects of light therapy on depressive symptom severity (ßinteraction = 0.65, P = 0.001, FDR = 0.003). Changes in AES were not associated with changes in biomarkers. CONCLUSION: Findings do not support the efficacy of light therapy in reducing IMD features in patients with depression and T2DM. We find limited evidence that light therapy is a more beneficial depression treatment among those with more IMD features. Changes in clinical and biological IMD features did not align over four-weeks' time. TRIAL REGISTRATION: The Netherlands Trial Register (NTR) NTR4942.


Asunto(s)
Depresión , Diabetes Mellitus Tipo 2 , Fototerapia , Humanos , Diabetes Mellitus Tipo 2/terapia , Masculino , Femenino , Persona de Mediana Edad , Fototerapia/métodos , Depresión/terapia , Depresión/metabolismo , Biomarcadores/sangre , Anciano , Adulto , Inflamación , Resultado del Tratamiento , Índice de Severidad de la Enfermedad
6.
Metabolomics ; 20(3): 45, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38615312

RESUMEN

INTRODUCTION: Aspalathus linearis (commonly known as rooibos) is endemic to the Cape Floristic Region of South Africa and is a popular herbal drink and skin phytotherapeutic ingredient, with health benefits derived primarily from its unique phenolic content. Several, seemingly habitat-specific ecotypes from the Cederberg (Western Cape) and Northern Cape have morphological, ecological, genetic and biochemical differences. OBJECTIVES AND METHODS: Despite the commercial popularity of the cultivated variety, the uncultivated ecotypes are largely understudied. To address gaps in knowledge about the biochemical constituency, ultra-performance liquid chromatography-mass spectrometry analysis of fifteen populations was performed, enabling high-throughput metabolomic fingerprinting of 50% (v/v) methanolic extracts. Antioxidant screening of selected populations was performed via three assays and antimicrobial activity on two microbial species was assessed. The metabolomic results were corroborated with total phenolic and flavonoid screening of the extracts. RESULTS AND DISCUSSION: Site-specific chemical lineages of rooibos ecotypes were confirmed via multivariate data analyses. Important features identified via PLS-DA disclosed higher relative abundances of certain tentative metabolites (e.g., rutin, aspalathin and apiin) present in the Dobbelaarskop, Blomfontein, Welbedacht and Eselbank sites, in comparison to other locations. Several unknown novel metabolites (e.g., m/z 155.0369, 231.0513, 443.1197, 695.2883) are responsible for metabolomic separation of the populations, four of which showed higher amounts of key metabolites and were thus selected for bioactivity analysis. The Welbedacht and Eselbank site 2 populations consistently displayed higher antioxidant activities, with 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities of 679.894 ± 3.427 µmol Trolox/g dry matter and 635.066 ± 5.140 µmol Trolox/g dry matter, respectively, in correlation with a high number of phenolic and flavonoid compounds. The contribution of the individual metabolites to the pharmacological effectiveness of rooibos remains unknown and as such, further structural elucidation and phytopharmacological testing is thus urgently needed.


Asunto(s)
Aspalathus , Antioxidantes , Ecotipo , Metabolómica , Flavonoides , Fenoles
7.
Front Endocrinol (Lausanne) ; 15: 1344262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559696

RESUMEN

Obesity, a multifactorial disease with many complications, has become a global epidemic. Weight management, including dietary supplementation, has been confirmed to provide relevant health benefits. However, experimental evidence and mechanistic elucidation of dietary supplements in this regard are limited. Here, the weight loss efficacy of MHP, a commercial solid beverage consisting of mulberry leaf aqueous extract and Hippophae protein peptides, was evaluated in a high-fat high-fructose (HFF) diet-induced rat model of obesity. Body component analysis and histopathologic examination confirmed that MHP was effective to facilitate weight loss and adiposity decrease. Pathway enrichment analysis with differential metabolites generated by serum metabolomic profiling suggests that PPAR signal pathway was significantly altered when the rats were challenged by HFF diet but it was rectified after MHP intervention. RNA-Seq based transcriptome data also indicates that MHP intervention rectified the alterations of white adipose tissue mRNA expressions in HFF-induced obese rats. Integrated omics reveals that the efficacy of MHP against obesogenic adipogenesis was potentially associated with its regulation of PPARγ and FGFR1 signaling pathway. Collectively, our findings suggest that MHP could improve obesity, providing an insight into the use of MHP in body weight management.


Asunto(s)
Hippophae , Morus , Ratas , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Hippophae/metabolismo , Morus/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Transducción de Señal , Pérdida de Peso
8.
Heliyon ; 10(7): e28027, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560220

RESUMEN

Chronic cerebral ischemia hypoperfusion plays a role in the initiation and progression of vascular dementia, which causes changes in metabolites. Currently, there is no standard treatment to treat, prevent and reduce the severity of this condition. Thai herbal Yahom no.20 (YHF20) is indicated for fatigue and dizziness. The components of YHF20 have been found to have pharmacological effects related to the pathology of chronic cerebral ischemia hypoperfusion. This study aimed to investigate metabolomic changes after YHF20 administration in a rat model of permanent bilateral common carotid artery occlusion (2-VO) induced chronic cerebral ischemia hypoperfusion, and to explore its impact on spatial learning and memory. Albino Wistar rats were randomly allocated to 5 groups; sham, 2-VO, 2-VO+ 100 mg/kg YHF20, 2-VO+300 mg/kg YHF20, and 2-VO+1000 mg/kg YHF20. The rats were administered YHF20 daily by oral gavage for 56 days after 2-VO induction. Plasma was collected weekly for metabolome change analysis using LC-MS/QTof and toxicity study. The rats were evaluated for spatial learning and memory using the Morris water maze. The results showed that 78 known metabolites and 10 tentative pathways altered after chronic cerebral hypoperfusion, although it was not able to determine the effect on memory and learning behaviors of rats. Glutathione and glutathione metabolism might be metabolite-pathway that were the affect after YHF20 administration in cerebral ischemic condition. The 4 known metabolites may be the metabolites from the constituents of YHF20 could be considered and confirmed for quality control purpose. In conclusion, YHF20 administration might contribute to metabolic changes related to cerebral ischemia condition without the effect on spatial learning and memory, including hepatotoxicity and nephrotoxicity after 56 days of treatment. Alterations in the potential metabolites may provide data support for elucidating dementia pathogenesis and selecting pathways for intervention.

9.
Front Mol Biosci ; 11: 1376345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560521

RESUMEN

Introduction: Danggui Buxue Decoction (DBD) is a clinically proven, effective, classical traditional Chinese medicine (TCM) formula for treating blood deficiency syndrome (BDS). However, its effects and effective constituents in the treatment of BDS remain unclear, limiting precise clinical therapy and quality control. This study aimed to accurately evaluate the effects of DBD and identify its effective constituents and quality markers. Methods: BDS was induced in rats by a combined injection of acetylphenylhydrazine and cyclophosphamide, and the efficacy of DBD against BDS was evaluated based on body weight, body temperature, energy metabolism, general status, visceral indices, histopathology, biochemical markers, and metabolomics. The effects of DBD on urinary and serum biomarkers of BDS were investigated, and the associated metabolic pathways were analyzed via metabolomics. Guided by Chinmedomics, the effective constituents and quality markers of DBD were identified by analyzing the dynamic links between metabolic biomarkers and effective constituents in vivo. Results: DBD improved energy metabolism, restored peripheral blood and serum biochemical indices, and meliorated tissue damage in rats with BDS. Correlation analyses between biochemical indices and biomarkers showed that 15(S)-HPETE, LTB4, and taurine were core biomakers and that arachidonic acid, taurine, and hypotaurine metabolism were core metabolic pathways regulated by DBD. Calycosin-7-glucoside, coumarin, ferulic acid sulfate, cycloastragenol, (Z)-ligustilide + O, astragaloside IV, acetylastragaloside I, and linoleic acid were identified as effective constituents improving the hematopoietic function of the rats in the BDS model. Additionally, calycosin-7-glucoside, ferulic acid, ligustilide, and astragaloside IV were identified as quality markers of DBD. Conclusion: The hematopoietic function of DBD was confirmed through analysis of energy metabolism, biochemical markers, histopathology, and metabolomics. Moreover, by elucidating effective constituents of DBD in BDS treatment, quality markers were confirmed using a Chinmedomics strategy. These results strengthen the quality management of DBD and will facilitate drug innovation.

10.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38560776

RESUMEN

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Asunto(s)
Ornitina , Putrescina , Ornitina/metabolismo , Putrescina/metabolismo , Arginina , Escherichia coli/genética , Escherichia coli/metabolismo , Cromatografía Liquida , Staphylococcus aureus/metabolismo , Espectrometría de Masas en Tándem , Bacterias/metabolismo , Klebsiella pneumoniae/metabolismo
11.
Heliyon ; 10(7): e28582, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586416

RESUMEN

The combination of Chaidangbo (CDB) is an antidepressant traditional Chinese medicine (TCM) prescription simplified by Xiaoyaosan (a classic antidepressant TCM prescription) through dismantling research, which has the effect of dispersing stagnated liver qi and nourishing blood in TCM theory. Although the antidepressant effect of CBD has been confirmed in animal studies, the material basis and possible molecular mechanism for antidepressant activity in CBD have not been clearly elucidated. Herein, we investigated the effects and potential mechanisms of CDB antidepressant fraction (petroleum ether fraction of CDB, PEFC) on chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice using network pharmacology and metabolomics. First, a UPLC-QE/MS was employed to identify the components of PEFC. To extract active ingredients, SwissADME screening was used to the real PEFC components that were found. Potential PEFC antidepressant targets were predicted based on a network pharmacology approach, and a pathway enrichment analysis was performed for the predicted targets. Afterward, a CUMS mouse depression model was established and LC-MS-based untargeted hippocampal metabolomics was performed to identify differential metabolites, and related metabolic pathways. Finally, the protein expressions in mouse hippocampi were determined by Western blot to validate the network pharmacology and metabolomics deduction. A total of 16 active compounds were screened in SwissADME that acted on 73 core targets of depression, including STAT3, MAPKs, and NR3C1; KEGG enrichment analysis showed that PEFC modulated signaling pathways such as PI3K-Akt signaling pathway, endocrine resistance, and MAPK to exert antidepressant effects. PEFC significantly reversed abnormalities of hippocampus metabolites in CUMS mice, mainly affecting the synthesis and metabolism of glycine, serine, and threonine, impacting catecholamine transfer and cholinergic synapses and regulating the activity of the mTOR signaling pathway. Furthermore, Western blot analysis confirmed that PEFC significantly influenced the main protein levels of the PI3K/Akt/mTOR signaling pathways in the hippocampus of mice subjected to CUMS. This study integrated metabolomics, network pharmacology and biological verification to explore the potential mechanism of PEFC in treating depression, which is related to the regulation of amino acid metabolism dysfunction and the activation of PI3K/Akt/mTOR signaling pathways in the hippocampus. The comprehensive strategy also provided a reasonable way for unveiling the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in TCM with antidepressant effect.

12.
Heliyon ; 10(7): e28807, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576560

RESUMEN

Curcumin and exercise have been reported to show good anti-tumour effects. However, relevant research on the combined effects of physical exercise and curcumin supplementation on cancer and the underlying mechanisms is still lacking. The current study aimed to construct an anti-breast tumour mouse model using the combined effects of curcumin treatment and swimming exercise. Transcriptomic and metabolomic techniques were used to screen for differentially expressed genes and metabolites, evaluate the anticancer effects, and analyse the molecular regulatory mechanisms related to metabolism. Observation of the mouse phenotypes, including tumour appearance, in-vivo tumour imaging, and HE staining results of pathological sections, suggested a more obvious inhibitory effect of the combination of curcumin administration and exercise intervention on breast cancer than that of a single treatment. The combination treatment group had a total of 445 differentially expressed (154 upregulated and 291 downregulated) genes. Functional enrichment analysis showed the calcium signalling pathway, Wnt signalling pathway, PI3K Akt signalling pathway, and IL-17 signalling pathway to significantly participate in the anti-breast cancer process of curcumin-exercise combination treatment. Results of the intergroup differential metabolite analysis showed that the combined effect of curcumin and exercise involves two unique pathways, namely the amino sugar and nucleotide sugar metabolism, which includes chitosan, d-glucosamine 6-phosphate, l-fucose, and N-acetyl beta-mannosamine, and the amino acid biosynthesis, which includes dl-isoleucine, dl-tyrosine, and homocysteine. Collectively, the top-ranked genes and metabolites with the highest degree of associations were further revealed by O2PLS analysis. Overall, the study helped reveal the mechanism of action of curcumin-exercise combination treatment on breast cancer at multi-omics level.

13.
Heliyon ; 10(7): e28636, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576577

RESUMEN

The root of Angelica sinensis is utilized in Traditional Chinese medicine to enhance blood replenishment and facilitate blood circulation. The early bolting and flowering (EBF) of A. sinensis, however, compromises the quality of the roots and restricts the yield of medicinal substances. The study was conducted to compare the transcriptomic and metabolomic profiles between EBF plants and normal plants of two cultivars of A. sinensis, followed by validation of the transcriptome results using qRT-PCR. There were 3677 DEGs in EBF plants compared to normal plants of cultivar 2 (Mingui No.2), and cultivar 4 (Mingui No.4) was 3354. The main differential metabolites in the EBF and normal plants were phenolic acids, flavonoids, lignans, and coumarins. The analysis of 5 EBF-related pathways revealed 28 genes exhibiting differential expression and 5 metabolites showing differential accumulation. The expression of the Lhcb5, Lhcb2, Lhcb6, Lhcb1, Lhca4, ATPG1, EGLC, CELB, AMY, glgA, CYCD3, SnRK2, PYL, AHK2, AUX1, BSK, FabI/K, ACACA and FabV decreased and the expression of the PsbR, PsbA, LHY, FT, CO, malQ, HK, GPI and DELLA increased in EBF plants. In addition, the Abscisic acid, d-Glucose-6P, α-d-Glucose-1P, NADP+, and ADP were more significantly enriched in EBF plants. The findings offer novel perspectives on the EBF mechanisms in A. sinensis and other medicinal plants of the Apiaceae family.

14.
BMC Plant Biol ; 24(1): 278, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609866

RESUMEN

BACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests. RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P. CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.


Asunto(s)
Microbiota , Fósforo , Bosque Lluvioso , Árboles , Guyana Francesa , Fosfatos , Suelo
15.
Plants (Basel) ; 13(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611553

RESUMEN

The Australian Wet Tropics World Heritage Area (WTWHA) in northeast Queensland is home to approximately 18 percent of the nation's total vascular plant species. Over the past century, human activity and industrial development have caused global climate changes, posing a severe and irreversible danger to the entire land-based ecosystem, and the WTWHA is no exception. The current average annual temperature of WTWHA in northeast Queensland is 24 °C. However, in the coming years (by 2030), the average annual temperature increase is estimated to be between 0.5 and 1.4 °C compared to the climate observed between 1986 and 2005. Looking further ahead to 2070, the anticipated temperature rise is projected to be between 1.0 and 3.2 °C, with the exact range depending on future emissions. We identified 84 plant species, endemic to tropical montane cloud forests (TMCF) within the WTWHA, which are already experiencing climate change threats. Some of these plants are used in herbal medicines. This study comprehensively reviewed the metabolomics studies conducted on these 84 plant species until now toward understanding their physiological and metabolomics responses to global climate change. This review also discusses the following: (i) recent developments in plant metabolomics studies that can be applied to study and better understand the interactions of wet tropics plants with climatic stress, (ii) medicinal plants and isolated phytochemicals with structural diversity, and (iii) reported biological activities of crude extracts and isolated compounds.

16.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611823

RESUMEN

(1) Background: Diabetes is a common metabolic disease that seriously endangers human health. In the present study, we investigated the therapeutic effects of the active ingredient Eleutheroside B (EB) from the traditional Chinese medicine Eleutheroside on diabetes mellitus in a zebrafish model. Concomitant hepatic injury was also analysed, along with the study of possible molecular mechanisms using metabolomics technology. This work should provide some theoretical references for future experimental studies. (2) Methods: A zebrafish diabetes model was constructed by soaking in a 1.75% glucose solution and feeding a high-fat diet. The intervention drug groups were metformin (100 µg∙mL-1) and EB (50, 100, and 150 µg∙mL-1) via water-soluble exposure for 30 days. Glucose, TG, TC, LDL-C, and HDL-C were evaluated in different treatment groups. GLUT4 protein expression was also evaluated in each group, and liver injury was observed by HE staining. Metabolomics techniques were used to investigate the mechanism by which EB regulates endogenous markers and metabolic pathways during the development of diabetes. (3) Results: All EB treatment groups in diabetic zebrafish showed significantly reduced body mass index (BMI) and improved blood glucose and lipid profiles. EB was found to upregulate GLUT4 protein expression and ameliorate the liver injury caused by diabetes. Metabolomics studies showed that EB causes changes in the metabolic profile of diabetic zebrafish. These were related to the regulation of purine metabolism, cytochrome P450, caffeine metabolism, arginine and proline metabolism, the mTOR signalling pathway, insulin resistance, and glycerophospholipid metabolism. (4) Conclusions: EB has a hypoglycaemic effect in diabetic zebrafish as well as significantly improving disorders of glycolipid metabolism. The mechanism of action of EB may involve regulation of the mTOR signalling pathway, purine metabolism, caffeine metabolism, and glycerophospholipid metabolism.


Asunto(s)
Diabetes Mellitus , Glucosa , Glucósidos , Fenilpropionatos , Humanos , Animales , Metabolismo de los Lípidos , Pez Cebra , Cafeína , Transportador de Glucosa de Tipo 4 , Serina-Treonina Quinasas TOR , Glicerofosfolípidos
17.
J Pharm Anal ; 14(4): 100910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38655398

RESUMEN

Eclipta prostrata L. has been used in traditional medicine and known for its liver-protective properties for centuries. Wedelolactone (WEL) and demethylwedelolactone (DWEL) are the major coumarins found in E. prostrata L. However, the comprehensive characterization of these two compounds on non-alcoholic fatty liver disease (NAFLD) still remains to be explored. Utilizing a well-established zebrafish model of thioacetamide (TAA)-induced liver injury, the present study sought to investigate the impacts and mechanisms of WEL and DWEL on NAFLD through integrative spatial metabolomics with liver-specific transcriptomics analysis. Our results showed that WEL and DWEL significantly improved liver function and reduced the accumulation of fat in the liver. The biodistributions and metabolism of these two compounds in whole-body zebrafish were successfully mapped, and the discriminatory endogenous metabolites reversely regulated by WEL and DWEL treatments were also characterized. Based on spatial metabolomics and transcriptomics, we identified that steroid biosynthesis and fatty acid metabolism are mainly involved in the hepatoprotective effects of WEL instead of DWEL. Our study unveils the distinct mechanism of WEL and DWEL in ameliorating NAFLD, and presents a "multi-omics" platform of spatial metabolomics and liver-specific transcriptomics to develop highly effective compounds for further improved therapy.

18.
Methods Mol Biol ; 2788: 19-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656506

RESUMEN

Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Plantas , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Plantas/metabolismo , Plantas/química , Metaboloma , Extractos Vegetales/química , Extractos Vegetales/análisis
20.
Mol Nutr Food Res ; 68(8): e2300671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566522

RESUMEN

SCOPE: Cerebral ischemia-reperfusion (IR) injury stands as a prominent global contributor to disability and mortality. Nervonic acid (NA), a bioactive elongated monounsaturated fatty acid, holds pivotal significance in human physiological well-being. This research aims to explore the prophylactic effects and fundamental mechanisms of NA in a rat model of cerebral IR injury. METHODS AND RESULTS: Through the induction of middle cerebral artery occlusion, this study establishes a rat model of cerebral IR injury and comprehensively assesses the pharmacodynamic impacts of NA pretreatment. This evaluation involves behavioral analyses, histopathological examinations, and quantification of serum markers. Detailed mechanisms of nervonic acid's prophylactic effects are revealed through fecal metabolomics and 16S rRNA sequencing analyses. Our findings robustly support nervonic acid's capacity to ameliorate neurological impairments in rats afflicted with cerebral IR injury. Beyond its neurological benefits, NA demonstrates its potential by rectifying metabolic perturbations across diverse pathways, particularly those pertinent to unsaturated fatty acid metabolism. Additionally, NA emerges as a modulator of gut microbiota composition, notably by selectively enhancing vital genera like Lactobacillus. CONCLUSION: These comprehensive findings highlight the potential of incorporating NA as a functional component in dietary interventions aimed at targeting cerebral IR injury.


Asunto(s)
Suplementos Dietéticos , Heces , Microbioma Gastrointestinal , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Heces/microbiología , Heces/química , Ratas , Infarto de la Arteria Cerebral Media , Isquemia Encefálica , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA