Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(48): 19142-19153, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37827989

RESUMEN

The pile fermentation process of Fuzhuan brick tea is unique in that it involves preheating without the use of starter cultures. The detailed metabolite changes and their drivers during this procedure are not known. Characterizing these unknown changes that occur in the metabolites and microbes during pile fermentation of Fuzhuan brick tea is important for industrial modernization of this traditional fermented food. Using microbial DNA amplicon sequencing, mass spectrometry-based untargeted metabolomics, and feature-based molecular networking, we herein reveal that significant changes in the microbial community occur before changes in the metabolite profile. These changes were characterized by a decrease in Klebsiella and Aspergillus, alongside an increase in Bacillus and Eurotium. The decrease in lysophosphatidylcholines, unsaturated fatty acids, and some astringent flavan-3-ols and bitter amino acids, as well as the increase in some less astringent flavan-3-ols and sweet or umami amino acids, contributed importantly to the overall changes observed in the metabolite profile. The majority of these changes was caused by bacterial metabolism and the corresponding heat generated by it.


Asunto(s)
Microbiota , , Té/química , Fermentación , Astringentes , Aminoácidos
2.
J Agric Food Chem ; 70(18): 5701-5714, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35502792

RESUMEN

Understanding the microbial and chemical diversities, as well as what affects these diversities, is important for modern manufacturing of traditional fermented foods. In this work, Chinese dark teas (CDTs) that are traditional microbial fermented beverages with relatively high sample diversity were collected. Microbial DNA amplicon sequencing and mass spectrometry-based untargeted metabolomics show that the CDT microbial ß diversity, as well as the nonvolatile chemical α and ß diversities, is determined by the primary impact factors of geography and manufacturing procedures, in particular, latitude and pile fermentation after blending. A large number of metabolites sharing between CDTs and fungi were discovered by Feature-based Molecular Networking (FBMN) on the Global Natural Products Social Molecular Networking (GNPS) web platform. These molecules, such as prenylated cyclic dipeptides and B-vitamins, are functionally important for nutrition, biofunctions, and flavor. Molecular networking has revealed patterns in metabolite profiles on a chemical family level in addition to individual structures.


Asunto(s)
Camellia sinensis , Alimentos Fermentados , China , Fermentación , Metabolómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA