Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.249
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Pharm Pharmacol ; 76(6): 579-591, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38624082

RESUMEN

OBJECTIVES: Ranunculus L. genus contains 413 species, and it is the biggest genus in the family Ranunculaceae Juss. This review is to provide botanical characteristics, traditional uses, phytochemistry, pharmacology, toxicity, and pharmaceutical preparations of the genus Ranunculus. KEY FINDINGS: The genus Ranunculus contains flavonoids, organic acids, coumarins, lactones, glycosides, sterols, polysaccharides, and trace elements. These chemical constituents complement the pharmacological actions and work together to exert anti-inflammatory, anticancer, antitubercular, antibacterial, antimalarial, etc. Those traditional Chinese medicine characteristics, like clearing away heat and detoxification, make this genus significant in ethnic medicine. The progress in research and the development of various pharmaceutical preparations made it appear in epidemiological and clinical studies. SUMMARY: The genus Ranunculus has attracted the attention of experts and scholars in many fields due to its unique advantages. However, there are many species that are not scientifically investigated. The toxicity issues are also a huge concern. Fortunately, the toxicity can be overcome via special processes like drying or heating and by choosing a safe extraction solvent, such as water thus ensuring the safety of medication. Pharmaceutical preparations containing the plants from Ranunculus have gratifying clinical value, but they are not promoted sufficiently. Therefore, further research should be carried out to promote the genus for its health benefits to humans.


Asunto(s)
Ranunculus , Ranunculus/química , Humanos , Fitoquímicos/farmacología , Fitoquímicos/toxicidad , Fitoquímicos/aislamiento & purificación , Animales , Medicina Tradicional China/métodos , Asia , Fitoterapia , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/toxicidad , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Extractos Vegetales/química , Etnofarmacología
2.
J Med Food ; 27(6): 575-578, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38624298

RESUMEN

Taurine is a nonessential amino acid that has been increasingly consumed due to its various beneficial biological effects. Excessive taurine intake has been linked to the positive regulation of inflammatory responses and endoplasmic reticulum stress through the modulation of intracellular calcium levels. However, research on the potential adverse effects of taurine consumption on the respiratory system is limited. To address this, we investigated the respiratory responses of 6-week-old male Sprague-Dawley rats to taurine administered orally at 0, 100, 200, and 400 mg/kg. Respiratory rate, tidal volume, and minute volume were monitored in accordance with the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Harmonized Tripartite Guideline S7A for Safety Pharmacology Studies for Human Pharmaceuticals. We found that taurine administration did not significantly alter respiratory rate or tidal volume; however, a significant increase in minute volume was observed 6 h after administration of 200 mg/kg taurine.


Asunto(s)
Ratas Sprague-Dawley , Taurina , Taurina/administración & dosificación , Taurina/farmacología , Animales , Masculino , Ratas , Administración Oral , Frecuencia Respiratoria/efectos de los fármacos , Volumen de Ventilación Pulmonar/efectos de los fármacos
3.
J Ethnopharmacol ; 329: 118098, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582152

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Major Depressive Disorder (MDD) emerges as a complex psychosomatic condition, notable for its considerable suicidality and mortality rates. Increasing evidence suggests the efficacy of Chinese herbal medicine in mitigating depression symptoms and offsetting the adverse effects associated with conventional Western therapeutics. Notably, clinical trials have revealed the adjunctive antidepressant potential of Kaiyu Zhishen Decoction (KZD) alongside Western medication. However, the standalone antidepressant efficacy of KZD and its underlying mechanisms merit in-depth investigation. AIM OF THE STUDY: This research aims to elucidate the impact of KZD on MDD and delineate its mechanistic pathways through integrated network pharmacological assessments and empirical in vitro and in vivo analyses. MATERIALS AND METHODS: To ascertain the optimal antidepressant dosage and mechanism of KZD, a Chronic Unpredictable Mild Stress (CUMS)-induced depression model in mice was established to evaluate depressive behaviors. High-Performance Liquid Chromatography (HPLC) and network pharmacological approaches were employed to predict KZD's antidepressant mechanisms. Subsequently, hippocampal samples were subjected to 4D-DIA proteomic sequencing and validated through Western blot, immunofluorescence, Nissl staining, and pathway antagonist applications. Additionally, cortisol-stimulated PC12 cells were utilized to simulate neuronal damage, analyzing protein and mRNA levels of MAPK-related signals and cell proliferation markers. RESULTS: The integration of network pharmacology and HPLC identified kaempferol and quercetin as KZD's principal active compounds for MDD treatment. Proteomic and network pharmacological KEGG pathway analyses indicated the MAPK signaling pathway as a critical regulatory mechanism for KZD's therapeutic effect on MDD. KZD was observed to mitigate CUMS-induced upregulation of p-ERK/ERK, CREB, and BDNF protein expressions in hippocampal cells by attenuating oxidative stress, thereby ameliorating neuronal damage and exerting antidepressant effects. The administration of PD98059 counteracted KZD's improvements in depression-like behaviors and downregulated p-ERK/ERK and BDNF protein expressions in the hippocampus. CONCLUSIONS: This investigation corroborates KZD's pivotal, dose-dependent role in antidepressant activity. Both in vivo and in vitro experiments demonstrate KZD's capacity to modulate the ERK-CREB-BDNF signaling pathway by diminishing ROS expression induced by oxidative stress, enhancing neuronal repair, and thus, manifesting antidepressant properties. Accordingly, KZD represents a promising herbal candidate for further antidepressant research.


Asunto(s)
Antidepresivos , Factor Neurotrófico Derivado del Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Medicamentos Herbarios Chinos , Farmacología en Red , Transducción de Señal , Animales , Antidepresivos/farmacología , Medicamentos Herbarios Chinos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Células PC12 , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratas , Trastorno Depresivo Mayor/tratamiento farmacológico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Conducta Animal/efectos de los fármacos
4.
J Ethnopharmacol ; 329: 118177, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38604510

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis decumbens (Thunb.) Pers. was used as stasis-eliminating medicine traditionally to treat cardiovascular disease potentially attributed to its antithrombotic effect, but lack of pharmacological research on it. AIM OF THE STUDY: To investigate the antithrombotic effect of C. decumbens and its preliminary mechanism. MATERIALS AND METHODS: A carrageenan-induced mouse thrombus model and adenosine diphosphate stimulated platelet aggregation of rabbits were used to confirm the inhibitory effect of C. decumbens extract and compounds on thrombosis in vivo. Then, H2O2-induced human umbilical vein endothelial cells (HUVECs) injury model was further adopted to verify the effects of bioactive compounds in vitro. Moreover, in silico network pharmacology analyses and molecular docking were performed to predict the underlying mechanisms, targets, and pathways, and which were further confirmed through western blotting assay. RESULTS: The administration of total extract (TE), total alkaloids (TA) and tetrahydropalmatine (TET) resulted in a significant reduction in black tail thrombus and congestion, along with a decreasing in platelet aggregation of rabbits. A superior antithrombotic effect indicated the bioactive fraction, and then the isolated bioactive compounds, TET and protopine (PRO) increased cell survival, and decreased reactive oxygen species (ROS) and lactate dehydrogenase (LDH) release in H2O2-induced HUVECs injury model. Moreover, the two alkaloids targeted 33 major proteins and influenced 153 pathways in network pharmacology prediction. Among these, HSP90AA1, COX-2, NF-κB/p65, MMP1 and HIF-1α were the key proteins and PI3K-Akt emerged as the major signaling pathway. Further western blotting results supported that five key proteins were downregulated by the two bioactive compounds in H2O2-stimulated HUVECs model. CONCLUSION: C. decumbens exerted protective effect on thrombosis through inhibiting PI3K-Akt pathway and related key proteins, which supported the traditional use and presented potential antithrombotic alkaloids for further investigation.


Asunto(s)
Corydalis , Fibrinolíticos , Células Endoteliales de la Vena Umbilical Humana , Extractos Vegetales , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Trombosis , Animales , Corydalis/química , Conejos , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trombosis/tratamiento farmacológico , Extractos Vegetales/farmacología , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Fibrinolíticos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Simulación del Acoplamiento Molecular , Alcaloides de Berberina/farmacología , Peróxido de Hidrógeno/toxicidad , Modelos Animales de Enfermedad , Carragenina , Especies Reactivas de Oxígeno/metabolismo
5.
Front Neurol ; 15: 1321239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562423

RESUMEN

Traumatic brain injury (TBI), in any form and severity, can pose risks for developing chronic symptoms that can profoundly hinder patients' work/academic, social, and personal lives. In the past 3 decades, a multitude of pharmacological, stimulation, and exercise-based interventions have been proposed to ameliorate symptoms, memory impairment, mental fatigue, and/or sleep disturbances. However, most research is preliminary, thus limited influence on clinical practice. This review aims to systematically appraise the evidence derived from randomized controlled trials (RCT) regarding the effectiveness of pharmacological, stimulation, and exercise-based interventions in treating chronic symptoms due to TBI. Our search results indicate that despite the largest volume of literature, pharmacological interventions, especially using neurostimulant medications to treat physical, cognitive, and mental fatigue, as well as daytime sleepiness, have yielded inconsistent results, such that some studies found improvements in fatigue (e.g., Modafinil, Armodafinil) while others failed to yield the improvements after the intervention. Conversely, brain stimulation techniques (e.g., transcranial magnetic stimulation, blue light therapy) and exercise interventions were effective in ameliorating mental health symptoms and cognition. However, given that most RCTs are equipped with small sample sizes, more high-quality, larger-scale RCTs is needed.

6.
Phytomedicine ; 129: 155565, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579646

RESUMEN

BACKGROUND: Paeonia lactiflora Pall. (PL) is widely used in China as a homologous plant of medicine and food. PL flower is rich in bioactive substances with anti-inflammatory effects, while the pathogenesis of skin inflammation is complex and the specific mechanism is not clear, the current treatment of skin inflammation is mainly hormonal drugs, and hormonal drugs have obvious toxic side effects. The research on the treatment of skin inflammation by PL flowers is relatively small, so this study provides a basis for the development and utilisation of PL resources. OBJECTIVE: Our study was to investigate the interventional effects of PL flower extracts on skin inflammation and thus to understand its functional role in the treatment of skin inflammation and its molecular mechanisms. METHODS: The major active substances in PL flower extracts were investigated by the HPLC-DAD method, and the potential targets of action were predicted by network pharmacology, which was combined with in vitro experimental validation to explore the mechanism of PL flower extracts on the regulation of skin inflammation. The HPLC-DAD analysis identified seven major active components in PL flower extracts, and in response to the results, combined with the potential mechanism of network pharmacological prediction with skin inflammation, the PL flower extract is closely related to MAPK and NF-κB signaling pathways. In addition, we also investigated the interventional effects of PL flower extract on skin inflammation by western blot detection of MAPK signaling pathway and NF-κB signaling pathway proteins in cells. RESULT: Seven active components were identified and quantified from the extract of PL flowers, including Gallic acid, 1,2,3,4,6-O-Pentagalloylglucose, Oxypaeoniflorin, Paeoniflorin, Albiflorin, Benzoyloxypeoniflorin, and Rutin. It was predicted targets for the treatment of skin inflammation, with PPI showing associations with targets such as TNF, MAPK1, and IL-2. KEGG enrichment analysis revealed that the main signaling pathways involved included MAPK and T cell receptor signaling pathways. Cell experiments showed that the peony flower extract could inhibit the release of NO and inflammatory factors, as well as reduce ROS levels and inhibit cell apoptosis. Furthermore, the extract was found to inhibit the activation of the MAPK and NF-κB signaling pathways in cells. CONCLUSIONS: In this study, we found that PL flower extract can inhibit the production of cell inflammatory substances, suppress the release of inflammatory factors, and deactivate inflammatory signaling pathways, further inhibiting the production of cell inflammation. This indicates that PL flower extract has a therapeutic effect on skin inflammation.


Asunto(s)
Antiinflamatorios , Flores , Farmacología en Red , Paeonia , Extractos Vegetales , Paeonia/química , Flores/química , Cromatografía Líquida de Alta Presión , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , FN-kappa B/metabolismo , Células HaCaT , Inflamación/tratamiento farmacológico , Piel/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
7.
Phytomedicine ; 129: 155573, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583348

RESUMEN

BACKGROUND: Cholestatic hepatitis is recognized as a significant contributor to the development of liver fibrosis and cirrhosis. As a well-known classic formula for the treatment of cholestatic hepatitis, Yinchenhao decoction (YCHD) is widely used in countries in Asia, including China, Japan, and Korea. However, in recent years, a risk of liver injury has been reported from Rheum palmatum L. and Gardenia jasmonoides J.Ellis which are the main ingredients of YCHD. Therefore, the question arises whether YCHD is still safe enough for the treatment of cholestatic hepatitis or whether an optimized ratio of ingredients should be applied. These is inevitable questions for the clinical application of YCHD. PURPOSE: To provide a scientific basis for the clinical application of YCHD through a combination of meta-analysis and network pharmacology and to find the best ratio of components to ensure optimal therapeutic efficacy and safety. At the same time, a deeper understanding of the mechanisms of YCHD was explored. METHODS: We retrieved relevant trials from various databases including PubMed, Web of Science, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP and Wanfang databases up to August 2023. After screening for inclusion and exclusion criteria, we assessed efficiency, ALT, AST, and TBIL as outcome parameters. The relevant data underwent a network meta-analysis using STATA 16.0 software. Based on network pharmacology, we screened the disease targets, active ingredients, and targets related to YCHD. The targets were visualized using Cytoscape 3.9.1. Then, potential mechanisms were explored based on bioinformatic techniques. RESULTS: Twenty eligible studies were finally screened and a total of 1,591 patients who fulfilled the inclusion criteria were enrolled in the study. The meta-analysis results indicated that TG-c (treatment group c) [(Artemisia capillaris Thunb. : Gardenia jasminoides J.Ellis : Rheum palmatum L. = 10:5:2-10:5:3) + CT] was the most promising therapeutic approach, demonstrating superior efficacy and notable improvements in both AST and TBIL levels. For ALT, TG-d [(Artemisia capillaris : Gardenia jasminoides : Rheum palmatum = 5:1:1-5:2:1) + CT] exhibited the greatest potential as optimal therapy option. Based on the surface under the cumulative ranking curve (SUCRA) values, TG-c was the best therapy in terms of efficiency and improvement in TBIL levels, while TG-d was the most effective in reducing ALT levels. For AST levels, TG-e [(Artemisia capillaris : Gardenia jasminoides : Rheum palmatum = 5:2:2-5:3:3) + CT] was the most effective therapy. The comprehensive analysis revealed that TG-c exhibited the most pronounced efficacy. Combined network pharmacology, GO enrichment analysis and KEGG pathway enrichment analysis displayed that the key target genes of Artemisia capillaris, Rheum palmatum, and Gardenia jasminoides were closely involved in inflammation response, bile transport, apoptosis, oxidative stress, and regulation of leukocyte migration. Notably, bile secretion dominated the common pathway of the three herbs. On the other hand, Artemisia capillaris exhibited a unique mode of action by regulating the IL-17 signaling pathway, which may play a crucial role in its effectiveness. CONCLUSION: Based on our findings, the optimal TG-C demonstrated the most favorable overall therapeutic efficacy by increasing the dosage of Artemisia capillaris while reducing the dosage of Gardenia jasminoides and Rheum palmatum. This is attributed to the potent ability of Artemisia capillaris. to effectively modulate the IL-17 signaling pathway, thereby exerting a beneficial therapeutic effect. Conversely, Gardenia jasminoides and Rheum palmatum may potentially enhance the activation of the NF-кB signaling pathway, thereby elevating the risk of hepatotoxicity.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Metaanálisis en Red , Colestasis/tratamiento farmacológico , Rheum/química , Hepatitis/tratamiento farmacológico
8.
Biomed Chromatogr ; 38(6): e5859, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38618996

RESUMEN

The clinical effectiveness of nux-vomica in treating rheumatism and arthralgia is noteworthy; however, its nephrotoxicity has sparked global concerns. Hence, there is value in conducting studies on detoxification methods based on traditional Chinese medicine compatibility theory. Blood biochemistry, enzyme-linked immunosorbent assay, and pathological sections were used to evaluate both the nephrotoxicity of nux-vomica and the efficacy of the Jian Pi Tong Luo (JPTL) compound in mitigating this toxicity. Kidney metabolomics, using ultra-high-performance liquid chromatography-quadrupole-time-of-flight-MS (UPLC-Q-TOF-MS), was applied to elucidate the alterations in small-molecule metabolites in vivo. In addition, network pharmacology analysis was used to verify the mechanism and pathways underlying the nephrotoxicity associated with nux-vomica. Finally, essential targets were validated through molecular docking and western blotting. The findings indicated significant nephrotoxicity associated with nux-vomica, while the JPTL compound demonstrated the ability to alleviate this toxicity. The mechanism potentially involves nux-vomica activating the "PTGS2/CYP2C9-phosphatidylcholine-arachidonic acid metabolic pathway." This study establishes a scientific foundation for the clinical use of nux-vomica and lays groundwork for further research and safety assessment of toxic Chinese herbal medicines.


Asunto(s)
Ácido Araquidónico , Ciclooxigenasa 2 , Medicamentos Herbarios Chinos , Riñón , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Riñón/efectos de los fármacos , Riñón/metabolismo , Ácido Araquidónico/metabolismo , Masculino , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2C9/genética , Cromatografía Líquida de Alta Presión/métodos , Ratas Sprague-Dawley , Ratas , Metabolómica/métodos , Ratones
9.
Phytochemistry ; 222: 114096, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641141

RESUMEN

Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.


Asunto(s)
Forsythia , Control de Calidad , Forsythia/química , Humanos , Frutas/química , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/aislamiento & purificación , Animales , Estructura Molecular
10.
Phytomedicine ; 129: 155596, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626646

RESUMEN

BACKGROUND: Traditional Chinese medicine (TCM) is useful in disease treatment and prevention. Genipin is an active TCM compound used to treat diabetic retinopathy (DR). In this study, a network pharmacology (NP)-based approach was employed to investigate the therapeutic mechanisms underlying genipin administration in DR. METHODS: The potential targets of DR were identified using the gene expression omnibus (GEO) database. TCM database screening and NP were used to predict the potential active targets and pathways of genipin in DR. Cell viability was tested in vitro to determine the effects of different doses of glucose and genipin on Human Retinal Microvascular Endothelial Cells (hRMECs). CCK-8, CCK-F, colony formation, CellTiter-Lum, Annexin V-FITC, wound healing, Transwell, tube-forming, reactive oxygen species (ROS), and other assay kits were used to detect the effects of genipin on hRMECs during high levels of glucose. In vivo, a streptozotocin (STZ)-mouse intraocular genipin injection (IOI.) model was used to explore the effects of genipin on diabetes-induced retinal dysfunction. Western blotting was performed to identify the cytokines involved in proliferation, apoptosis, angiogenesis, ROS, and inflammation. The protein expression of the AKT/ PI3K/ HIF-1α and AGEs/ RAGE pathways was also examined. RESULTS: Approximately 14 types of TCM, and nearly 300 active ingredients, including genipin, were identified. The NP approach successfully identified the HIF-1α and AGEs-RAGE pathways, with the EGR1 and UCP2 genes, as key targets of genipin in DR. In the in vitro and in vivo models, we discovered that high glucose increased cell proliferation, apoptosis, angiogenesis, ROS, and inflammation. However, genipin application regulated cell proliferation and apoptosis, inhibited angiogenesis, and reduced ROS and inflammation in the HRMECs exposed to high glucose. Furthermore, the retinal thickness in the genipin-treated group was lower than that in the untreated group. AKT/ PI3K/ HIF-1α and AGEs/ RAGE signaling was increased by high glucose levels; however, genipin treatment decreased AKT/ PI3K and AGEs/ RAGE pathway expressions. Genipin also increased HIF-1α phosphorylation, oxidative phosphorylation of ATP synthesis, lipid peroxidation, and the upregulation of oxidoreductase. Genipin was found to protect HG-induced hRMECs and the retina of STZ-mice, based on; 1 the inhibition of UCP2 and Glut1 decreased intracellular glucose, and glycosylation; 2 the increased presence of HIF-1α, which increased oxidative phosphorylation and decreased substrate phosphorylation; 3 the increase in oxidative phosphorylation from ATP synthesis increased lipid peroxidation and oxidoreductase activity, and; 4 the parallel effect of phosphorylation and glycosylation on vascular endothelial growth factor (VEGF), MMP9, and Scg3. CONCLUSION: Based on NP, we demonstrated the potential targets and pathways of genipin in the treatment of DR and confirmed its effective molecular mechanism in vitro and in vivo. Genipin protects cells and tissues from high glucose levels by regulating phosphorylation and glycosylation. The activation of the HIF-1α pathway can also be used to treat DR. Our study provides new insights into the key genes and pathways associated with the prognosis and pathogenesis of DR.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Células Endoteliales , Productos Finales de Glicación Avanzada , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Glucosa/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Iridoides/farmacología , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Curr Pharm Des ; 30(17): 1326-1340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616754

RESUMEN

BACKGROUND: Traditional Chinese medicine Scutellaria Baicalensis (SB), one of the clinical firstline heat-clearing drugs, has obvious symptomatic advantages for hepatic fibrosis with dampness-heat stasis as its syndrome. We aim to predict and validate the potential mechanism of Scutellaria baicalensis active ingredients against liver fibrosis more scientifically and effectively. METHODS: The underlying mechanism of Scutellaria baicalensis in inhibiting hepatic fibrosis was studied by applying network pharmacology, molecular docking and molecular dynamics simulation. Expression levels of markers in activated Hepatic Stellate Cells (HSC) after administration of three Scutellaria baicalensis extracts were determined by Western blot and Real-time PCR, respectively, in order to verify the anti-fibrosis effect of the active ingredients Results: There are 164 common targets of drugs and diseases screened and 115 signaling pathways obtained, which were mainly associated with protein phosphorylation, senescence and negative regulation of the apoptotic process. Western blot and Real-time PCR showed that Scutellaria baicalensis extracts could reduce the expression of HSC activation markers, and Oroxylin A had the strongest inhibitory effect on it. Molecular docking results showed that Oroxylin A had high binding activity to target proteins. Molecular dynamics simulation demonstrates promising stability of the Oroxylin A-AKT1 complex over the simulated MD time of 200 ns. CONCLUSION: Scutellaria baicalensis active ingredients may inhibit HSC proliferation, reduce the generation of pro-inflammatory factors and block the anti-inflammatory effect of inflammatory signal transduction by inducing HSC apoptosis and senescence, thus achieving the effect of anti-fibrosis.


Asunto(s)
Cirrosis Hepática , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacología en Red , Extractos Vegetales , Scutellaria baicalensis , Scutellaria baicalensis/química , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Humanos , Animales , Medicina Tradicional China
13.
Curr Pharm Des ; 30(17): 1354-1376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571354

RESUMEN

BACKGROUND: Herb pair Bletilla striata-Galla chinensis (BS-GC) is a classic combination of topical traditional Chinese medicine formulae in the treatment of chronic skin ulcers (CSUs). OBJECTIVE: The aim of this study is to explore the effective active ingredients of BS-GC, as well as the core targets and signal transduction pathways of its action on CSUs. METHODS: The ingredients of BS-GC were obtained from TCMSP and HERB databases. The targets of all active ingredients were retrieved from the SwissTargetPrediction database. The targets of CSUs were obtained from OMIM, GeneCards, Drugbank, and DisGeNET databases. A drug-disease target protein-protein interaction (PPI) network was constructed to select the most core targets, and an herb-ingredient-target network was built by utilizing Cytoscape 3.7.2. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG) analysis and verified the results of network pharmacology through molecular docking. RESULTS: A total of 40 active ingredients from the herb pair BS-GC were initially screened, and a total of 528 targets were retrieved. Meanwhile, the total number of CSU targets was 1032. Then, the number of common targets between BS-GC and CSUs was 107. The 13 core targets of herb pair BS-GC with CSUs were filtered out according to the PPI network, including AKT1, TNF, EGFR, BCL2, HIF1A, MMP-9, etc. The 5 main core active ingredients were 1-(4-Hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene-4,7-diol, 1-(4- Hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol, physcion, dihydromyricetin, and myricetin. The main biological processes were inflammation, oxidative stress, and immune response, involving the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, NF-κB signaling pathway, and calcium signaling pathway. Molecular docking results showed good binding activity between the 5 main core active ingredients and 13 core targets. CONCLUSION: This study predicted the core targets and signal transduction pathways in the treatment of CSUs to provide a reference for further molecular mechanism research.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Úlcera Cutánea , Humanos , Úlcera Cutánea/tratamiento farmacológico , Úlcera Cutánea/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Enfermedad Crónica , Medicina Tradicional China , Orchidaceae/química , Mapas de Interacción de Proteínas/efectos de los fármacos , Taninos
14.
Curr Pharm Des ; 30(16): 1279-1293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571356

RESUMEN

BACKGROUND: A classic Chinese medicine decoction, Pinellia ternata (Thunb.) Breit.-Zingiber officinale Roscoe (Ban-Xia and Sheng-Jiang in Chinese) decoction (PZD), has shown significant therapeutic effects on lung cancer. OBJECTIVE: This study aimed to explore and elucidate the mechanism of action of PZD on lung cancer using network pharmacology methods. METHODS: Active compounds were selected according to the ADME parameters recorded in the TCMSP database. Potential pathways related to genes were identified through GO and KEGG analysis. The compoundtarget network was constructed by using Cytoscape 3.7.1 software, and the core common targets were obtained by protein-protein interaction (PPI) network analysis. Batch molecular docking of small molecule compounds and target proteins was carried out by using the AutoDock Vina program. Different concentrations of PZD water extracts (10, 20, 40, 80, and 160 µg/mL) were used on lung cancer cells. Moreover, MTT and Transwell experiments were conducted to validate the prominent therapeutic effects of PZD on lung cancer cell H1299. RESULTS: A total of 381 components in PZD were screened, of which 16 were selected as bioactive compounds. The compound-target network consisting of 16 compounds and 79 common core targets was constructed. MTT experiment showed that the PZD extract could inhibit the cell proliferation of NCI-H1299 cells, and the IC50 was calculated as 97.34 ± 6.14 µg/mL. Transwell and wound-healing experiments showed that the PZD could significantly decrease cell migration and invasion at concentrations of 80 and 160 µg/mL, respectively. The in vitro experiments confirmed that PZD had significant therapeutic effects on lung cancer cells, mainly through the PI3K/AKT signaling pathway. CONCLUSION: PZD could inhibit the cell proliferation, migration, and invasion of NCI-H1299 cells partially through the PI3K/AKT signaling pathway. These findings suggested that PZD might be a potential treatment strategy for lung cancer patients.


Asunto(s)
Movimiento Celular , Proliferación Celular , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Farmacología en Red , Humanos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Invasividad Neoplásica , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Simulación del Acoplamiento Molecular , Células Tumorales Cultivadas
15.
Curr Pharm Des ; 30(16): 1247-1264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584551

RESUMEN

BACKGROUND: Compound Danshen dripping pills (CDDP), a traditional Chinese medicine, has had an extensive application in the treatment of angina pectoris (AP) in China. However, research on the bioactive ingredients and underlying mechanisms of CDDP in AP remains unclear. OBJECTIVE: In the present study, we explored the major chemical components and potential molecular mechanisms linked to the anti-angina effects of CDDP through the application of network pharmacology and molecular docking. METHODS: The potential targets of active ingredients in CDDP were sourced from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and the Swiss Target Prediction Database (STPD). Additionally, targets related to angina pectoris (AP) were retrieved from various databases, including Gene Cards, DisGeNET, Dis Genet, the Drug Bank database (DBD), and the Therapeutic Target Database (TDD). Protein- protein interaction networks were also established, and core targets were identified based on their topological significance. GO enrichment analysis and KEGG pathway analysis were conducted using the R software. Interactions between active ingredients and potential targets selected through the above process were investigated through molecular docking. RESULTS: Seventy-six active ingredients were selected with the following criteria: OB ≥ 30%, DL ≥ 0.18. 383 targets of CDDP and 1488 targets on AP were gathered, respectively. Afterwards, 194 common targets of CDDP and anti-AP targets were defined, of which 12 were core targets. GO enrichment analysis indicated that CDDP acted on AP by response to lipopolysaccharide, regulating the reactive oxygen species and metal ion metabolism, and epithelial cell proliferation. In addition, KEGG enrichment analysis indicated that the signaling pathways were notably enriched in lipid and atherosclerosis, fluid shear stress and atherosclerosis, IL-17 signaling pathway, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, and TNF signaling pathway. Moreover, the molecular docking manifested excellent binding capacity between the active ingredients and targets on AP. CONCLUSION: This study comprehensively illustrated the bioactive, potential targets, and molecular mechanisms of CDDP against AP, offering fresh perspectives into the molecular mechanisms of CDDP in preventing and treating AP.


Asunto(s)
Angina de Pecho , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Salvia miltiorrhiza , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Humanos , Salvia miltiorrhiza/química , Angina de Pecho/tratamiento farmacológico , Angina de Pecho/metabolismo , Medicina Tradicional China , Canfanos , Panax notoginseng
16.
Front Pharmacol ; 15: 1374988, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560356

RESUMEN

Background: This study will explore the therapeutic value of traditional Chinese medicine (TCM) in Hepatocellular Carcinoma (HCC) through meta-analysis, combined with network pharmacology analysis. Methods: The results of randomized controlled trials on TCM and HCC were retrieved and summarized from multiple databases. The effective active com-pounds and target genes of the high-frequency TCM were obtained using the TCMSP database, and disease targets of HCC were acquired through the public disease database. The network pharmacology analysis was used to get the core genes and investigate the potential oncogenic molecular mechanism. Results: A total of 14 meta-analysis studies with 1,831 patients suggested that therapy combined TCM is associated with better clinical efficacy and survival prognosis, as well as avoiding many adverse events. A total of 156 compounds, 247 herbal target genes and 36 core genes were identified. The function analysis suggested above genes may participate development in HCC through regulating some pathways, such as HIF-1 pathway and PD-L1 immune-related pathway. Conclusion: TCM, as a novel, safe, and effective multi-mechanism therapy, holds greater value in the treatment of HCC.

17.
Heliyon ; 10(7): e28736, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586342

RESUMEN

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that seriously affects the life quality of patients. As a patent medicine of Chinese traditional medicine, YuXueBi capsule (YXBC) is widely used for treating RA with significant effects. However, its active compounds and therapeutic mechanisms are not fully illuminated, encumbering the satisfactory clinical application. In this study, we developed a method for identifying the chemical compounds of YXBC and the absorbed compounds into blood of rats using ultra performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) combined with UNIFI analysis software. A total of 58 compounds in YXBC were unambiguously or tentatively identified, 16 compounds from which were found in serum of rats after administration of YXBC. By network pharmacology, these prototype compounds identified in serum were predicted to regulate 30 main pathways (including HIF-1 signaling pathway, neuroactive ligand-receptor interaction, IL-17 signaling pathway, and so on) through 146 targets, resulting in promoting blood circulation and removing blood stasis, analgesia, and anti-inflammatory activities. This study provides a scientific basis for the clinical efficacy of YXBC in the treatment of RA.

18.
Heliyon ; 10(7): e28582, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586416

RESUMEN

The combination of Chaidangbo (CDB) is an antidepressant traditional Chinese medicine (TCM) prescription simplified by Xiaoyaosan (a classic antidepressant TCM prescription) through dismantling research, which has the effect of dispersing stagnated liver qi and nourishing blood in TCM theory. Although the antidepressant effect of CBD has been confirmed in animal studies, the material basis and possible molecular mechanism for antidepressant activity in CBD have not been clearly elucidated. Herein, we investigated the effects and potential mechanisms of CDB antidepressant fraction (petroleum ether fraction of CDB, PEFC) on chronic unpredictable mild stress (CUMS)-induced depression-like behavior in mice using network pharmacology and metabolomics. First, a UPLC-QE/MS was employed to identify the components of PEFC. To extract active ingredients, SwissADME screening was used to the real PEFC components that were found. Potential PEFC antidepressant targets were predicted based on a network pharmacology approach, and a pathway enrichment analysis was performed for the predicted targets. Afterward, a CUMS mouse depression model was established and LC-MS-based untargeted hippocampal metabolomics was performed to identify differential metabolites, and related metabolic pathways. Finally, the protein expressions in mouse hippocampi were determined by Western blot to validate the network pharmacology and metabolomics deduction. A total of 16 active compounds were screened in SwissADME that acted on 73 core targets of depression, including STAT3, MAPKs, and NR3C1; KEGG enrichment analysis showed that PEFC modulated signaling pathways such as PI3K-Akt signaling pathway, endocrine resistance, and MAPK to exert antidepressant effects. PEFC significantly reversed abnormalities of hippocampus metabolites in CUMS mice, mainly affecting the synthesis and metabolism of glycine, serine, and threonine, impacting catecholamine transfer and cholinergic synapses and regulating the activity of the mTOR signaling pathway. Furthermore, Western blot analysis confirmed that PEFC significantly influenced the main protein levels of the PI3K/Akt/mTOR signaling pathways in the hippocampus of mice subjected to CUMS. This study integrated metabolomics, network pharmacology and biological verification to explore the potential mechanism of PEFC in treating depression, which is related to the regulation of amino acid metabolism dysfunction and the activation of PI3K/Akt/mTOR signaling pathways in the hippocampus. The comprehensive strategy also provided a reasonable way for unveiling the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in TCM with antidepressant effect.

19.
Heliyon ; 10(7): e28833, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576568

RESUMEN

Background: Globally, gastric cancer (GC) is recognized as the third leading cause of cancer-related deaths and the fifth most prevalent malignant disease. Multiple studies have indicated that Hedyotis diffusa Willd, in pinyin, called Bai Hua She Cao (BHSSC), a traditional Chinese medicine (TCM) is an herbal remedy for cancer treatment. However, the specific mechanisms underlying its anti-tumor properties and mode of action are still unclear. Methods: To determine the role of BHSSC in GC, candidate target genes were selected from The Encyclopedia of Traditional Chinese Medicine (ETCM) and analyzed using network pharmacology, bioinformatics, and experimental validation. Differentially expressed genes (DEGs) associated with gastric cancer were obtained from RNA sequencing (RNA-seq) data sourced from The Cancer Genome Atlas-Stomach adenocarcinoma (TCGA-STAD). The Reactome Pathway was examined using Analysis Tools, while KEGG pathways were analyzed using KOBAS. Gene Ontology (GO) evaluations were performed using WebGestalt and DAVID. The relationships between proteins were investigated using the STRING database. Furthermore, cell viability, colony formation, and cell migration ability were conducted in gastric cancer cells, BGC-823 and MGC-803. Results: Network pharmacology and bioinformatics analyses revealed a significant association between BHSSC and metabolic pathways. In vitro experiments demonstrated that BHSSC effectively suppressed gastric cancer cell proliferation and colony formation, inhibited cell migration, and activated the endoplasmic reticulum (ER) stress. Furthermore, it was found that enhancement of the expression of IRE1α and BIP is the mechanism by which BHSSC activates ER stress. Conclusions: The findings suggest that BHSSC exerts its effects through modulation of metabolic pathways, leading to the suppression of cell proliferation, inhibition of cell migration, and activation of the endoplasmic reticulum. These results provide valuable insights into the mechanisms underlying the therapeutic effects of BHSSC in GC and support its potential as a novel treatment option.

20.
Front Plant Sci ; 15: 1268101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576783

RESUMEN

Plants from the Sceletium genus (Aizoaceae) have been traditionally used for millennia by the Khoe and Khoen people in southern Africa, as an appetite suppressant as well as a mood elevator. In more recent times, this mood-elevating activity has been commercialised in the South African natural products industry for the treatment of anxiety and depression, with several products available both locally and abroad. Research on this species has seen rapid growth with advancements in analytical and pharmacological tools, in an effort to understand the composition and biological activity. The Web of Science (WoS) database was searched for articles related to 'Sceletium' and 'Mesembrine'. These data were additionally analysed by bibliometric software (VOSviewer) to generate term maps and author associations. The thematic areas with the most citations were South African Traditional Medicine for mental health (110) and anxiolytic agents (75). Pioneer studies in the genus focused on chemical structural isolation, purification, and characterisation and techniques such as thin layer chromatography, liquid chromatography (HPLC, UPLC, and more recently, LC-MS), gas chromatography mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR) to study mesembrine alkaloids. Different laboratories have used a diverse range of extraction and preanalytical methods that became routinely favoured in the analysis of the main metabolites (mesembrine, mesembranol, mesembranone, and Sceletium A4) in their respective experimental settings. In contrast with previous reviews, this paper identified gaps in the research field, being a lack of toxicology assays, a deficit of clinical assessments, too few bioavailability studies, and little to no investigation into the minor alkaloid groups found in Sceletium. Future studies are likely to see innovations in analytical techniques like leaf spray mass spectrometry and direct analysis in real-time ionisation coupled with high-resolution time-of-flight mass spectrometry (DART-HR-TOF-MS) for rapid alkaloid identification and quality control purposes. While S. tortuosum has been the primary focus, studying other Sceletium species may aid in establishing chemotaxonomic relationships and addressing challenges with species misidentification. This research can benefit the nutraceutical industry and conservation efforts for the entire genus. At present, little to no pharmacological information is available in terms of the molecular physiological effects of mesembrine alkaloids in medical clinical settings. Research in these fields is expected to increase due to the growing interest in S. tortuosum as a herbal supplement and the potential development of mesembrine alkaloids into pharmaceutical drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA