Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474673

RESUMEN

1,3,6-Trigalloylglucose is a natural compound that can be extracted from the aqueous extracts of ripe fruit of Terminalia chebula Retz, commonly known as "Haritaki". The potential anti-Helicobacter pylori (HP) activity of this compound has not been extensively studied or confirmed in scientific research. This compound was isolated using a semi-preparative liquid chromatography (LC) system and identified through Ultra-high-performance liquid chromatography-MS/MS (UPLC-MS/MS) and Nuclear Magnetic Resonance (NMR). Its role was evaluated using Minimum inhibitory concentration (MIC) assay and minimum bactericidal concentration (MBC) assay, scanning electron microscope (SEM), inhibiting kinetics curves, urea fast test, Cell Counting Kit-8 (CCK-8) assay, Western blot, and Griess Reagent System. Results showed that this compound effectively inhibits the growth of HP strain ATCC 700392, damages the HP structure, and suppresses the Cytotoxin-associated gene A (Cag A) protein, a crucial factor in HP infection. Importantly, it exhibits selective antimicrobial activity without impacting normal epithelial cells GES-1. In vitro studies have revealed that 1,3,6-Trigalloylglucose acts as an anti-adhesive agent, disrupting the adhesion of HP to host cells, a critical step in HP infection. These findings underscore the potential of 1,3,6-Trigalloylglucose as a targeted therapeutic agent against HP infections.


Asunto(s)
Helicobacter pylori , Terminalia , Extractos Vegetales/química , Terminalia/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Agua
2.
Plants (Basel) ; 13(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38498494

RESUMEN

This study aimed to assess the antimicrobial activities of plant extracts from Artemisia afra and Eucalyptus globulus when used as coatings for textiles. A pulsed ultrasound-assisted extraction method (PUAE) was employed to obtain methanolic and hexanoic extracts from both plants. Eucalyptus globulus methanol extraction exhibited the highest yield at 22.76% (±0.61%), while Artemisia afra demonstrated lower yields. Phytochemical screening identified various secondary metabolites in the extracts, including phenols, quinones, and steroids. Antimicrobial tests against Staphylococcus aureus and Escherichia coli revealed varying degrees of susceptibility, with Eucalyptus globulus hexanoic extracts showing the highest activity against Staphylococcus aureus at an average percentage growth of 18.74% (±0.26%). Minimum inhibitory concentration (MIC) values were determined for the extracts, but complete inhibition did not occur at concentrations below 500 µg/mL. The extracts exhibited varying effects on Staphylococcus aureus and Escherichia coli growth, with some extracts promoting bacterial growth. Coating textiles with Eucalyptus globulus methanolic extracts demonstrated antibacterial activity against Staphylococcus aureus with the highest zone of inhibition observed in cotton-coated samples (258.4 mm2). Polyester-coated samples exhibited smaller inhibition zones, with the lowest observed in Eucalyptus globulus methanolic extract coating (65.97 mm2). Scanning electron microscope (SEM) analysis revealed visible surface morphology changes in coated fabrics, depicting fine, cluster, lumpy, flaky, and fragment-like morphologies. Laundering effects on coated fabrics were investigated, showing a significant decrease in antimicrobial activity after washing. Fourier-transform infrared spectroscopy (FTIR) identified functional groups in the extracts associated with antimicrobial properties. The complexity of the bioactive compounds suggests potential antimicrobial efficacy, resting on factors such as geographical location, climate, and extraction methods. Notwithstanding the limitations, this study contributes valuable insights into the use of plant extracts as antimicrobial coatings for textiles.

3.
Cureus ; 16(2): e54348, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38500909

RESUMEN

Background Oral candidiasis is the most prevalent oral fungal infection, and existing antifungal agents have side effects such as drug intolerance, resistance, and toxicity. Herbal essential oils are emerging as an alternative therapeutic approach for treating fungal infections. Origanum vulgare (O. vulgare), commonly known as oregano, and Syzygium aromaticum (S. aromaticum), commonly known as clove, are known to have antifungal properties and are effective against fluconazole-resistant strains. A combination of essential oils has a synergistic effect and aids in achieving effective antifungal activity at sufficiently low concentrations, which could lead to reduced side effects and resistance. Aim of the study This study aimed to formulate and develop an herbal antifungal gel containing O. vulgare and S. aromaticum and evaluate its synergistic antifungal efficacy against oral Candida albicans (C. albicans). Methodology Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) determinations of O. vulgare and S. aromaticum essential oils were performed individually and in combination to assess the antifungal activity against C. albicans. Based on the obtained MIC and MFC of essential oils in combination, an herbal antifungal gel was formulated. Further, to determine the biocompatible nature of the gel, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed. Results We found that a combination of O. vulgare and S. aromaticum essential oils showed antifungal activity at a lesser concentration, with a MIC of 0.19 µl/ml and MFC of 0.39 µl/ml when compared to their individual concentrations. Based on our results, an antifungal herbal gel comprising a concentration of 0.6 µl/ml of both essential oils was developed to achieve synergistic antifungal activity against oral C. albicans. The MTT assay of the herbal gel did not show any cytotoxicity. Conclusion The novel herbal antifungal gel containing O. vulgare and S. aromaticum is biocompatible in nature and provides an alternative therapeutic approach for treating oral candidiasis.

4.
Prep Biochem Biotechnol ; 54(7): 982-1000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38349742

RESUMEN

Terminalia bellirica (T. bellirica) (Gaertn.) Roxb. is a well-known traditional medicinal plants that show promising treatment because of fewer side effects in humans. In the present study, the total phenol, flavonoid, condensed and hydrolyzable tannins extracted and analyzed from cold macerated (CM) T. bellirica (Gaertn.) Roxb. fruit (TBF) and leaves (TBL) extract with the identification of bioactive compounds using GC-MS/MS technique. The highest amount of bioactive content was found in ethanolic extract than toluene. Current experimental data of TBF extract shows the maximum and significant biological activity like free radical scavenging activity against DPPH and FRAP assays with IC50 values of 51.07 ± 0.52 µg/ml and 63.14 ± 0.59 µg/ml respectively. However, IC50 cytotoxicity values of TBF extract on MCF-7 cells for 24 hrs was found to be 6.34 ± 0.72 µg/ml. Minimum inhibitory concentration (MIC) for infectious pathogens Escherichia coli and Bacillus cereus was >12.5 µg/ml and >100 µg/ml respectively, however, anti-inflammatory activity was demonstrated as an IC50 value of 509.1 ± 1.72 µg/ml. Cold macerated fruit extract revealed threatening inhibitory potential against the α-amylase and α-glucosidase enzymes, with IC50 of 50.98 ± 0.23 µg/ml and 46.70 ± 1.38 µg/ml respectively. Finally, the outcome of this study showed that T. bellirica (Gaertn.) Roxb. fruit extract could be an effective source of bioactives with efficient biomedical properties.


Asunto(s)
Frutas , Extractos Vegetales , Terminalia , Terminalia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Frutas/química , Humanos , Células MCF-7 , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Escherichia coli/efectos de los fármacos , Bacillus cereus/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/química , Hojas de la Planta/química , Frío
5.
Microb Pathog ; 189: 106595, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387848

RESUMEN

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 µg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 µg/mL and 160 µg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 µg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 µg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 µg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Titanio , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Biopelículas , Nanopartículas del Metal/química
6.
Chem Biodivers ; 21(4): e202400026, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372467

RESUMEN

Ruta chalepensis L. is a versatile herb used in culinary arts and traditional medicine. The study aimed to determine the chemical composition of an ethanolic extract from R. chalepensis and the total phenolic and flavonoid content. Additionally, the extracts' antimicrobial and antioxidant activities were tested. The disc diffusion method and minimum inhibitory concentration (MIC) were used to test the antibacterial properties on four types of bacteria: Escherichia coli, Proteus penneri, Bacillus cereus, and Staphylococcus aureus. A colorimetric assay was used to evaluate the total phenolic and flavonoid content, and the DPPH method was used to assess the antioxidant activity. The phytochemical constituents were determined using LC-MS/MS. The results indicated that R. chalepensis ethanolic extract had 34 compounds, and the predominant compounds were quercetin (9.2 %), myricetin (8.8 %), and camphene (8.0 %). Moreover, the extract had a good level of polyphenols and flavonoids, as demonstrated by inhibiting free radicals (DPPH) (IC50 was 41.2±0.1). Also, the extract exhibited robust antimicrobial activity against P. penneri and S. aureus with an MIC of 12.5 and 25.0 µg/mL, respectively. In conclusion, the results suggest that the R. chalepensis ethanolic extract has good antioxidant and antibacterial properties that could be utilized to develop new antibacterial agents.


Asunto(s)
Antiinfecciosos , Ruta , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Cromatografía Liquida , Etanol , Flavonoides/química , Flavonoides/farmacología , Fenoles/farmacología , Fenoles/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ruta/química , Staphylococcus aureus , Espectrometría de Masas en Tándem , Polifenoles/química , Polifenoles/farmacología , Quercetina/química , Quercetina/aislamiento & purificación , Quercetina/farmacología
7.
Nat Prod Res ; : 1-6, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379337

RESUMEN

Sticherus squamulosus, Hymenophyllum dentatum, Blechnum microphyllum, Polypodium Feuillei, Blechnum chilense, Lophosoria quadripinnata, and Lissopimpla excelsa are native fern species found in southern Chile and are often used in traditional medicine. However, their bioactive properties have not been confirmed. In this study, ethanolic extracts of ferns exhibited significant antibacterial capacity against human pathogens. H. dentatum and S. squamulosus were selected for further analysis owing to their antimicrobial and antioxidant capacities. The entire H. dentatum extract exhibited fungistatic and fungicidal capacity on Botrytis cinerea and Penicillium digitatum, with minimum inhibitory concentration values of 1.56 mg/mL and 6.25 mg/mL and minimum fungicidal concentration values of 6.25 mg/mL and 12.5 mg/mL, respectively. The S. squamulosus extract presented the highest rutin content (222.5 µg/g fern). In addition, the ethanolic extract of H. dentatum inhibited 91% of DPPH radicals. Therefore, both types of ferns can be used in the food industry.

8.
Vet Microbiol ; 290: 109994, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281323

RESUMEN

Interpretive criteria for antimicrobial susceptibility testing are lacking for most antimicrobials used for bovine streptococcal mastitis. The objectives of this study were to determine (tentative) epidemiological cut-off ((T)ECOFF) values for clinically relevant antibiotics used for treatment of bovine mastitis, and to estimate the proportion of acquired resistance (non-wild-types) in Streptococcus dysgalactiae subsp. dysgalactiae and Streptococcus uberis. A total of 255 S. uberis and 231 S. dysgalactiae subsp. dysgalactiae isolates were obtained in Denmark and Norway from bovine mastitis. The isolates were tested for susceptibility to 10 antibiotics using broth microdilution. In accordance with the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standard operating procedure, additional published MIC distributions were included for the estimation of ECOFFs for cloxacillin, cephapirin, lincomycin and tylosin, and TECOFFs for amoxicillin, benzylpenicillin, cephapirin and oxytetracycline. The proportion of non-wild-type (NWT) isolates for the beta-lactams was significantly higher in the Danish S. uberis (45-55%) compared to the Norwegian isolates (10-13%). For oxytetracycline, the proportion of NWT was significantly higher in the Danish isolates, both for S. uberis (28% vs. 3%) and S. dysgalactiae (22% vs. 0%). A bridging study testing in parallel MICs in a subset of isolates (n = 83) with the CLSI-specified and the EUCAST-specified broths showed excellent correlation between the MICs obtained with the two methods. The new ECOFFs and TECOFFs proposed in this study can be used for surveillance of antimicrobial resistance, and - for antimicrobials licensed for streptococcal bovine mastitis - as surrogate clinical breakpoints for predicting their clinical efficacy for this indication.


Asunto(s)
Antiinfecciosos , Enfermedades de los Bovinos , Cefapirina , Mastitis Bovina , Oxitetraciclina , Infecciones Estreptocócicas , Streptococcus , Femenino , Animales , Bovinos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Mastitis Bovina/tratamiento farmacológico , Cefapirina/uso terapéutico , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/veterinaria , Antiinfecciosos/uso terapéutico , Pruebas de Sensibilidad Microbiana/veterinaria
9.
J Microbiol Biotechnol ; 34(3): 538-546, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38146216

RESUMEN

Cinnamaldehyde is a natural compound extracted from cinnamon bark essential oil, acclaimed for its versatile properties in both pharmaceutical and agricultural fields, including antimicrobial, antioxidant, and anticancer activities. Although potential of cinnamaldehyde against plant pathogenic bacteria like Agrobacterium tumefaciens and Pseudomonas syringae pv. actinidiae causative agents of crown gall and bacterial canker diseases, respectively has been documented, indepth studies into cinnamaldehyde's broader influence on plant pathogenic bacteria are relatively unexplored. Particularly, Pectobacterium spp., gram-negative soil-borne pathogens, notoriously cause soft rot damage across a spectrum of plant families, emphasizing the urgency for effective treatments. Our investigation established that the Minimum Inhibitory Concentrations (MICs) of cinnamaldehyde against strains P. odoriferum JK2, P. carotovorum BP201601, and P. versatile MYP201603 were 250 µg/ml, 125 µg/ml, and 125 µg/ml, respectively. Concurrently, their Minimum Bactericidal Concentrations (MBCs) were found to be 500 µg/ml, 250 µg/ml, and 500 µg/ml, respectively. Using RNA-sequencing analysis, we identified 1,907 differentially expressed genes in P. carotovorum BP201601 treated with 500 µg/ml cinnamaldehyde. Notably, our results indicate that cinnamaldehyde upregulated nitrate reductase pathways while downregulating the citrate cycle, suggesting a potential disruption in the aerobic respiration system of P. carotovorum during cinnamaldehyde exposure. This study serves as a pioneering exploration of the transcriptional response of P. carotovorum to cinnamaldehyde, providing insights into the bactericidal mechanisms employed by cinnamaldehyde against this bacterium.


Asunto(s)
Acroleína/análogos & derivados , Antiinfecciosos , Pectobacterium , Pectobacterium carotovorum , Pectobacterium/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antiinfecciosos/farmacología , Bacterias/metabolismo , Plantas/metabolismo , Enfermedades de las Plantas/microbiología
10.
Heliyon ; 9(11): e22462, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045177

RESUMEN

The purpose of this study was to carry out antibacterial and phytochemical analyses on six selected medicinal plants that have been traditionally used by the local people to treat and control different diseases. The antibacterial activities of methanolic extracts of these plants were assessed using the Agar well diffusion and Microtiter broth dilution methods. The root extract of Andrachne aspera showed significantly (p < 0.05) highest mean zone of inhibition at concentrations of 100 mg/ml (33 ± 0.17) and 200 mg/ml (33.5 ± 0.84) against S. epidermidis. The second highest mean zone of inhibition (24.8 ± 0.41) was recorded by Dichrostachys cinerea leaf extract against S. epidermidis at 200 mg/ml concentration. The minimum inhibitory concentrations 1.0 ± 0.0 was recorded by Andrachne aspera against E. faecalis and 2.0 ± 0.0 against S. aureus by Dichrostachys cinerea. The preliminary phytochemical analysis showed that Andrachne aspera and Dichrostachys cinerea contained strong concentration of Polyphenols and Flavonoids. Therefore, these two medicinal plant species have promising potential for further detailed investigations, including safety tests, characterization and isolation of bioactive secondary metabolites for the development of alternative drugs.

11.
Cureus ; 15(9): e45202, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37842394

RESUMEN

OBJECTIVE: The focus of research has recently shifted toward developing herbal-based medicines due to the emerging bacterial resistance and side effects of antibiotics. Solanum xanthocarpum (Sx) is a medicinal plant with potent pharmacological properties. This study aimed to evaluate the antibacterial activity of its crude extracts on bacteria isolated from dental plaque in patients with gingivitis. MATERIALS AND METHODS: Aqueous, ethyl acetate, hexane, chloroform, and ethanolic extracts were prepared from Sx. Dental plaque samples were collected from patients with plaque-induced gingivitis. Disk diffusion assay was performed to determine the antibacterial activity of the extracts at concentrations of 25 mg/ml, 50 mg/ml, and 75 mg/ml with ampicillin 200 mg/ml as a positive control. The minimum inhibitory concentration (MIC) of the aqueous extract was also evaluated by broth dilution test against bacteria isolated from dental plaque biofilm. RESULTS: The antibacterial activity was estimated by measuring the zones of inhibition through the disc diffusion method. The Kruskal Wallis with Dunn post hoc test performed for intergroup comparison between the various extracts showed a statistically significant difference in inhibition of bacterial growth between 25 mg/ml and 75 mg/ml concentrations. There was no significant difference between the 75 mg/ml Sx concentration and the positive control. In addition, the MIC was elucidated to be 0.625 g/ml, at which there was maximum inhibition of bacterial growth. CONCLUSION: The Sx extract exhibited antibacterial activity against periodontal pathogens. Thus, it can be concluded that optimum concentrations of Sx could be used in therapeutic strategies to prevent and manage periodontal diseases.

12.
Bioinformation ; 19(5): 663-669, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886146

RESUMEN

The development of antibiotic resistance in microorganisms is a global challenge for the clinicians, pharmacist and research scientists leading to the development of new medicinal formulations that are effective and easily consumable. The plant yielding essential oil with chief constituent as eugenol has been identified as an important compound with strong inhibition of bacteria, and storage fungi. Ocimum gratissimum and Ocimum sanctum is an aromatic shrub occurring in warm tropical regions has been used in traditional medicine in India to cure various ailments in general and as an antimicrobial agent in particular. The aim of this present study is to assess the antimicrobial and cytoxic activity of the formulation against oral pathogens. The formulation of O. gratissimum and O. sanctum plant extract was prepared and filtered. Antimicrobial activity was done by agar well diffusion method, minimum inhibitory concentration assessment was determined by broth dilution method and cytotoxicity was assessed by brine shrimp lethality assay. Agar well diffusion method against S. mutans, Enterococcus faecalis, C. albicans, Lactobacillus sp, and S. aureus revealed no zone of inhibition but at 100µL concentration at every time interval, the study formulation showed more bacteriostatic activity than positive control and the standard used. The formulation showed very minimal cytotoxicity. The formulation of O. gratissimum and O. sanctum synergistically showed more antibacterial, antifungal and cytotoxic activity and more research has to be done in invivo environment.

13.
J Food Prot ; 86(10): 100153, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640158

RESUMEN

The iron-binding glycoprotein lactoferrin is well known for its wide range of antibacterial effects. However, the aim of this study was to show that its antibacterial activity is not generally applicable to a bacterial species as a whole. In disk diffusion assays performed with 112 isolates from 13 bacterial species (including the foodborne pathogens Bacillus cereus and Staphylococcus aureus), a lactoferrin-based food supplement showed no inhibition of growth on 24%, moderate inhibition on 31%, and strong inhibition on 45% of all tested isolates. Minimal inhibitory concentrations against B. cereus and Bacillus thuringiensis strain-specifically ranged from 0.31 mg/mL to no impairment at all. Further 11 commercially available lactoferrin-based food supplements and purified bovine lactoferrin showed strain- as well as product-specific growth inhibition. In comparison to bovine lactoferrin, human lactoferrin showed no inhibitory effects. In summary, purified lactoferrin and lactoferrin-based food supplements inhibit bacterial growth in a dose-, strain-, and product-dependent manner. Thus, a general antimicrobial effect of lactoferrin against a specific bacterial species cannot be assumed.


Asunto(s)
Antibacterianos , Lactoferrina , Humanos , Lactoferrina/farmacología , Lactoferrina/metabolismo , Antibacterianos/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana , Suplementos Dietéticos , Bacillus cereus
14.
Cureus ; 15(6): e40768, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37485104

RESUMEN

Background Head and neck cancer ranks as the sixth most common cancer globally. Reduced saliva production brought on by postradiation therapy upsets the delicate balance between bacterial load and a weakened immune system. Oral hygiene is commonly neglected in patients who have undergone radiotherapy and they often develop dry mouth, mucositis due to radiation therapy, etc., as side effects. Despite being a part of the current standard, chlorhexidine carries numerous disadvantages such as taste alteration, teeth staining, and dry mouth. An extensive review of the literature demonstrates the antibacterial properties of essential oils (EOs) derived from plant materials, which may be able to prevent the development of such opportunistic microorganisms in the oral cavity. Methodology The cinnamon bark EO and Cajeput EO were procured and checked for their solubility. The final ratio at which the oils were found to be soluble was the 1:1 (w/v) ratio. The minimum inhibitory concentration (MIC) of cinnamon bark oil (Cinnamomum verum) and Cajeput oil (Melaleuca leucadendron) against Staphylococcus aureus, Enterococcus faecalis, and Candida albicans was determined by serial dilution method using Resazurin dye, and the minimum bactericidal concentration (MBC) was done by a spread plating method. The polyherbal mouthwash was subjected to cytotoxicity assay against human gingival fibroblasts. All the experiments were performed in triplicates. Results The overall results showed that cinnamon bark EO had the strongest efficacy against S. aureus (0.33 ± 0.14 mg/mL) and E. faecalis (0.41 ± 0.14 mg/mL), but not against C. albicans (2.85 ± 2.11 mg/mL). Cajeput EO showed the least efficacy against all the groups; whereas the combination of EOs proved to be the most efficacious and showed good antimicrobial activity against these most commonly encountered microorganisms in head and neck cancer postradiotherapy. Conclusions Cinnamon and Cajeput EOs in combination proved to be effective in this in vitro study against the most common microorganisms encountered in patients with head and neck cancer postradiotherapy and are comparable to 0.2% chlorhexidine.

15.
Antimicrob Agents Chemother ; 67(5): e0170022, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37097151

RESUMEN

Although cycloserine is a recommended drug for the treatment of multidrug-resistant tuberculosis (MDR-TB) according to World Health Organization (WHO), few studies have reported on pharmacokinetics (PK) and/or pharmacodynamics (PD) data of cycloserine in patients with standardized MDR-TB treatment. This study aimed to estimate the population PK parameters for cycloserine and to identify clinically relevant PK/PD thresholds, as well as to evaluate the current recommended dosage. Data from a large cohort with full PK curves was used to develop a population PK model. This model was used to estimate drug exposure in patients with MDR-TB from a multicentre prospective study in China. The classification and regression tree was used to identify the clinically relevant PK/PD thresholds. Probability of target attainment was analyzed to evaluate the currently recommended dosing strategy. Cycloserine was best described by a two-compartment disposition model. A percentage of time concentration above MICs (T>MIC) of 30% and a ratio of area under drug concentration-time curve (AUC0-24h) over MIC of 36 were the valid predictors for 6-month sputum culture conversion and final treatment outcome. Simulations showed that with WHO-recommended doses (500 mg and 750 mg for patients weighing <45 kg and ≥45 kg), the probability of target attainment exceeded 90% at MIC ≤16 mg/L in MGIT for both T>MIC of 30% and AUC0-24h/MIC of 36. New clinically relevant PK/PD thresholds for cycloserine were identified in patients with standardized MDR-TB treatment. WHO-recommended doses were considered adequate for the MGIT MIC distribution in our cohort of Chinese patients with MDR-TB.


Asunto(s)
Cicloserina , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Cicloserina/uso terapéutico , Cicloserina/farmacocinética , Antituberculosos/farmacocinética , Estudios Prospectivos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
16.
Infect Disord Drug Targets ; 23(5): e030423215400, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37016531

RESUMEN

BACKGROUND: With an increasing trend of pathogenic bacteria developing resistance to the existing drugs, there is a need for newer therapeutic measures. Nigella sativa seeds and oil have been used for decades as Ayurveda, Unani Tibb and other forms of traditional medicine for various disorders. Thymoquinone is one of the active components of the N. sativa seeds. OBJECTIVE: The present study determines the antibacterial effect of crude methanolic extract N. sativa seeds and thymoquinone against bacteria causing wound infection. METHODS: Samples obtained from cases of wound infection received at a Microbiology laboratory attached to a tertiary care hospital over a period of six months were included in the study. The antibacterial effect of crude methanolic extract of N. sativa seeds was determined by the Punch Well method. The minimum inhibitory concentration (MIC) of thymoquinone against bacteria isolated from cases of wound infection was determined by the Micro Broth Dilution technique. RESULTS: A total of 60 isolates were collected from 60 samples of wound infection. By the Punch Well method, Staphylococcus aureus showed varying zones of inhibition whereas all gram-negative bacilli and Enterococcus faecalis did not show any zone of inhibition. Thymoquinone showed good antibacterial activity against S. aureus with MIC values ranging from 2-8µg/ml for most of the isolates. Uniformly, MIC of thymoquinone against all gram-negative bacilli and E. faecalis was >128µg/ml, p<0.001. It was found that methicillin-resistant S. aureus (MRSA) isolates showed higher MIC than methicillin sensitive S. aureus (MSSA) isolates p<0.05. CONCLUSION: Antibacterial activity of thymoquinone was very good against S. aureus but showed limited activity against Enterobacteriaceae members and E. faecalis isolated from patients with wound infection. Thymoquinone may be considered a potential antibacterial agent against wound infection caused by S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nigella sativa , Infecciones Estafilocócicas , Infección de Heridas , Humanos , Staphylococcus aureus , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/microbiología , Pruebas de Sensibilidad Microbiana , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
17.
J Xenobiot ; 13(1): 159-171, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36976162

RESUMEN

The current study emphasizes fungi as an important tool against heavy metals and how isolated fungal species can be used to create a successful strategy for the bioremediation of chromium and arsenic-contaminated sites/soils. Globally, heavy metal pollution is a serious issue. In the current investigation, contaminated sites were chosen, and samples could be taken from various localities of Hisar (29.1492° N, 75.7217° E) and Panipat (29.3909° N, 76.9635° E), India. A total of 19 fungal isolates were obtained from the collected samples through the enrichment culture technique using PDA media supplemented with Cr as chromic chloride hexahydrate (50 mg/L) and As as sodium arsenate (10 mg/L) and the potential of fungal isolates to be used for the removal of heavy metals was examined. The isolates were screened for minimum inhibitory concentrations (MIC) exhibiting tolerance capabilities, and the four best isolates C1, C3, A2, and A6 with the highest MICs (>5000 mg/L), were chosen for further investigations. To use the chosen isolates in the remediation of heavy metals (Cr and As), the culture conditions were optimized. The fungal isolates C1 and C3 estimated the highest removal of 58.60% and 57.00% at 50 mg/L chromium concentration, while the isolates A6 and A2 recorded the highest removal efficiency of 80% and 56% at 10 mg/L arsenic concentration under optimal conditions. Finally, the chosen fungal isolates C1 and A6 were molecularly identified as Aspergillus tamarii and Aspergillus ustus, respectively.

18.
Cureus ; 15(2): e34830, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36919069

RESUMEN

BACKGROUND: Urinary tract infection (UTI) is one of the most commonly encountered bacterial infections. Due to the misuse or excessive use of antibiotics, the upsurge of multidrug-resistance cases in UTIs has now become a global threat to public health. Exploring a newer or safer treatment using green synthesized nanoparticles (NPs) is another substitute for eliminating multidrug-resistant pathogens. METHODOLOGY: Leaf extract of Syzygium cumini was used for green synthesis of gold NPs. Synthesis of Syzygium cumini gold nanoparticles (ScAu-NPs) was achieved by optimizing various reaction parameters. These ScAu-NPs were characterized through UV-visible spectroscopy, transmission electron microscope, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction. ScAu-NPs were then processed for antibacterial activity against clinically isolated multidrug-resistant pathogens like Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Acinetobacter baumannii, Staphylococcus aureus, and Enterococcus faecalis. RESULTS: Characterization of NPs revealed that biosynthesized NPs were spherical in shape. FTIR spectroscopy showed the presence of phenolics and aromatic compounds. Biosynthesized NPs exhibit good antibacterial activity with a significant bacterial reduction seen against all bacterial isolates compared to the controls. CONCLUSION: From the results of the present study, the formulation of biosynthesized ScAu-NPs can be utilized in drug development for eliminating infections caused by multidrug-resistant pathogens.

19.
Pol J Vet Sci ; 26(1): 57-63, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36961287

RESUMEN

Nontuberculous mycobacteria (NTM) have recently emerged as important bacterial pathogens of animals and humans. Of particular concern is the high level of antimicrobial resistance displayed by these organisms, which complicates treatment and potential successful outcomes. Here, we evaluated the potential of Carlina acaulis L. as a source of novel anti-mycobacterial agents. Our goal was to measure the activity of aqueous, ethanol, and chloroform C. acaulis root extracts against 99 NTM strains. GC-MS spectroscopy analyses were performed to deliver qualitative and quantitative data on the composition of C. acaulis extract. In our study, we have shown for the first time the activity of C. acaulis extracts against NTM. The highest activity was exhibited by the chloroform extract, which inhibited the growth of more than 90% of the strains at the dose of 100 µg/mL (MIC90 = 100 µg/mL). The results of the GC-MS analysis of the C. acaulis chloroform extract contributed to the identification of 37 compounds, with carlina oxide as the most representative compound (69.52%) followed by 3,4-dihydro-2H-phenanthren- -1-one (6.54%) and stigmast-5-en-3-ol (4.14%). Our results indicate that C. acaulis chloroform and ethanol extracts have potential for treatment of NTM infections and that this plant contains anti-mycobacterial compounds.


Asunto(s)
Asteraceae , Mycobacterium , Humanos , Animales , Cloroformo , Asteraceae/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Etanol
20.
J Exp Pharmacol ; 15: 51-62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36789235

RESUMEN

Background: The emergence and spread of resistant microbes continue to be a major public health concern. Effective treatment alternatives, particularly from traditionally used medicinal plants, are needed. Objective: The main objective of this study was to conduct phytochemical screening and antimicrobial activity evaluation of selected traditionally used medicinal plants in Ethiopia. Methods: The ethnomedicinal use value frequency index (FI) was used to select twelve medicinal plants. Phytochemical classes of compounds were screened using different standard methods. Anti-microbial activities of plant extracts were evaluated against Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Candida albicans. Minimum inhibitory concentrations were measured using the broth micro-dilution method. The data were analyzed using Statistical Package for the Social Sciences (SPSS) version 21.0 and the findings were presented descriptively and using non parametric one-way ANOVA analysis (Kruskal-Wallis/Ddunn's test). Results: The phytochemical constituents identified were flavonoids, alkaloids, glycosides, phenols, saponins, steroids, and terpenoids, with flavonoids, alkaloids, and phenols being the most abundant. The crude extracts and chloroform fractions of the extracts showed an activity against the tested strains. The crude extract of Thalictrum rhynchocarpum Quart.-Dill. and A.Rich root demonstrated superior activity against all the tested strains with the lowest minimum inhibitory concentrations of 0.48 µg/mL against Staphylococcus aureus and Escherichia coli; 0.98 µg/mL against Klebsiella pneumoniae, Pseudomonas aeruginosa; and 3.90 µg/mL against Candida albicans, which are even better than the reference drug, gentamicin and clotrimazole. Conclusion: The majority of evaluated medicinal plants demonstrated remarkable activity against tested microbial strains, which can be attributed to the presence of secondary metabolites of different classes of compounds. The finding provided scientific evidence for the use of these traditionally used medicinal plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA