Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Acupunct Med ; 42(3): 133-145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38351622

RESUMEN

BACKGROUND: Oxidative stress and inflammatory responses play essential roles in cerebral ischemia/reperfusion (I/R) injury. Electroacupuncture (EA) is widely used as a rehabilitation method for stroke in China; however, the underlying mechanism of action remains unclear. Peroxisome proliferator-activated receptor gamma (PPAR-γ) has been reported to impact anti-inflammatory and anti-oxidative effects. OBJECTIVE: This study investigated the role of PPAR-γ in EA-mediated effects and aimed to illuminate its possible mechanisms in cerebral I/R. METHODS: In this study, male Sprague-Dawley (SD) rats with middle cerebral artery occlusion/reperfusion (MCAO/R) injury were treated with EA at LI11 and ST36 for 30 min daily after MCAO/R for seven consecutive days. The neuroprotective effects of EA were measured by neurobehavioral evaluation, triphenyltetrazolium chloride staining, hematoxylin-eosin staining and transmission electron microscopy. Oxidative stress, inflammatory factors, neural apoptosis and microglial activation were examined by enzyme-linked immunosorbent assay, immunofluorescence and reverse transcriptase polymerase chain reaction. Western blotting was used to assess PPAR-γ-mediated signaling. RESULTS: We found that EA significantly alleviated cerebral I/R-induced infarct volume, decreased neurological scores and inhibited I/R-induced oxidative stress, inflammatory responses and microglial activation. EA also increased PPAR-γ protein expression. Furthermore, the protective effects of EA were reversed by injection of the PPAR-γ antagonist T0070907. CONCLUSION: EA attenuates cerebral I/R injury by regulating oxidative stress, neuronal death and neuroinflammation via stimulation of PPAR-γ.


Asunto(s)
Isquemia Encefálica , Electroacupuntura , Estrés Oxidativo , PPAR gamma , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Masculino , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Ratas , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Neuronas/metabolismo , Humanos , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Muerte Celular , Modelos Animales de Enfermedad
2.
Cell Mol Gastroenterol Hepatol ; 17(5): 785-800, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38262589

RESUMEN

BACKGROUND & AIMS: Changes in phosphatidylcholine levels in the liver have been associated with the development of metabolic dysfunction-associated steatotic liver disease. Here, the effects of supplementing phosphatidylcholine on the development of early signs of metabolic dysfunction-associated steatohepatitis were assessed. METHODS: Male and female C57BL/6J mice were fed a liquid control or a fructose-, fat-, and/or cholesterol-rich diet for 7 or 8 weeks. The diets of female mice were fortified ± phosphatidylcholine (12.5 mg/g diet). In liver tissue and portal blood, indices of liver damage, inflammation, and bacterial endotoxemia were measured. J774A.1 cells and human monocytes preincubated with phosphatidylcholine (0.38 mmol/L) were challenged with lipopolysaccharide (50-100 ng/mL) ± the peroxisome proliferator-activated receptor γ (PPARγ) activator pioglitazone (10 µmol/L) or ± a liver receptor homolog 1 (LRH-1) antagonist 1-(3'-[1-(2-[4-morpholinyl]ethyl)-1H-pyrazol-3-yl]-3-biphenylyl)ethanon (1-10 µmol/L). RESULTS: In fructose-, fat-, and/or cholesterol-rich diet-fed mice the development of fatty liver and the beginning of inflammation were associated with significantly lower hepatic phosphatidylcholine levels when compared with controls. Supplementing phosphatidylcholine significantly attenuated the development of fatty liver and inflammation, being associated with protection against the induction of PPARγ2, and activation of nuclear factor of κ light polypeptide gene enhancer in B-cell inhibitor α whereas Lrh1 expression was unchanged. The protective effects of phosphatidylcholine on the lipopolysaccharide-induced activation of J774A.1 cells and human monocytes were attenuated significantly by the PPARγ activator pioglitazone and the LRH-1 antagonist. CONCLUSIONS: Our data suggest that phosphatidylcholine levels in the liver are lower in early metabolic dysfunction-associated steatohepatitis in mice and that supplementation of phosphatidylcholine can diminish the development of metabolic dysfunction-associated steatotic liver disease through mechanisms involving LRH-1/PPARγ2/ nuclear factor κ-light-chain enhancer of activated B-cell signaling.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Femenino , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR gamma/metabolismo , Pioglitazona , Ratones Endogámicos C57BL , Lipopolisacáridos , Dieta , Inflamación , Suplementos Dietéticos , Colesterol , Fructosa
3.
Mol Med Rep ; 29(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38131179

RESUMEN

Drynaria rhizome is a herbal medicine used for strengthening bones and treating bone diseases in East Asia. Although obesity is considered to benefit bone formation, it has been revealed that visceral fat accumulation can promote osteoporosis. Given the complex relationship between bone metabolism and obesity, bone­strengthening medicines should be evaluated while considering the effects of obesity. The present study investigated the effects of Drynaria rhizome extract (DRE) on high­fat diet (HFD)­induced obese mice. DRE was supplemented with the HFD. Body weight, food intake, the expression levels of lipogenesis transcription factors, including sterol regulatory element binding protein (SREBP)­1, peroxisome proliferator­activated receptor (PPAR)­Î³ and adenosine monophosphate­activated protein kinase (AMPK)­α, and AMPK activation were evaluated. Mice fed DRE and a HFD exhibited reduced body weight without differences in food intake compared with those in the HFD group. Furthermore, DRE; upregulated AMPK­α of epididymal one; down­regulated SREBP­1 and PPAR­Î³, as determined using western blotting and quantitative polymerase chain reaction, respectively. Decreased lipid accumulation were observed in both fat pad and liver of HFD­fed mice, which were suppressed by DRE treatment. These results demonstrated the potential of DRE as a dietary natural product for strengthening bones and managing obesity.


Asunto(s)
Fármacos Antiobesidad , Dieta Alta en Grasa , Ratones , Animales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Receptores Activados del Proliferador del Peroxisoma , Rizoma , Extractos Vegetales/farmacología , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Peso Corporal , Ratones Endogámicos C57BL , Fármacos Antiobesidad/farmacología , Ratones Obesos
4.
Phytomedicine ; 123: 155227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128398

RESUMEN

BACKGROUND: Atherosclerosis (AS) is a progressive chronic disease. Currently, cardiovascular diseases (CVDs) caused by AS is responsible for the global increased mortality. Yanshanjiang as miao herb in Guizhou of China is the dried and ripe fruit of Fructus Alpinia zerumbet. Accumulated evidences have confirmed that Yanshanjiang could ameliorate CVDs, including AS. Nevertheless, its effect and mechanism on AS are still largely unknown. PURPOSE: To investigate the role of essential oil from Fructus Alpinia zerumbet (EOFAZ) on AS, and the potential mechanism. METHODS: A high-fat diet (HFD) ApoE-/- mice model of AS and a oxLDL-induced model of macrophage-derived foam cells (MFCs) were reproduced to investigate the pharmacological properties of EOFAZ on AS in vivo and foam cell formation in vitro, respectively. The underlying mechanisms of EOFAZ were investigated using Network pharmacology and molecular docking. EOFAZ effect on PPARγ protein stability was measured using a cellular thermal shift assay (CETSA). Pharmacological agonists and inhibitors and gene interventions were employed for clarifying EOFAZ's potential mechanism. RESULTS: EOFAZ attenuated AS progression in HFD ApoE-/- mice. This attenuation was manifested by the reduced aortic intima plaque development, increased collagen content in aortic plaques, notable improvement in lipid profiles, and decreased levels of inflammatory factors. Moreover, EOFAZ inhibited the formation of MFCs by enhancing cholesterol efflux through activiting the PPARγ-LXRα-ABCA1/G1 pathway. Interestingly, the pharmacological knockdown of PPARγ impaired the beneficial effects of EOFAZ on MFCs. Additionally, our results indicated that EOFAZ reduced the ubiquitination degradation of PPARγ, and the chemical composition of EOFAZ directly bound to the PPARγ protein, thereby increasing its stability. Finally, PPARγ knockdown mitigated the protective effects of EOFAZ on AS in HFD ApoE-/- mice. CONCLUSION: These findings represent the first confirmation of EOFAZ's in vivo anti-atherosclerotic effects in ApoE-/- mice. Mechanistically, its chemical constituents can directly bind to PPARγ protein, enhancing its stability, while reducing PPARγ ubiquitination degradation, thereby inhibiting foam cell formation via activation of the PPARγ-LXRα-ABCA1/G1 pathway. Simultaneously, EOFAZ could ameliorates blood lipid metabolism and inflammatory microenvironment, thus synergistically exerting its anti-atherosclerotic effects.


Asunto(s)
Alpinia , Aterosclerosis , Aceites Volátiles , Placa Aterosclerótica , Animales , Ratones , PPAR gamma/metabolismo , Aceites Volátiles/farmacología , Frutas , Simulación del Acoplamiento Molecular , Transducción de Señal , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Apolipoproteínas E , Transportador 1 de Casete de Unión a ATP/metabolismo , Receptores X del Hígado/metabolismo
5.
Phytomedicine ; 121: 155116, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776619

RESUMEN

BACKGROUND: Colitis-associated colorectal cancer (CAC) is a severe complication of inflammatory bowel disease (IBD), resulting from long-term inflammation in the intestines. The primary cause of CAC is the imbalance of oxidative metabolism in intestinal cells, triggered by excessive reactive oxygen (ROS) and nitrogen (NO) species production due to prolonged intestinal inflammation. This imbalance leads to genomic instability caused by DNA damage, eventually resulting in the development of intestinal cancer. Previous studies have demonstrated that astragaloside IV is effective in treating dextran sulfate sodium salt (DSS)-induced colitis, but there is currently no relevant research on its efficacy in treating CAC. METHODS: To investigate the effect of astragaloside IV against CAC and the underlying mechanism, C57 mice were treated with (20, 40, 80 mg/kg) astragaloside IV while CAC was induced by intraperitoneal injection of 10 mg/kg azoxymethane (AOM) and ad libitum consumption of 2% dextran sulfate sodium salt (DSS). We re-verified the activating effects of astragaloside IV on PPARγ signaling in IEC-6 cells, which were reversed by GW9662 (the PPARγ inhibitor). RESULTS: Our results showed that astragaloside IV significantly improved AOM/DSS-induced CAC mice by inhibiting colonic shortening, preventing intestinal mucosal damage, reducing the number of tumors and, the expression of Ki67 protein. In addition, astragaloside IV could activate PPARγ signaling, which not only promoted the expression of Nrf2 and HO-1, restored the level of SOD, CAT and GSH, but also inhibited the expression of iNOS and reduced the production of NO in the intestine and IEC-6 cells. And this effect could be reversed by GW9662 in vitro. Astragaloside IV thus decreased the level of ROS and NO in the intestinal tract of mice, as well as reduced the damage of DNA, and therefore inhibited the occurrence of CAC. CONCLUSION: Astragaloside IV can activate PPARγ signaling in intestinal epithelial cells and reduces DNA damage caused by intestinal inflammation, thereby inhibiting colon tumourigenesis. The novelty of this study is to use PPARγ as the target to inhibit DNA damage to prevent the occurrence of CAC.


Asunto(s)
Colitis , PPAR gamma , Animales , Ratones , Azoximetano/toxicidad , Sulfato de Dextran/efectos adversos , Especies Reactivas de Oxígeno , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/metabolismo , Carcinogénesis , Transformación Celular Neoplásica , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
6.
Phytother Res ; 37(10): 4457-4472, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37308719

RESUMEN

Full peroxisome proliferator-activated receptor (PPAR) γ agonists, Thiazolidinediones (TZDs), effectively prevent the process of Type 2 Diabetes Mellitus (T2DM), but their side effects have curtailed use in the clinic, including weight gain and bone loss. Here, we identified that a selective PPAR γ modulator, Bavachinin (BVC), isolated from the seeds of Psoralea Corylifolia L., could potently regulate bone homeostasis. MC3T3-E1 pre-osteoblast cells and C3H10T1/2 mesenchymal stem cells were assessed for osteogenic differentiation activities, and receptor activator of NF-κB ligand (RANKL)-induced RAW 264.7 cells were assessed osteoclasts formation. Leptin receptor-deficient mice and diet-induced obesity mice were applied to evaluate the effect of BVC on bone homeostasis in vivo. Compared to full PPAR γ agonist rosiglitazone, BVC significantly increased the osteogenesis differentiation activities under normal and high glucose conditions in MC3T3-E1 cells. Moreover, BVC could alleviate osteoclast differentiation in RANKL-induced RAW 264.7 cells. In vivo, synthesized BVC prodrug (BN) has been applied to improve water solubility, increase the extent of oral absorption of BVC and prolong its residence time in blood circulation. BN could prevent weight gain, ameliorate lipid metabolism disorders, improve insulin sensitivity, and maintain bone mass and bone biomechanical properties. BVC, a unique PPAR γ selective modulator, could maintain bone homeostasis, and its prodrug (BN) exhibits insulin sensitizer activity while circumventing the side effects of the TZDs, including bone loss and undesirable weight gain.

7.
Phytother Res ; 37(3): 872-884, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36451541

RESUMEN

To investigate the potential effects and mechanism of wogonin on dextran sulfate sodium (DSS)-induced colitis, 70 male mice were administered wogonin (12.5, 25, 50 mg·kg-1 ·d-1 , i.g.) for 10 days, meanwhile, in order to induce colitis, the mice were free to drink 3% DSS for 6 days. We found that wogonin could obviously ameliorate DSS-induced colitis, including preventing colon shortening and inhibiting pathological damage. In addition, wogonin could increase the expression of PPARγ, which not only restores intestinal epithelial hypoxia but also inhibits iNOS protein to reduce intestinal nitrite levels. All these effects facilitated a reduction in the abundance of Enterobacteriaceae in DSS-induced colitis mice. Therefore, compared with the DSS group, the number of Enterobacteriaceae in the intestinal flora was significantly reduced after administration of wogonin or rosiglitazone by 16s rDNA technology. We also verified that wogonin could promote the expression of PPARγ mRNA and protein in Caco-2 cells, and this effect disappeared when PPARγ signal was inhibited. In conclusion, our study suggested that wogonin can activate the PPARγ signal of the Intestinal epithelium to ameliorate the Intestinal inflammation caused by Enterobacteriaceae bacteria expansion.


Asunto(s)
Colitis , PPAR gamma , Humanos , Masculino , Ratones , Animales , PPAR gamma/metabolismo , Sulfato de Dextran/efectos adversos , Células CACO-2 , Enterobacteriaceae/metabolismo , Colitis/inducido químicamente , Colon , Mucosa Intestinal , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
8.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275993

RESUMEN

Berberine (BBR) is an isoquinoline alkaloid that can be extracted from herbs such as Coptis, Phellodendron, and Berberis. BBR has been widely used as a folk medicine to treat various disorders. It is a multi-target drug with multiple mechanisms. Studies have shown that it has antioxidant and anti-inflammatory properties and can also adjust intestinal microbial flora. This review focused on the promising antidiabetic effects of BBR in several cellular, animal, and clinical studies. Based on previous research, BBR significantly reduced levels of fasting blood glucose, hemoglobin A1C, inflammatory cytokines, and oxidative stress markers. Furthermore, BBR stimulated insulin secretion and improved insulin resistance through different pathways, including up-regulation of protein expression of proliferator-activated receptor (PPAR)-γ, glucose transporter (GLUT) 4, PI3K/AKT, and AMP-activated protein kinase (AMPK) activation. Interestingly, it was demonstrated that BBR has protective effects against diabetes complications, such as diabetic-induced hepatic damage, cardiovascular disorders, nephropathy, and neuropathy. Furthermore, multiple clinical trial studies have emphasized the ameliorative effects of BBR in type 2 diabetic patients.

9.
Zhongguo Gu Shang ; 35(11): 1060-4, 2022 Nov 25.
Artículo en Chino | MEDLINE | ID: mdl-36415192

RESUMEN

OBJECTIVE: To investigate the relationship between serum C1q/tumor necrosis factor-related protein-3(CTRP3) and peroxisome proliferator-activated receptor γ coactivator-1α(PGC-1α) on predictive value of expression level on fracture healing. METHODS: From January 2019 to January 2020, 80 patients with traumatic tibial plateau fractures were treated by internal fixation with support plates through the posterior approach of the knee joint. The patients were followed up for 12 months. According to the criteria for delayed fracture healing, the patients were divided into two groups:54 patients in fracture healing group included 24 males and 30 females, aged 29 to 75 years old with an average of (52.36±13.17) years;In the delayed healing group, there were 26 cases, 13 males and 13 females, aged from 29 to 75 with an average od (53.82±13.52) years. The serum levels of CTRP3, PGC-1αand 25 hydroxyvitamin D3[25(OH)D3] in patients with traumatic fracture were detected by enzyme-linked immunosorbent assay(ELISA);Blood phosphorus and calcium levels were measured by automatic biochemical analyzer, and the product of calcium and phosphorus was calculated;Pearson's method was used to analyze the correlation between serum CTRP3, PGC-1αand bone biochemical indexes in patients with delayed union one week after operation;The predictive value of serum levels of CTRP3 and PGC-1αon traumatic fracture healing was analyzed by receiver operating characteristic curve(ROC curve). RESULTS: PGC-1α, calcium phosphorus product and 25(OH)D3 in the fracture healing group were higher than those in the delayed healing group at 1 and 4 weeks after operation(P<0.05). Serum CTRP3 was positively correlated with PGC-1α(r=0.637, P<0.05) and positively correlated with calcium phosphorus product and 25(OH)D3(P<0.05). The areas under the curve(AUC) of serum ctrp3 and PGC-1α levels in predicting traumatic fracture healing were 0.845 and 0.855, respectively. The cutoff values were 188.678 pg/ml and 2.697 ng/ml, respectively. The specificity was 96.2% and 80.8%, and the sensitivity was 53.7% and 77.8%;The predicted AUC was 0.904, the specificity was 88.5%, and the sensitivity was 81.5%. CONCLUSION: The serum levels of CTRP3 and PGC-1 in patients with delayed union of traumatic fracture at 1 and 4 weeks after operation α The expression level is of certain reference value to predict the fracture healing status of patients.


Asunto(s)
Curación de Fractura , Fracturas de la Tibia , Masculino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Calcio , Fracturas de la Tibia/cirugía , Huesos , Fósforo
10.
Zhen Ci Yan Jiu ; 47(5): 435-42, 2022 May 25.
Artículo en Chino | MEDLINE | ID: mdl-35616418

RESUMEN

OBJECTIVE: To observe the effect of electroacupuncture (EA) of combined "Biao"- and "Ben"-acupoint (for treating symptoms and root causes of the disease, respectively) on the expression of kidney forkhead box O1 (FoxO1) and peroxi-some proliferator-activated receptor-γ coactivator-1α (PGC-1α) in diabetic nephropathy (DN) rats, so as to explore its potential mechanisms underlying improvement of DN. METHODS: Wistar rats were randomly divided into normal control (n=10), DN model (n=12), EA (n=11), EA+inhibitor (AS1842856 targeting FoxO1, n=11) and inhibitor (n=11) groups. The DN model was established by high fat and high glucose diet for 6 weeks and intraperitoneal injection of streptozotocin (55 mg/kg). EA (2 Hz, 1 mA) was applied to bilateral "Zusanli"(ST36), "Guanyuan"(CV4), "Fenglong" (ST40) and "Zhongwan"(CV12) for 15 min, once every other day for 8 weeks. The body mass was recorded, and blood glucose detected. The serum was sampled for detecting creatinine (Scr) content with Jaffe's assay, urea nitrogen (BUN) content with urease method. Urine albumin (ALB) and renal reactive oxygen species (ROS) contents were detected with ELISA, renal superoxide dismutase (SOD) activity with xanthine oxidase method, and renal malondialdehyde (MDA) content with thiobarbituric acid method. The renal subcellular structure was observed under transmission electron microscopy, and the expression levels of PGC-1α and FoxO1 proteins in the kidney tissue were detected using Western blot. RESULTS: Compared with the normal control group, the levels of body mass, SOD activity, and FoxO1 and PGC-1α protein expression were significantly reduced (P<0.01), while the contents of blood glucose, and serum Scr and BUN, urine ALB, renal MDA and ROS levels significantly increased in the model group (P<0.01). In comparison with the model group, the levels of body mass, SOD activity, and FoxO1 and PGC-1α expression were significantly increased in the three treatment groups except SOD, expression of FoxO1 and PGC-1α in the inhibitor group (P<0.01, P<0.05), and the contents of blood glucose, Scr, BUN, ALB, MDA and ROS were obviously decreased in the three treatment groups except ALB and ROS in the inhibitor group (P<0.01, P<0.05). The therapeutic effect of EA was notably superior to that of EA+inhibitor and inhibitor in increasing body mass, SOD activity, and FoxO1 and PGC-1α expression levels (P<0.05, P<0.01), and in down-regulating blood glucose, BUN, ALB and ROS levels (P<0.05, P<0.01), suggesting a reduction of the therapeutic effect of EA after administration of the inhibitor AS1842856 of FoxO1. Results of electron microscopy showed diffusely thickened and vague basement membrane, increased mesangial matrix, fused foot process, and reduced volume of endothelial cells with pykno-tic nucleus of the kidney tissue in the model group, which was obviously milder in both EA and EA+inhibitor groups particularly in the EA group. CONCLUSION: EA increases the expression of FoxO1 and PGC-1α in the kidneys of DN rats, thereby reducing the oxidative stress response and protecting the kidneys.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Electroacupuntura , Puntos de Acupuntura , Animales , Glucemia , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/terapia , Células Endoteliales , Riñón , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Especies Reactivas de Oxígeno , Superóxido Dismutasa/genética
11.
Biol Pharm Bull ; 45(5): 659-663, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491170

RESUMEN

Previously we showed that the water-soluble fraction of sorghum extract (SE) improves adipogenesis in 3-isobutyl-1-methylxanthine (IBMX)/dexamethasone/insulin (MDI)/thiazolidinedione (TZD)-induced 3T3-L1 preadipocytes but downregulates genes related to peroxisome proliferator-activated receptor γ (PPARγ) and adipogenesis in both MDI- and MDI/TZD-induced 3T3-L1 adipocytes. In this study, we showed that SE treatment altered the accumulation of stained lipids in 3T3-L1 adipocytes induced by MDI/troglitazone (Tro). Immunoblot analyses indicated that SE treatment reduced adipocyte protein 2 (aP2) expression and induced peroxisome proliferator-activated receptor α (PPARα) protein expression in the presence of Tro in 3T3-L1 adipocytes. MDI/Tro treatment, but not MDI treatment, of 3T3-L1 cells induced PPARγ phosphorylation at Ser273. SE downregulated PPARγ expression in MDI-induced 3T3-L1 adipocytes and did not affect its phosphorylation at Ser273 in MDI- and MDI/Tro-induced 3T3-L1 adipocytes. Therefore, SE likely promotes adipogenesis and lipid metabolism in 3T3-L1 preadipocytes by cooperating with Tro independent of PPARγ Ser273 phosphorylation.


Asunto(s)
PPAR gamma , Sorghum , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis , Animales , Hipoglucemiantes/metabolismo , Ratones , PPAR gamma/metabolismo , Fosforilación , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Sorghum/metabolismo , Troglitazona
12.
Phytomedicine ; 98: 153956, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35151213

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized clinically by cognitive deficits and pathologically by amyloid-ß (Aß) deposition and tau aggregation, as well as the brain atrophy. Esculentoside A (EsA), a neuroprotective saponin, is isolated from Phytolacca esculenta and shows potent health-promoting effects in a variety of experimental models. However, there are minimal reports on the effects of EsA on triple transgenic AD mice. PURPOSE: The current research aimed at investigating the protective effects and underlying mechanisms of EsA on the mitigation of cognitive deficits and pathology in triple transgenic AD mice. METHODS: Triple transgenic AD mice (3 × Tg-AD) of 8 months old received intraperitoneal treatment of 5 or 10 mg/kg EsA for 8 consecutive weeks. Morris water maze test and open field test were made to evaluate the cognitive function and degree of anxiety of the mice. Liquid chromatography with tandem mass spectrometry analysis was performed to characterize and to quantify EsA in the blood and brain of mice. Immunofluorescence assay and Western blot were adopted to measure the levels of peroxisome proliferator-activated receptor gamma (PPARγ) and key proteins in Aß pathology, ER stress- and apoptosis-associated pathways. The combination of EsA with PPARγ were theoretically calculated by molecular docking programs and experimentally confirmed by the bio-layer interferometry technology. RESULTS: Supplemental EsA could improve the cognitive deficits of 3 × Tg-AD mice. EsA penetrated the brain-blood barrier to exert a strong effect on AD mice, evidenced as decreasing Aß generation, reducing the degrees of oxidative and ER stress, and mitigating neuronal apoptosis through the increase of PPARγ expression. In the culture of primary neurons, addition of PPARγ inhibitor GW9662 eliminated the effects of EsA on AD pathologies. Direct combination of EsA with PPARγ were demonstrated by molecular docking programs and bio-layer interferometry technology. CONCLUSIONS: For the first time, these outcomes revealed that EsA could penetrate the brain-blood barrier to exert a strong effect on ameliorating cognitive deficits in 3 × Tg-AD mice and exert neuroprotective effects toward AD pathology via PPARγ-dependent mechanism.

13.
Crit Rev Biochem Mol Biol ; 57(2): 133-155, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34608838

RESUMEN

Methyl-Cobalamin (Cbl) derives from dietary vitamin B12 and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by MTR catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions. Impaired MS activity results from inadequate dietary intake or malabsorption of B12 and inborn errors of Cbl metabolism (IECM). The mechanisms at the origin of the high variability of clinical presentation of impaired MS activity are classically considered as the consequence of the disruption of the folate cycle and related synthesis of purines and pyrimidines and the decreased synthesis of endogenous methionine and SAM. For one decade, data on cellular and animal models of B12 deficiency and IECM have highlighted other key pathomechanisms, including altered interactome of MS with methionine synthase reductase, MMACHC, and MMADHC, endoplasmic reticulum stress, altered cell signaling, and genomic/epigenomic dysregulations. Decreased MS activity increases catalytic protein phosphatase 2A (PP2A) and produces imbalanced phosphorylation/methylation of nucleocytoplasmic RNA binding proteins, including ELAVL1/HuR protein, with subsequent nuclear sequestration of mRNAs and dramatic alteration of gene expression, including SIRT1. Decreased SAM and SIRT1 activity induce ER stress through impaired SIRT1-deacetylation of HSF1 and hypomethylation/hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), which deactivate nuclear receptors and lead to impaired energy metabolism and neuroplasticity. The reversibility of these pathomechanisms by SIRT1 agonists opens promising perspectives in the treatment of IECM outcomes resistant to conventional supplementation therapies.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Sirtuina 1 , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Animales , Ácido Fólico , Mamíferos/metabolismo , Metionina , Sirtuina 1/genética , Sirtuina 1/metabolismo , Vitamina B 12/genética , Vitamina B 12/metabolismo , Vitaminas
14.
J Nutr Biochem ; 100: 108898, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748921

RESUMEN

The adipocytes play an important role in driving the obese-state-white adipose tissue (WAT) stores the excess energy as fat, wherein brown adipose tissue (BAT) is responsible for energy expenditure via the thermoregulatory function of uncoupling protein 1 (UCP1)-the imbalance between these two onsets obesity. Moreover, the anti-obesity effects of brown-like-adipocytes (beige) in WAT are well documented. Browning, the process of transformation of energy-storing into energy-dissipating adipocytes, is a potential preventive strategy against obesity and its related diseases. In the present study, to explore an alternative source of natural products in the regulation of adipocyte transformation, we assessed the potential of theobromine (TB), a bitter alkaloid of the cacao plant, inducing browning in mice (in vivo) and primary adipocytes (in vitro). Dietary supplementation of TB significantly increased skin temperature of the inguinal region in mice and induced the expression of UCP1 protein. It also increased the expression levels of mitochondrial marker proteins in subcutaneous adipose tissues but not in visceral adipose tissues. The microarray analysis showed that TB supplementation upregulated multiple thermogenic and beige adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived primary adipocytes, TB upregulated the expression of the UCP1 protein and mitochondrial mass in a PPARγ ligand-dependent manner. It also increased the phosphorylation levels of PPARγ coactivator 1α without affecting its protein expression. These results indicate that dietary supplementation of TB induces browning in subcutaneous WAT and enhances PPARγ-induced UCP1 expression in vitro, suggesting its potential to treat obesity.


Asunto(s)
Adipocitos Beige/fisiología , Adipocitos Blancos/fisiología , Suplementos Dietéticos , PPAR gamma/metabolismo , Teobromina/administración & dosificación , Adipocitos Blancos/efectos de los fármacos , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitofagia , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación , Protones , Transducción de Señal , Temperatura Cutánea , Teobromina/farmacología , Termogénesis , Transcriptoma , Proteína Desacopladora 1/metabolismo , Aumento de Peso
15.
Front Pharmacol ; 12: 659626, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194325

RESUMEN

Objectives: Dendrobium officinale polysaccharide (DOP) is the main active ingredient in a valuable traditional Chinese medicine, which exerts several pharmacological activities including hepatoprotection and hypoglycemic effects. However, the effects of DOP on obesity-associated insulin resistance (IR) and lipid metabolism remain unknown. This study aimed to investigate the role of DOP in IR and abnormal lipid metabolism in obese mice. Methods: IR models were established using 3T3-L1 adipocytes, C2C12 myocytes, and primary cultured hepatocytes exposed to palmitate acid. After treatment with DOP, insulin-stimulated glucose uptake, glucose release, and AKT phosphorylation was detected. Fasting blood glucose, fasting serum insulin, the glucose tolerance test (GTT), and the insulin tolerance test (ITT) were measured to evaluate IR of obese mice. Lipid analysis was conducted to evaluate the effects of DOP on lipid metabolism in obese mice. Results: In vitro, DOP treatment ameliorated palmitic acid-induced IR in adipocytes, myocytes, and hepatocytes. DOP regulated cellular insulin sensitivity via the peroxisome proliferator-activated receptor-γ (PPAR-γ). Furthermore, administration of DOP significantly reduced the IR and visceral adipose tissue (VAT) inflammation of diet-induced obese (DIO) and the genetically-induced obesity mice (ob/ob) mouse models. In addition, DOP treatment attenuated the high-fat diet (HFD)-induced liver lipid accumulation by reducing liver triglycerides (TG), plasma free fatty acid (FFA), serum cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels, while increasing HDL-C levels. Conclusion: DOP could improve obesity-associated IR and abnormal lipid metabolism through its activities on PPAR-γ, and may serve as a potential therapeutic agent for obesity-associated insulin resistance and lipid metabolism disorder.

16.
Exp Physiol ; 106(9): 1961-1970, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216158

RESUMEN

NEW FINDINGS: What is the central question of this study? Does Enterococcus faecium strain R30 (R30), a new lactic acid bacterial strain for supplementation, attenuate shifts in the typology of whole muscle fibres from slow- to fast-twitch by altering the autonomic nervous system in atrophied skeletal muscles? What is the main finding and its importance? R30 supplementation may attenuate the shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres by upregulating peroxisome proliferator-activated receptor-γ coactivator-1α and activating the calcineurin-nuclear factor of activated T-cells signalling pathway, thus ameliorating the decrease in muscle endurance associated with disuse. ABSTRACT: Enterococcus faecium strain R30 (R30), a new lactic acid bacterial strain for supplementation, was hypothesized to attenuate shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres in atrophied skeletal muscles. We further postulated that the prevention of slow-to-fast fibre shifts would suppress the decreased muscle endurance associated with atrophy. To evaluate the protective effects of R30, we analysed slow-to-fast fibre shifts and disuse-associated reduced muscle endurance. R30 was administered to rats with an acclimation period of 7 days before hindlimb unloading (HU) for 2 weeks. The composition ratio of the fibre type and the expression levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), calcineurin and nuclear factor of activated T-cells (NFAT) were measured. Muscle endurance was evaluated at the end of the 2-week HU period in an in situ environment. R30 supplementation suppressed the slow-to-fast fibre switch and decreased the HU-induced expression of PGC-1α proteins and the deactivation of the calcineurin-NFAT pathway. Furthermore, R30 prevented a decrease in HU-associated muscle endurance in calf muscles. These results indicate that R30 supplementation may attenuate the shifts in the typology of whole muscle fibres from slow- to fast-twitch fibres via the upregulation of PGC-1α and the activation of the calcineurin-NFAT signalling pathway, thereby ameliorating the decrease in muscle endurance associated with disuse.


Asunto(s)
Enterococcus faecium , Animales , Suplementos Dietéticos , Enterococcus faecium/metabolismo , Suspensión Trasera/fisiología , Músculo Esquelético/fisiología , Atrofia Muscular/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas
17.
Biol Pharm Bull ; 44(5): 659-668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33952822

RESUMEN

Peroxisome proliferator-activated receptor γ (PPARγ) modulators are expected to exert anti-diabetic effects without PPARγ-related adverse effects, such as fluid retention, weight gain, and bone loss. The present study showed that the novel tetrazole derivative KY-903 exerted similar selective PPARγ partial agonist properties to INT-131, a known PPARγ modulator, in transactivation assays, and decreased plasma glucose and triglyceride levels with increases in adiponectin levels in diabetic KK-Ay mice. These effects were similar to those of pioglitazone. Pioglitazone, but not KY-903, increased adipose tissue and heart weights. In pre-adipocytes (3T3-L1), KY-903, in contrast to pioglitazone, increased adiponectin mRNA levels without adipocyte differentiation, indicating anti-diabetic effects via adiponectin without adipogenesis. In ovariectomized rats fed a high-fat diet (OVX/HFD), KY-903 and pioglitazone decreased plasma triglyceride and non-esterified fatty acid levels and increased adiponectin levels, indicating insulin sensitization via adiponectin. KY-903 reduced body weight gain and adipose tissue weight, while pioglitazone increased heart weight and markedly reduced bone mineral density. In mesenchymal stem cell-like ST2 cells, KY-903 slightly reduced osteoblast differentiation without adipocyte differentiation, while pioglitazone markedly reduced it with adipocyte differentiation. In conclusion, KY-903 is a novel PPARγ modulator that exerts anti-diabetic effects without body weight gain or cardiac hypertrophy in diabetic mice and anti-obesity effects with minor bone loss in OVX/HFD, possibly due to increases in adiponectin levels without adipogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Obesidad/tratamiento farmacológico , PPAR gamma/agonistas , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Adiponectina/análisis , Adiponectina/metabolismo , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Hipoglucemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Obesidad/sangre , Obesidad/etiología , PPAR gamma/metabolismo , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Ratas , Tetrazoles/química , Triglicéridos/sangre , Triglicéridos/metabolismo , Aumento de Peso/efectos de los fármacos
18.
Exp Ther Med ; 21(6): 573, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33850545

RESUMEN

Plantamajoside (PMS), a major component of Plantago asiatica L, has several pharmacological properties, including anti-proliferative, anti-inflammatory and anti-tumor effects. However, the effects of PMS on hepatocellular carcinoma (HCC) have yet to be determined. The aim of the present study was to investigate the effects of PMS on HCC and elucidate the underlying mechanism. All assays were conducted using 5 groups, namely control, sorafenib, and PMS 100, 50, and 25 µg/ml groups. Cell proliferation was determined by the MTT assay. Cell migration was evaluated with the wound healing and Transwell assays, respectively. Cell apoptosis and cell cycle distribution were evaluated via flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and western blotting were used to further investigate the mechanism of action of PMS. Sorafenib and PMS both significantly attenuated the proliferation and migration of HCC cells, and markedly promoted cell apoptosis. PMS induced cell cycle arrest in the G0/G1 phase. The efficacy of PMS increased in a dose-dependent manner. Further study evaluated the expression of peroxisome proliferator-activated receptor (PPARγ), nuclear factor (NF)-κB and cyclooxygenase (Cox-2) using RT-qPCR analysis and western blotting. The results demonstrated that PMS promoted the expression of PPARγ and suppressed the expression of NF-κB and Cox-2. In conclusion, PMS was shown to affect cell proliferation, migration, apoptosis and cell cycle distribution. Furthermore, PMS promoted the expression of PPARγ and inhibited the expression of NF-κB and Cox-2, which may be the mechanism underlying its biological effects. Based on the results of the present study, PMS appears to be a promising agent for HCC therapy.

19.
Zhongguo Zhen Jiu ; 41(4): 405-10, 2021 Apr 12.
Artículo en Chino | MEDLINE | ID: mdl-33909362

RESUMEN

OBJECTIVE: To investigate the protective effect of electroacupuncture (EA) at "Zusanli" (ST 36) in pregnant rats on lung dysplasia of newborn rats with intrauterine growth restriction (IUGR) induced by maternal food restriction. METHODS: Twenty-four female SD rats were randomly divided into a control group, a control+EA group, a model group and a model+EA group, 6 rats in each group. From the 10th day into pregnancy to the time of delivery, the rats in the model group and the model+EA group were given with 50% dietary restriction to prepare IUGR model. From the 10th day into pregnancy to the time of delivery, the rats in the control+EA group and the model+EA group were treated with EA at bilateral "Zusanli" (ST 36), once a day. The body weight of offspring rats was measured at birth, and the body weight and lung weight of offspring rats were measured on the 21st day after birth. The lung function was measured by small animal lung function detection system; the lung tissue morphology was observed by HE staining; the content of peroxisome proliferator activated receptor γ (PPARγ) in lung tissue was detected by ELISA. RESULTS: Compared with the control group, the body weight at birth as well as the body weight, lung weight, lung dynamic compliance (Cdyn) and PPARγ at 21 days after birth in the model group were significantly decreased (P<0.01), and the peak inspiratory flow (PIF) and inspiratory resistance (RI) were significantly increased (P<0.01); the number of alveoli was significantly decreased, and the alveolar area and alveolar septal thickness were significantly increased, and some alveoli were ruptured and fused. Compared with the model group, the body weight at birth as well as the body weight, lung weight, Cdyn and PPARγ at 21 days after birth in the model+EA group were significantly increased (P<0.01, P<0.05), and the PIF and RI were significantly reduced (P<0.05); the number of alveoli was significantly increased, and the alveolar area and alveolar septal thickness were significantly reduced, and the rupture and fusion of alveolar was improved. CONCLUSION: EA at "Zusanli" (ST 36) may protect the lung function and lung histomorphology changes by regulating the level of PPARγ of lung in IUGR rats induced by maternal food restriction.


Asunto(s)
Electroacupuntura , Puntos de Acupuntura , Animales , Femenino , Retardo del Crecimiento Fetal/terapia , Pulmón , Embarazo , Ratas , Ratas Sprague-Dawley
20.
Nutrients ; 13(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546195

RESUMEN

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is expressed in skeletal muscles and regulates systemic metabolism. Thus, nutraceuticals targeting skeletal muscle PGC-1α have attracted attention to modulate systemic metabolism. As auraptene contained in citrus fruits promotes lipid metabolism and improves mitochondrial respiration, it could increase mitochondrial function through PGC-1α. Therefore, we hypothesized that PGC-1α is activated by auraptene and investigated its effect using Citrus hassaku extract powder (CHEP) containing >80% of auraptene. C2C12 myotubes were incubated with vehicle or CHEP for 24 h; C57BL/6J mice were fed a control diet or a 0.25% (w/w) CHEP-containing diet for 5 weeks. PGC-1α protein level and mitochondrial content increased following CHEP treatment in cultured myotubes and skeletal muscles. In addition, the number of oxidative fibers increased in CHEP-fed mice. These findings suggest that CHEP-mediated PGC-1α upregulation induced mitochondrial biogenesis and fiber transformation to oxidative fibers. Furthermore, as CHEP increased the expression of the protein sirtuin 3 and of phosphorylated AMP-activated protein kinase (AMPK) and the transcriptional activity of PGC-1α, these molecules might be involved in CHEP-induced effects in skeletal muscles. Collectively, our findings indicate that CHEP mediates PGC-1α expression in skeletal muscles and may serve as a dietary supplement to prevent metabolic disorders.


Asunto(s)
Citrus/química , Mitocondrias Musculares/efectos de los fármacos , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Extractos Vegetales/farmacología , Animales , Línea Celular , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/fisiología , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Mioblastos , Oxidación-Reducción , Polvos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA