Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
High Blood Press Cardiovasc Prev ; 31(2): 113-126, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38630421

RESUMEN

INTRODUCTION: Coenzyme Q10 (CoQ10) has gained attention as a potential therapeutic agent for improving endothelial function. Several randomized clinical trials have investigated CoQ10 supplementation's effect on endothelial function. However, these studies have yielded conflicting results, therefore this systematic review and meta-analysis were conducted. AIM: This systematic review and meta-analysis were conducted to assess the effects of CoQ10 supplementation on endothelial factors. METHODS: A comprehensive search was done in numerous databases until July 19th, 2023. Quantitative data synthesis was performed using a random-effects model, with weight mean difference (WMD) and 95% confidence intervals (CI). Standard methods were used for the assessment of heterogeneity, meta-regression, sensitivity analysis, and publication bias. RESULTS: 12 studies comprising 489 subjects were included in the meta-analysis. The results demonstrated significant increases in Flow Mediated Dilation (FMD) after CoQ10 supplementation (WMD: 1.45; 95% CI: 0.55 to 2.36; p < 0.02), but there is no increase in Vascular cell adhesion protein (VCAM), and Intercellular adhesion molecule (ICAM) following Q10 supplementation (VCAM: SMD: - 0.34; 95% CI: - 0.74 to - 0.06; p < 0.10) (ICAM: SMD: - 0.18; 95% CI: - 0.82 to 0.46; p < 0.57). The sensitivity analysis showed that the effect size was robust in FMD and VCAM. In meta-regression, changes in FMD percent were associated with the dose of supplementation (slope: 0.01; 95% CI: 0.004 to 0.03; p = 0.006). CONCLUSIONS: CoQ10 supplementation has a positive effect on FMD in a dose-dependent manner. Our findings show that CoQ10 has an effect on FMD after 8 weeks of consumption. Additional research is warranted to establish the relationship between CoQ10 supplementation and endothelial function.


Asunto(s)
Suplementos Dietéticos , Endotelio Vascular , Ubiquinona , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Molécula 1 de Adhesión Celular Vascular/sangre , Molécula 1 de Adhesión Celular Vascular/metabolismo , Vasodilatación/efectos de los fármacos
2.
Acta Pharm Sin B ; 14(3): 953-1008, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487001

RESUMEN

Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.

3.
Cell Biochem Funct ; 42(2): e3975, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38475877

RESUMEN

Different organic compounds can have varying degrees of impact on the activity of Lactobacillus paracasei. The study focused on the impact and action mechanism of different organic selenium products on the bioactivity of two strains of L. paracasei. The growth, antioxidant activity, extracellular polysaccharide secretion, quorum sensing (QS), and biofilm formation of the strains before and after the addition of organic selenium crude products and three organic selenium standard were evaluated. The results showed that the addition of crude organic selenium promoted the various activities of the strain. l-selenocysteine had the strongest regulatory effect, with maximum GIM1.80 biofilm formation when it reached a critical concentration of 0.4 µg/mL; l-selenomethionine resulted in the highest activity of the signal molecule Auto inducer-2 of GDMCC1.155, when it reached a critical concentration of 0.4 µg/mL. The results of scanning electron microscopy demonstrated that the addition of organic selenium effectively improved the morphological structure of the two bacterial cells. Molecular docking revealed that the mechanism by which organic selenium regulates QS in Lactobacillus was achieved by binding two crucial receptor proteins (histidine protein kinase HKP and periplasmic binding protein LuxP) from specific sites. Furthermore, organic selenium products have a beneficial regulatory effect on the biological activity of L. paracasei. Overall, these findings provide a new alternative (organic selenium) for regulating the viability and beneficial activity of L. paracasei.


Asunto(s)
Lacticaseibacillus paracasei , Selenio , Percepción de Quorum , Antioxidantes/farmacología , Selenio/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Biopelículas
4.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543111

RESUMEN

COVID-19, caused by SARS-CoV-2, has emerged as the most destructive emerging infectious disease of the 21st century. Vaccination is an effective method to combat viral diseases. However, due to the constant mutation of the virus, new variants may weaken the efficacy of vaccines. In the current field of new coronavirus research, viral protease inhibitors have emerged as a highly regarded therapeutic strategy. Nevertheless, existing viral protease inhibitors do not fully meet the therapeutic needs. Therefore, this paper turned to traditional Chinese medicine to explore new active compounds. This study focused on 24 isolated compounds from Acorus calamus L. and identified 8 active components that exhibited significant inhibitory effects on SARS-CoV-2 PLpro. Among these, the compound 1R,5R,7S-guaiane-4R,10R-diol-6-one demonstrated the best inhibitory activity with IC50 values of 0.386 ± 0.118 µM. Additionally, menecubebane B and neo-acorane A exhibited inhibitory activity against both Mpro and PLpro proteases, indicating their potential as dual-target inhibitors. The molecular docking results confirmed the stable conformations of these compounds with the key targets and their good activity. ADMET and Lipinski's rule analyses revealed that all the small molecule ligands possessed excellent oral absorption properties. This study provides an experimental foundation for the discovery of promising antiviral lead compounds.

5.
ACS Appl Mater Interfaces ; 16(10): 13234-13246, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38411590

RESUMEN

Carnitine palmitoyltransferase 1A (CPT1A), which resides on the mitochondrial outer membrane, serves as the rate-limiting enzyme of fatty acid ß-oxidation. Identifying the compounds targeting CPT1A warrants a promising candidate for modulating lipid metabolism. In this study, we developed a CPT1A-overexpressed mitochondrial membrane chromatography (MMC) to screen the compounds with affinity for CPT1A. Cells overexpressing CPT1A were cultured, and subsequently, their mitochondrial membrane was isolated and immobilized on amino-silica gel cross-linked by glutaraldehyde. After packing the mitochondrial membrane column, retention components of MMC were performed with LC/MS, whose analytic peaks provided structural information on compounds that might interact with mitochondrial membrane proteins. With the newly developed MMC-LC/MS approach, several Chinese traditional medicine extracts, such as Scutellariae Radix and Polygoni Cuspidati Rhizoma et Radix (PCRR), were analyzed. Five noteworthy compounds, baicalin, baicalein, wogonoside, wogonin, and resveratrol, were identified as enhancers of CPT1A enzyme activity, with resveratrol being a new agonist for CPT1A. The study suggests that MMC serves as a reliable screening system for efficiently identifying modulators targeting CPT1A from complex extracts.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Metabolismo de los Lípidos , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/química , Carnitina O-Palmitoiltransferasa/metabolismo , Resveratrol , Membranas Mitocondriales , Cromatografía
6.
Biomed Pharmacother ; 172: 116256, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367550

RESUMEN

Anti-IL-17A antibodies, such as secukinumab and ixekizumab, are effective proinflammatory cytokine inhibitors for autoimmune disorders, including psoriasis. However, anti-IL-17A small molecule treatments are yet to be commercialized. Celastrol, a natural compound extracted from the roots of traditional Chinese medicinal plants, has anti-inflammatory and antioxidant properties. However, the binding of celastrol to IL-17A and the associated anti-inflammatory mechanisms remain unclear. This study investigated whether celastrol could directly bind to IL-17A and regulate inflammation in psoriatic in vitro and in vivo models. The results showed that celastrol directly binds to IL-17A and inhibits its downstream signaling, including the NF-kB and MAPK pathways. Interestingly, celastrol restored autophagy dysfunction and reduced proinflammatory cytokine secretion in keratinocytes. In addition, celastrol increased autophagy in the epidermis of a mouse model of psoriasis. Celastrol decreased Th17 cell populations and proinflammatory cytokine levels in mice. Thus, IL-17A-targeting celastrol reduced inflammation by rescuing impaired autophagy in in vitro and in vivo models of psoriasis, demonstrating its potential as a substitute for anti-IL-17A antibodies for treating psoriasis.


Asunto(s)
Antiinflamatorios , Interleucina-17 , Triterpenos Pentacíclicos , Psoriasis , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Autofagia , Citocinas , Inflamación/tratamiento farmacológico , Interleucina-17/antagonistas & inhibidores , Triterpenos Pentacíclicos/uso terapéutico , Psoriasis/tratamiento farmacológico
7.
Eur J Med Chem ; 266: 116116, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38215590

RESUMEN

Adenoviral E1A binding protein p300 (EP300 or p300) and its similar paralog, cyclic-AMP response element binding protein (CBP), are important histone acetyltransferases (HAT) and transcriptional co-activators in epigenetics, participating in numerous cellular pathways including proliferation, differentiation and apoptosis. The overexpression or dysregulation of p300/CBP is closely related to oncology-relevant disease. The inhibition of p300 HAT has been found to be a potential drug target. Berberine has been reported to show anticancer activity and synergistic effect in combination with some of the clinical anticancer drugs via modulation of various pathways. Here, the present study sought to discover more chemotypes of berberine derivatives as p300 HAT inhibitors and to examine the combination of these novel analogues with doxorubicin for the treatment of breast cancer. A series of novel berberine derivatives with modifications of A/B/D rings of berberine have been designed, synthesized and screened. Compound 7b was found to exhibit inhibitory potency against p300 HAT with IC50 values of 1.51 µM. Western blotting proved that 7b decreased H3K27Ac and interfered with the expression of oncology-relevant protein in MCF-7 cells. Further bioactive evaluation showed that combination of compound 7b with doxorubicin could significantly inhibit tumor growth and invasion in vitro and in vivo.


Asunto(s)
Berberina , Neoplasias de la Mama , Humanos , Femenino , Histona Acetiltransferasas/metabolismo , Histonas , Berberina/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Factores de Transcripción/metabolismo , Doxorrubicina/farmacología
8.
Luminescence ; 39(1): e4668, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286596

RESUMEN

Curcumin (Cur) is an acidic polyphenol with some effects on α-glucosidase (α-Glu), but Cur has disadvantages such as being a weak target, lacking passing the blood-brain barrier and having low bioavailability. To enhance the curative effect of Cur, the hybrid composed of ZnO nanoparticles decorated on rGO was used to load Cur (ZnO@rGO-Cur). The use of the multispectral method and enzyme inhibition kinetics analysis certify the inhibitory effect and interaction mechanism of ZnO@rGO-Cur with α-Glu. The static quenching of α-Glu with both Cur and ZnO@rGO-Cur is primarily driven by hydrogen bond and van der Waals interactions. The conformation-changing ability by binding to the neighbouring phenolic hydroxyl group of Cur increased their ability to alter the secondary structure of α-Glu, resulting in the inhibition of enzyme activity. The inhibition constant (Ki, Cur > Kis,ZnO@rGO-Cur ) showed that the inhibition effect of ZnO@rGO-Cur on α-Glu was larger than that of Cur. The CCK-8 experiments proved that ZnO@rGO nanocomposites have good biocompatibility. These results suggest that the therapeutic potential of ZnO@rGO-Cur composite is an emerging nanocarrier platform for drug delivery systems for the potential treatment of diabetes mellitus.


Asunto(s)
Curcumina , Diabetes Mellitus , Nanopartículas , Óxido de Zinc , Humanos , alfa-Glucosidasas/efectos de los fármacos , Curcumina/farmacología , Curcumina/química , Sistemas de Liberación de Medicamentos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología
9.
Drug Discov Today ; 29(3): 103885, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278476

RESUMEN

Bioaffinity drug screening strategies have gained popularity in preclinical and clinical drug discovery for natural products, small molecules and antibodies owing to their superior selectivity, the large number of compounds to be screened and their ability to minimize the time and expenses of the drug discovery process. This paper provides a systematic summary of the principles of commonly used bioaffinity-based screening methods, elaborates on the success of bioaffinity in clinical drug development and summarizes the active compounds, preclinical drugs and marketed drugs obtained through affinity screening methods. Owing to the high demand for new drugs, bioaffinity-guided screening techniques will play a greater part in clinical drug development.


Asunto(s)
Productos Biológicos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Descubrimiento de Drogas , Anticuerpos/uso terapéutico , Evaluación Preclínica de Medicamentos
10.
Chin Med ; 19(1): 9, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218825

RESUMEN

Wu-tou decoction (WTD), a traditional Chinese medicine prescription, is used to treat rheumatoid arthritis (RA). It works by controlling intestinal flora and its metabolites, which in turn modulates the inflammatory response and intestinal barrier function. Small molecular compounds (SM) and polysaccharides (PS) were the primary constituents of WTD extract. In this work, a model of adjuvant-induced arthritis (AIA) in rats was established and treated with WTD, SM, and PS, respectively. 16S rRNA gene sequencing was used to examine the regulatory impact of the various groups on the disturbance of the gut flora induced by RA. Further, since PS cannot be absorbed into the blood, the influence of PS on the absorption and metabolism of SM was studied by examining their pharmacokinetic (PK) parameters of 23 active components in SM by UPLC-MS/MS. WTD was found to be more effective than PS and SM in alleviating arthritis in AIA rats, which may be related to changes in gut flora. The PK properties of 13 active compounds were altered after PS intervene. Based on the findings, PS may be able to manage the disruption of intestinal microbiota, enhance the intestinal environment of model animals, and hence influence SM absorption and metabolism.

11.
Clin Gastroenterol Hepatol ; 22(1): 154-163.e3, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442318

RESUMEN

BACKGROUND & AIMS: Several advanced therapies (biologic therapies and small molecules) have been approved for the treatment of moderate-to-severe ulcerative colitis. The registration trials for these agents typically excluded patients with isolated proctitis, leaving an evidence gap. We evaluated efficacy and safety of advanced therapies in patients with ulcerative proctitis (UP). METHODS: This multicenter retrospective cohort study included consecutive patients with active UP (Mayo endoscopy subscore of ≥2, rectal inflammation up to 15 cm) initiating advanced therapy, after failing conventional therapy. The primary end point was short-term steroid-free clinical remission (total Mayo score ≤2 with no individual subscore >1). In addition, drug persistence and relapse-free and colectomy-free survival were assessed. Both binary logistic and Cox regression analyses were performed. RESULTS: In total, 167 consecutive patients (52.0% female; median age 41.0 years; 82.0% bionaive) underwent 223 courses of therapy for UP (38 adalimumab, 14 golimumab, 54 infliximab, 9 ustekinumab, 99 vedolizumab, 9 tofacitinib). The primary end point was achieved with 36.3% of the treatment courses, and based on multivariate analysis, more commonly attained in bionaive patients (P = .001), patients treated with vedolizumab (P = .001), patients with moderate endoscopic disease activity (P = .002), and a body mass index <25 kg/m2 (P = .018). Drug persistence was significantly higher in patients treated with vedolizumab (P < .001) and patients with a shorter disease duration (P = .006). No new safety signals were observed. CONCLUSIONS: Advanced therapies are also efficacious and safe in patients with ulcerative colitis limited to the rectum. Therefore, the inclusion of patients with UP in future randomized-controlled trials should be considered.


Asunto(s)
Colitis Ulcerosa , Humanos , Femenino , Adulto , Masculino , Colitis Ulcerosa/tratamiento farmacológico , Estudios Retrospectivos , Bélgica , Adalimumab/uso terapéutico , Terapia Biológica , Resultado del Tratamiento
12.
Pest Manag Sci ; 80(2): 905-909, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822012

RESUMEN

BACKGROUND: Implementation of resistance management tools is crucial for the continued efficacy of insect control technologies. An important aspect of insect resistance management (IRM) is the combined or sequential use of different modes-of-action to reduce selection pressure and delay evolution of resistance. This is especially important for insect pests with established ability to develop resistance to insecticides, such as the Colorado potato beetle (Leptinotarsa decemlineata, CPB). A new class of insecticides, based on double-stranded RNA (dsRNA) activating the gene silencing RNA-interference (RNAi) pathway, are currently under review for regulatory approval and commercial use in the USA against CPB. However, there is no information available on the potential for cross-resistance between RNAi insecticides and other classes of insecticides used against CPB. Herein, we aim to fill this knowledge gap by capitalizing on the availability of a CPB strain highly resistant to dsRNAs and test its susceptibility to diverse small-molecule insecticide classes compared to reference dsRNA-susceptible CPB strains. RESULTS: Differences in activity were observed among the four insecticides tested, with abamectin demonstrating highest activity against all three strains of CPB. However, no differences were observed among the dsRNA-resistant and susceptible CPB strains for any of the tested compounds. Overall, these results demonstrate lack of cross-resistance to commonly used chemical insecticides in the dsRNA-resistant strain of CPB. CONCLUSION: These data support the use of these different insecticide classes along with RNAi-based insecticides as part of an effective insect resistance management framework aimed at delaying resistance in CPB. © 2023 Society of Chemical Industry.


Asunto(s)
Escarabajos , Insecticidas , Plaguicidas , Solanum tuberosum , Animales , Escarabajos/genética , Larva , Insecticidas/farmacología , ARN Bicatenario/genética , ARN Bicatenario/farmacología , Plaguicidas/farmacología , Solanum tuberosum/genética , Interferencia de ARN
13.
Bioorg Chem ; 143: 106998, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38035513

RESUMEN

Androgen receptor (AR) plays a crucial role in various physiological processes. Dysregulation of AR signaling has been implicated in several diseases, such as prostate cancer and androgenetic alopecia. Therefore, the development of drugs that specifically target AR has gained significant attention in the field of drug discovery. This review provides an overview of the synthetic routes of clinically approved small molecule drugs targeting AR and discusses the clinical applications of these drugs in the treatment of AR-related diseases. The review also highlights the challenges and future perspectives in this field, including the need for improved drug design and the exploration of novel therapeutic targets. Through an integrated analysis of the therapeutic applications, synthetic methodologies, and mechanisms of action associated with these approved drugs, this review facilitates a holistic understanding of the versatile roles and therapeutic potential of AR-targeted interventions. Overall, this comprehensive review serves as a valuable resource for medicinal chemists interested in the development of small-molecule drugs targeting AR.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Descubrimiento de Drogas , Diseño de Fármacos , Transducción de Señal
14.
Prostaglandins Other Lipid Mediat ; 170: 106800, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029886

RESUMEN

Cisplatin is one of the most important antitumor drugs, however; it has numerous adverse effects like nephrotoxicity which is considered one of cisplatin uses . The study was planned to evaluate the nephroprotective effect of M. oleifera leaves extract loaded gold nanoparticles (Au-NPs) against cisplatin-induced nephrotoxicity in rats. Initially, total phenolic contents (TPC) and the antioxidant activity of the M. oleifera leaves extract were evaluated and recorded 8.50 mg/g and 39.89 % respectively. After that, the dry leaves of M. oleifera were grinded into fine powder and extracted using water extraction system. Then, different volumes (0.5, 1 and 2 mL) of M. Oleifera were blended with constant volume of Au-NPs (1 mL). Both Au-NPs and M. oleifera extract loaded Au-NPs were investigated using transmission electron microscope (TEM) that illustrated the deposition of M. Oleifera onto Au-NPs. The experimental study was performed on seventy male albino rats alienated into seven groups. Group I healthy rats, group II injected with one dose of cisplatin (CisPt), groups from III to VII treated groups received CisPt then received M. Oleifera leaves extract alone and /or Au-NPs with different ratios and concentrations. After the experiment' time, serum urea and creatinine, kidney injury molecule-1 (KIM-1), advanced oxidation protein products (AOPP), monocyte chemoattractant protein-1 (MCP-1), tumor necrotic factor-α (TNF-α), and interleukin-6 (IL-6) were evaluated as markers of renal nephrotoxicity. The kidneys of rats were excised for malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) assessments. Induction of CisPt showed a highly significant disturbance in oxidant/anti-oxidant balance and inducing inflammatory cascades supporting nephrotoxicity, while treatment with M. Oleifera leaves extract, Au-NPs, and the different concentrations of the extract loaded on Au-NPs had a crucial role in attenuating oxidative stress, enhancing antioxidant systems, and reducing inflammatory biomarkers, although the most significant results showed a powerful scavenging activity against nephrotoxicity induced by CisPt was obtained with M. Oleifera leaves extract loaded on Au-NPs with a concentration of 2:1 respectively.


Asunto(s)
Nanopartículas del Metal , Moringa oleifera , Ratas , Masculino , Animales , Moringa oleifera/metabolismo , Oro/farmacología , Cisplatino/farmacología , Extractos Vegetales/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo
15.
Eur J Med Chem ; 265: 116070, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38134747

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly. Contemporary treatments can only relieve symptoms but fail to delay disease progression. Curcumin is a naturally derived compound that has demonstrated significant therapeutic effects in AD treatment. Recently, molecular hybridization has been utilized to combine the pharmacophoric groups present in curcumin with those of other AD drugs, resulting in a series of novel compounds that enhance the therapeutic efficacy through multiple mechanisms. In this review, we firstly provide a concise summary of various pathogenetic hypotheses of AD and the mechanism of action of curcumin in AD, as well as the concept of molecular hybridization. Subsequently, we focus on the recent development of hybrid molecules derived from curcumin, summarizing their structures and pharmacological activities, including cholinesterase inhibitory activity, Aß aggregation inhibitory activity, antioxidant activity, and other activities. The structure-activity relationships were further discussed.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Enfermedades Neurodegenerativas , Humanos , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Curcumina/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Relación Estructura-Actividad , Péptidos beta-Amiloides
16.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139137

RESUMEN

Agrimonia pilosa Ledeb., an important medicinal herb in traditional East Asian medicine, is primarily used to treat abdominal pain, dysentery, and hemostasis. There are ten other reported species of Agrimonia plants, including Agrimonia coreana Nakai-a naturally growing species in South Korea-and Agrimonia eupatoria Linn. Although recent studies have isolated numerous active constituents and investigated their effects, the medicinal utility of this herb is not yet fully explored. Through patch-clamp recording, a previous study reported that Agrimonia plant extracts inhibit the function of Ca2+ release-activated Ca2+ channels (CRACs). Herein, we aimed to identify and isolate the main compounds in A. coreana responsible for CRAC inhibition while assessing the anti-inflammatory effects mediated by this inhibition. We demonstrated for the first time that alphitolic acid isolated from A. coreana has a dose-dependent inhibitory effect on CRAC activity and, thus, an inhibitory effect on intracellular calcium increase. Furthermore, analysis of human CD4+ T cell proliferation via the carboxyfluorescein diacetate succinimidyl ester method revealed that alphitolic acid inhibited T cell proliferation in a concentration-dependent manner. Our findings provide a theoretical basis for the potential therapeutic use of alphitolic acid in the treatment of inflammatory diseases.


Asunto(s)
Agrimonia , Humanos , Linfocitos T , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología
17.
J Nanobiotechnology ; 21(1): 497, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124097

RESUMEN

Photothermal therapy (PTT) and photodynamic therapy (PDT) are effective method for tumor treatment. However, the limited variety and quantity of photothermal agents (PTAs) and photosensitizer (PSs) are still major challenges. Moreover, the cell apoptosis mechanism induced by PDT and PTT is still elusive. A fused-ring small molecule acceptor-donor acceptor' donor-acceptor (A-DA'D-A) type of Y5 (Scheme 1) has a narrow band-gap and strong light absorption. Herein, we used Y5 to polymerize with thiophene unit to obtain polymer PYT based on polymerized small molecule strategy, and PYT nanoparticles (PYT NPs) was prepared via one-step nanoprecipitation strategy with DSPE-PEG2000. PYT NPs had excellent biocompatibility, good photostability, high photothermal conversion efficiency (67%) and reactive oxygen species (ROS) production capacity under 808 nm laser irradiation (PYT NPs + NIR). In vitro and in vivo experiments revealed that PYT NPs + NIR had the ability to completely ablate tumor cells. It was demonstrated that cell apoptosis induced by PYT NPs + NIR was closely related to mitochondrial damage. This study provides valuable guidance for constructing high-performance organic PTAs and PSs for tumor treatment. Scheme 1 PYT enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Polímeros , Neoplasias/tratamiento farmacológico , Fototerapia , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
18.
Anticancer Res ; 43(11): 5155-5166, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37909986

RESUMEN

BACKGROUND/AIM: Concomitant chemoradiotherapy (CCRT) with cisplatin is commonly administered after neck dissection in patients with oral squamous cell carcinoma (OSCC) showing extranodal extension (ENE). This study investigated whether the efficacy of CCRT differed depending on the degree of ENE and whether the expression of epithelial cell adhesion molecule (EpCAM) was associated with prognosis. PATIENTS AND METHODS: Patients with OSCC who underwent neck dissection and had histologically proven neck metastasis (pN+) were investigated retrospectively. ENE was divided into ENE minor (ENEmi; <2 mm) and ENE major (ENEma; ≥2 mm). The expression of EpCAM was also immunohistochemically examined using tissues obtained during neck dissection. RESULTS: One hundred and seventy pN+ cases [ENE(-), n=89; ENEmi, n=23; ENEma, n=58] were included. Multivariate analysis revealed that advanced T stage and ENEma were significantly correlated with poor prognosis. The 5-year disease-specific survival rates in ENE(-), ENEmi, and ENEma groups were 73.7%, 75.5%, and 28.0% respectively. An add-on effect of postoperative CCRT was not seen in the ENEmi group; however, postoperative CCRT improved the survival of patients in the ENEma group. In the ENEma group, the prognosis was significantly worse in EpCAM-positive patients than in EpCAM-negative patients. CONCLUSION: Postoperative CCRT may improve prognosis in ENEma cases. EpCAM expression may be a poor prognostic factor in ENEma cases. On the other hand, postoperative CCRT did not have a significant effect on prognosis in ENEmi cases. Among them, although there was no significant difference in the survival rate, postoperative CCRT could be omitted in ENEmi/EpCAM(-) cases.


Asunto(s)
Carcinoma de Células Escamosas , Molécula de Adhesión Celular Epitelial , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/terapia , Extensión Extranodal , Neoplasias de la Boca/terapia , Estudios Retrospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia
19.
Zhen Ci Yan Jiu ; 48(11): 1079-1087, 2023 Nov 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37984904

RESUMEN

OBJECTIVES: To explore the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the microvascular structure and related protein expression in the hippocampus of vascular dementia (VD) rat model, and to investigate the mechanism of EA in the treatment of VD. METHODS: A total of 24 SD rats were randomly divided into sham operation, model, EA, and oxiracetam groups, with 6 rats in each group. Multiple cerebral infarction method was used to establish VD model. In the EA group, EA was applied to GV20 and GV24 for 30 min, once daily for 14 days. Rats in the oxiracetam group were treated with oxiracetam (50 mg/kg) by intraperitoneal injection, and the course of treatment was the same as that in the EA group. Learning and memory ability were evaluated by using Morris water maze test and new object recognition experiment. The cerebral blood flow was detected by laser doppler. The microvascular structure in the hippocampus was observed by transmission electron microscopy. The expression of vascular structure related proteins of platelet-derived growth factor receptor (PDGFR)-ß, platelet endothelial cell adhesion molecule-1(CD31), neural cadherin N-Cadherin, Zonula occludens protein-1(ZO-1) in the hippocampus were measured by Western blot. RESULTS: Compared with the sham operation group, the rats in the model group had a significant increase in time of first crossing the platform, a significant decrease in the number of crossing platform and the new object preference index (P<0.05), a significant decrease in cerebral blood flow (P<0.05), and a significant increase in the brain weight (P<0.05). The structure boundary of pericyte and endothelial cells in the microvessels of the hippocampal CA1 area of model group was blurred, accompanied by obvious edema around the vessels and the reduction of tight junctions. The protein expression levels of PDGFR-ß, CD31, N-Cadherin, ZO-1 were significantly decreased in the model group compared with those in the sham operation group (P<0.05). Compared with the model group, the time of first crossing the platform of rats in the EA and oxiracetam group was shortened, the number of crossing platform were increased (P<0.05), the cerebral blood flow was increased (P<0.05), the brain weight was decreased (P<0.05), the morphology and structure of pericyte and endothelial cells in the microvessels of hippocampal CA1 area were intact, accompanied by the increase of tight junctions. Additionally, Compared with the model group, the EA group had a significant increase in the new object preference index (P<0.05), the protein expression levels of PDGFR-ß, CD31, ZO-1 in the EA group were increased (P<0.05), and the expression of PDGFR-ß, N-Cadherin, ZO-1 in the oxiracetam group were increased (P<0.05). CONCLUSIONS: EA at GV20 and GV24 can improve the learning and memory ability of VD rats, and the mechanism may be related to the repair of microvascular structures and improvement of cerebral blood flow.


Asunto(s)
Demencia Vascular , Electroacupuntura , Ratas , Animales , Demencia Vascular/genética , Demencia Vascular/terapia , Demencia Vascular/metabolismo , Ratas Sprague-Dawley , Células Endoteliales/metabolismo , Hipocampo/metabolismo , Cadherinas/metabolismo
20.
J Nanobiotechnology ; 21(1): 348, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759287

RESUMEN

Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Terapia Fototérmica , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno , Fototerapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Colorantes , Línea Celular Tumoral , Nanopartículas/uso terapéutico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA