Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611682

RESUMEN

Turner Syndrome (TS) is a rare genetic disorder that affects females when one of the X chromosomes is partially or completely missing. Due to high genetic and phenotypic variability, TS diagnosis is challenging and is often delayed until adolescence, resulting in poor clinical management. Numerous oral, dental and craniofacial anomalies have been associated with TS, yet a comprehensive description is still lacking. This study addresses this gap through a detailed analysis of oral health and craniofacial characteristics in a cohort of 15 females with TS and their first-degree relatives. Subjects with TS ranged from 3 to 48 years old, none showed evidence of periodontal disease and only the youngest was in mixed dentition. Using the Multifunction System, we identified an aggregation of multiple signs and symptoms in each TS subject, including tooth anomalies (supernumerary molars, agenesis, microdontia, enamel defects, alterations in eruption patterns -advanced and delayed for chronological age-, crowding, rotations and transpositions), malocclusion (class II/1 and II/2) and Class II facial profile, while relatives exhibited fewer manifestations. The early detection of these signs and symptoms is crucial for appropriate referral and the optimal clinical management of TS, especially during the critical period of 9 to 10 years when congenital dental anomalies appear. The use of an established taxonomy to describe these phenotypic features is essential for early detection. Multidisciplinary teams are required to ensure holistic care management in rare diseases like TS.

2.
Nephrology (Carlton) ; 29(8): 541-546, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38584358

RESUMEN

Townes-Brocks syndrome (TBS) is an autosomal dominant disorder characterised by the triad of anorectal, thumb, and ear malformations. It may also be accompanied by defects in kidney, heart, eyes, hearing, and feet. TBS has been demonstrated to result from heterozygous variants in the SALL1 gene, which encodes zinc finger protein believed to function as a transcriptional repressor. The clinical characteristics of an atypical TBS phenotype patient from a Chinese family are described, with predominant manifestations including external ear dysplasia, unilateral renal hypoplasia with mild renal dysfunction, and hearing impairment. A novel heterozygous variant c.3060T>A (p.Tyr1020*) in exon 2 of the SALL1 gene was identified in this proband. Pyrosequencing of the complementary DNA of the proband revealed that the variant transcript accounted for 48% of the total transcripts in peripheral leukocytes, indicating that this variant transcript has not undergone nonsense-mediated mRNA decay. This variant c.3060T > A is located at the terminal end of exon 2, proximal to the 3' end of the SALL1 gene, and exerts a relatively minor impact on protein function. We suggest that the atypical TBS phenotype observed in the proband may be attributed to the truncated protein retaining partial SALL1 function.


Asunto(s)
Anomalías Múltiples , Pérdida Auditiva Sensorineural , Factores de Transcripción , Femenino , Humanos , Masculino , Anomalías Múltiples/genética , Ano Imperforado/genética , Ano Imperforado/diagnóstico , China , Análisis Mutacional de ADN , Oído/anomalías , Pueblos del Este de Asia/genética , Predisposición Genética a la Enfermedad , Herencia , Heterocigoto , Mutación , Linaje , Fenotipo , Pulgar/anomalías , Fístula Traqueoesofágica/genética , Factores de Transcripción/genética
3.
Appl Environ Microbiol ; 90(5): e0026824, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38619268

RESUMEN

A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.


Asunto(s)
Dióxido de Carbono , Methanobacteriaceae , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , ARN Ribosómico 16S/genética , Genoma Arqueal , Filogenia , Fenotipo , Aguas Residuales/microbiología , Metano/metabolismo , Nutrientes/metabolismo
4.
Ther Clin Risk Manag ; 20: 151-160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434107

RESUMEN

Purpose: Herbal medicines are occasionally used in combination with conventional antidepressants to mitigate various depression-associated symptoms. However, there is limited information on herb-antidepressant interactions. In this study, we investigated the pharmacokinetic (PK) effects of four herbal medicines (Gami-soyosan, Banhasasim-tang, Ojeok-san, and Bojungikgi-tang) on escitalopram, a commonly used antidepressant. Patients and Methods: In this open-label, fixed-sequence, three-period, crossover study, 18 participants were enrolled and divided into two groups. Each group received a 10 mg oral dose of escitalopram in period 1. Participants took escitalopram once daily and their assigned herbal medicines thrice a day for 7 d in periods 2 (group 1: Gami-soyosan, group 2: Ojeok-san) and 3 (group 1: Banhasasim-tang; group 2: Bojungikgi-tang). The primary endpoints were Cmax,ss and AUCtau,ss of escitalopram. Cmax,ss and AUCtau,ss in period 1 were obtained using nonparametric superposition from single-dose data. The PK endpoints were classified according to the CYP2C19 phenotype. Results: Of 18 participants, 16 completed the study. Systemic exposure to escitalopram resulted in a minor increase in the presence of each herbal medicine. The geometric mean ratios (GMRs, combination with herbal medicines/escitalopram monotherapy) and their 90% confidence intervals (CIs) for Cmax,ss and AUCtau,ss were as follows: Gamisoyosan- 1.1454 (0.9201, 1.4258) and 1.0749 (0.8084, 1.4291), Banhasasim-tang-1.0470 (0.7779, 1.4092) and 1.0465 (0.7035, 1.5568), Ojeok-san-1.1204 (0.8744, 1.4357) and 1.1267 (0.8466, 1.4996), and Bojungikgi-tang-1.1264 (0.8594, 1.4762) and 1.1400 (0.8515, 1.5261), respectively. Furthermore, no significant differences in the GMRs of Cmax,ss and AUCtau,ss were observed across different CYP2C19 phenotypes in any of the groups. Conclusion: The co-administration of escitalopram with Gami-soyosan, Banhasasim-tang, Ojeok-san, or Bojungikgi-tang did not exert significant PK effects on escitalopram. These findings provide valuable insights into the safe use of herbal medicines along with escitalopram.

5.
Front Genet ; 15: 1333964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322025

RESUMEN

Introduction: Cannabis sativa is utilized mainly for palliative care worldwide. Ovarian cancer (OC) is a lethal gynecologic cancer. A particular cannabis extract fraction ('F7') and the Poly(ADP-Ribose) Polymerase 1 (PARP1) inhibitor niraparib act synergistically to promote OC cell apoptosis. Here we identified genetic pathways that are altered by the synergistic treatment in OC cell lines Caov3 and OVCAR3. Materials and methods: Gene expression profiles were determined by RNA sequencing and quantitative PCR. Microscopy was used to determine actin arrangement, a scratch assay to determine cell migration and flow cytometry to determine apoptosis, cell cycle and aldehyde dehydrogenase (ALDH) activity. Western blotting was used to determine protein levels. Results: Gene expression results suggested variations in gene expression between the two cell lines examined. Multiple genetic pathways, including Hippo/Wnt, TGF-ß/Activin and MAPK were enriched with genes differentially expressed by niraparib and/or F7 treatments in both cell lines. Niraparib + F7 treatment led to cell cycle arrest and endoplasmic reticulum (ER) stress, inhibited cell migration, reduced the % of ALDH positive cells in the population and enhanced PARP1 cleavage. Conclusion: The synergistic effect of the niraparib + F7 may result from the treatment affecting multiple genetic pathways involving cell death and reducing mesenchymal characteristics.

6.
Nutrients ; 16(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398854

RESUMEN

Maca (Lepidium meyenii, Lepidium peruvianum) is part of the Brassicaceae family and grows at high altitudes in the Peruvian Andes mountain range (3500-5000 m). Historically, it has been used as a nutrient-dense food and for its medicinal properties, primarily in enhancing energy and fertility. Scientific research has validated these traditional uses and other clinical applications by elucidating maca's mechanisms of action, nutrition, and phytochemical content. However, research over the last twenty years has identified up to seventeen different colors (phenotypes) of maca. The color, hypocotyl size, growing location, cultivation, and post-harvest processing methods can have a significant effect on the nutrition content, phytochemical profile, and clinical application. Yet, research differentiating the colors of maca and clinical applications remains limited. In this review, research on the nutrition, phytochemicals, and various colors of maca, including black, red, yellow (predominant colors), purple, gray (lesser-known colors), and any combination of colors, including proprietary formulations, will be discussed based on available preclinical and clinical trials. The gaps, deficiencies, and conflicts in the studies will be detailed, along with quality, safety, and efficacy criteria, highlighting the need for future research to specify all these factors of the maca used in publications.


Asunto(s)
Lepidium , Extractos Vegetales , Extractos Vegetales/farmacología , Fertilidad , Estado Nutricional , Perú
7.
Microorganisms ; 12(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38399731

RESUMEN

Some insertion sequence (IS) elements were actively transposed using oxidative stress conditions, including gamma irradiation and hydrogen peroxide treatment, in Deinococcus geothermalis, a radiation-resistant bacterium. D. geothermalis wild-type (WT), sigma factor gene-disrupted (∆dgeo_0606), and LysR gene-disrupted (∆dgeo_1692) mutants were examined for IS induction that resulted in non-pigmented colonies after gamma irradiation (5 kGy) exposure. The loss of pigmentation occurred because dgeo_0524, which encodes a phytoene desaturase in the carotenoid pathway, was disrupted by the transposition of IS elements. The types and loci of the IS elements were identified as ISDge2 and ISDge6 in the ∆dgeo_0606 mutant and ISDge5 and ISDge7 in the ∆dgeo_1692 mutant, but were not identified in the WT strain. Furthermore, 80 and 100 mM H2O2 treatments induced different transpositions of IS elements in ∆dgeo_0606 (ISDge5, ISDge6, and ISDge7) and WT (ISDge6). However, no IS transposition was observed in the ∆dgeo_1692 mutant. The complementary strain of the ∆dgeo_0606 mutation showed recovery effects in the viability assay; however, the growth-delayed curve did not return because the neighboring gene dgeo_0607 was overexpressed, probably acting as an anti-sigma factor. The expression levels of certain transposases, recognized as pivotal contributors to IS transposition, did not precisely correlate with active transposition in varying oxidation environments. Nevertheless, these findings suggest that specific IS elements integrated into dgeo_0524 in a target-gene-deficient and oxidation-source-dependent manner.

8.
Pediatr Int ; 66(1): e15726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38299772

RESUMEN

BACKGROUND: Biotinidase deficiency is caused by absent activity of the biotinidase, encoded by the biotinidase gene (BTD). Affected individuals cannot recycle the biotin, leading to heterogeneous symptoms that are primarily neurological and cutaneous. Early treatment with biotin supplementation can prevent irreversible neurological damage and is recommended for patients with profound deficiency, defined as enzyme activity <10% mean normal (MN). Molecular testing has been utilized along with biochemical analysis for diagnosis and management. In this study, our objective was to correlate biochemical phenotype/enzyme activity to BTD genotype in patients for whom both enzyme and molecular testing were performed at our lab, and to review how the correlations inform on variant severity. METHODS: We analyzed results of biotinidase enzyme analysis and BTD gene sequencing in 407 patients where samples were submitted to our laboratory from 2008 to 2020. RESULTS: We identified 84 BTD variants; the most common was c.1330G>C, and 19/84 were novel BTD variants. A total of 36 patients had enzyme activity <10% of MN and the most common variant found in this group was c.528G>T. No variant was reported in one patient in the profound deficiency group. The most common variant found in patients with enzyme activity more than 10% MN was c.1330G>C. CONCLUSIONS: Although enzyme activity alone may be adequate for diagnosing profound biotinidase deficiency, molecular testing is necessary for accurate carrier screening and in cases where the enzyme activity falls in the range where partial deficiency and carrier status cannot be discriminated.


Asunto(s)
Deficiencia de Biotinidasa , Humanos , Recién Nacido , Biotinidasa/genética , Deficiencia de Biotinidasa/diagnóstico , Deficiencia de Biotinidasa/genética , Biotina/uso terapéutico , Biotina/genética , Mutación , Genotipo , Tamizaje Neonatal
9.
Phytochemistry ; 220: 114005, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309451

RESUMEN

Chemical investigation of ethyl acetate bark extracts of Indigofera ammoxylum red and white phenotypes led to the bio-guided isolation of four previously undescribed flavonoids, named (2S,3R)-3',7-dihydroxy-4',6-dimethoxyflavanol (1), (2S,3R)-6-methoxy-7-hydroxyflavanol (2), 2',3',7-trihydroxy-4',6-dimethoxyisoflavone (7) and 2',5' -dimethoxy-4',5,7-trihydroxyisoflavanone (8), along with 14 known compounds (3-6 and 9-18). The previously undescribed structures were characterized based on NMR, HRESIMS, UV and IR data. Published spectroscopic data were used to deduce the structure of the known compounds. Eleven of the 18 isolated metabolites were evaluated for anti-inflammatory activity and cytotoxic activity against human liver carcinoma cells and human colon and colorectal adenocarcinoma cells. All tested compounds showed an anti-inflammatory activity (IC50 NO < 25 µg/mL), and compounds 2 and 3 were more selective than the positive control dexamethasone. Afromorsin (6) showed promising cytotoxic properties against both cancer cell lines (IC50 18.9 and 11.4 µg/mL). Feature-based molecular networking approach applied to bark and leaves extracts of the two phenotypes allowed to detect bioactive analogues, belonging to the families of flavones, isoflavones, flavanones, flavanols and flavonols, and to explore the chemodiversity of the species. The red and white phenotypes have a similar composition, whereas bark and leaves contain specific chemical entities. Finally, this approach highlighted a cluster of potentially bioactive and undescribed metabolites.


Asunto(s)
Flavanonas , Indigofera , Humanos , Flavonoides/química , Flavonoles , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Estructura Molecular
10.
J Transl Med ; 22(1): 50, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216965

RESUMEN

With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Neoplasias , Humanos , Anciano , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Cardiovasculares/epidemiología , Cardiooncología , Oncología Médica , Neoplasias/genética
11.
Lasers Med Sci ; 39(1): 36, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236306

RESUMEN

Diabetes mellitus (DM) is a chronic age-related disease that was recently found as a secondary aging pattern regulated by the senescence associated secretory phenotype (SASP). The purpose of this study is to detect the potential efficacy and the specific mechanisms of low-level laser therapy (LLLT) healing of age-related inflammation (known as inflammaging) in diabetic periodontitis. Diabetic periodontitis (DP) mice were established by intraperitoneal streptozotocin (STZ) injection and oral P. gingivalis inoculation. Low-level laser irradiation (810 nm, 0.1 W, 398 mW/cm2, 4 J/cm2, 10 s) was applied locally around the periodontal lesions every 3 days for 2 consecutive weeks. Micro-CT and hematoxylin-eosin (HE) stain was analyzed for periodontal soft tissue and alveolar bone. Western blots, immunohistochemistry, and immunofluorescence staining were used to evaluate the protein expression changes on SASP and GLUT1/mTOR pathway. The expression of aging-related factors and SASP including tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 were reduced in periodontal tissue of diabetic mice. The inhibitory effect of LLLT on GLUT1/mTOR pathway was observed by detecting the related factors mTOR, p-mTOR, GLUT1, and PKM2. COX, an intracytoplasmic photoreceptor, is a key component of the anti-inflammatory effects of LLLT. After LLLT treatment a significant increase in COX was observed in macrophages in the periodontal lesion. Our findings suggest that LLLT may regulate chronic low-grade inflammation by modulating the GLUT1/mTOR senescence-related pathway, thereby offering a potential treatment for diabetic periodontal diseases.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Periodontitis , Animales , Ratones , Transportador de Glucosa de Tipo 1 , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/radioterapia , Inflamación/radioterapia , Interleucina-1beta , Periodontitis/radioterapia
12.
J Affect Disord ; 349: 297-309, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38211750

RESUMEN

BACKGROUND: Postoperative neurocognitive disorder (PND) is a common central nervous system complication after undergoing surgery and anesthesia especially in elderly patients, while the therapeutic options are very limited. This study was carried out to investigate the beneficial effects of transcranial near infrared light (NIRL) which was employed to the treatment of PND and propose the involved mechanisms. METHODS: The PND mice were established through left carotid artery exposure under isoflurane anesthesia and received transcranial NIRL treatment. Behavioral testing was performed to evaluate the cognitive function of PND mice after transcranial NIRL therapy. Changes in the transcriptomic profiles of prefrontal cortex (PFC) and hippocampus (HP) were identified by next generation sequencing (NGS), and the molecular mechanisms involved were examined by both in vivo mouse model and in vitro cell culture studies. RESULTS: We found that transcranial NIRL therapy effectively ameliorated learning and memory deficit induced by anesthesia and surgery in aged mice. Specifically, we identified down-regulation of interferon regulatory factor 7 (IRF7) in the brains of PND mice that was mechanistically associated with increased pro-inflammatory M1 phenotype of microglia and elevated neuroinflammatory. NIRL treatment produced protective effects through the upregulation of IRF7 expression and reversing microglial phenotypes from pro-inflammatory to neuroprotective, resulting in reduced brain damage and improved cognitive function in PND mice. CONCLUSION: Our results indicate that transcranial NIRL is an effective and safe therapy for PND via alleviating neuroinflammation, and IRF7 plays a key transcription factor in regulating the M1-to-M2 switch of microglia.


Asunto(s)
Factor 7 Regulador del Interferón , Fármacos Neuroprotectores , Anciano , Animales , Humanos , Ratones , Encéfalo/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Ratones Endogámicos C57BL , Trastornos Neurocognitivos , Fototerapia
13.
Plant Physiol Biochem ; 207: 108386, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280257

RESUMEN

Phosphorus (P) and water are crucial for plant growth, but their availability is challenged by climate change, leading to reduced crop production and global food security. In many agricultural soils, crop productivity is confronted by both water and P limitations. The diminished soil moisture decreases available P due to reduced P diffusion, and inadequate P availability diminishes tissue water status through modifications in stomatal conductance and a decrease in root hydraulic conductance. P and water display contrasting distributions in the soil, with P being concentrated in the topsoil and water in the subsoil. Plants adapt to water- and P-limited environments by efficiently exploring localized resource hotspots of P and water through the adaptation of their root system. Thus, developing cultivars with improved root architecture is crucial for accessing and utilizing P and water from arid and P-deficient soils. To meet this goal, breeding towards multiple advantageous root traits can lead to better cultivars for water- and P-limited environments. This review discusses the interplay of P and water availability and highlights specific root traits that enhance the exploration and exploitation of optimal resource-rich soil strata while reducing metabolic costs. We propose root ideotype models, including 'topsoil foraging', 'subsoil foraging', and 'topsoil/subsoil foraging' for maize (monocot) and common bean (dicot). These models integrate beneficial root traits and guide the development of water- and P-efficient cultivars for challenging environments.


Asunto(s)
Fósforo , Agua , Fósforo/metabolismo , Agua/metabolismo , Raíces de Plantas/metabolismo , Fitomejoramiento , Fenotipo , Suelo
14.
J Clin Sleep Med ; 20(2): 253-259, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858283

RESUMEN

STUDY OBJECTIVES: Sex differences in the prevalence of restless legs syndrome (RLS) have been reported, with a higher prevalence in women than in men. However, sex differences in clinical presentation remain unclear. We aimed to investigate the phenotypic differences in patients with RLS between sexes by comparing clinical presentations, iron status, polysomnographic parameters, and treatment. METHODS: We retrospectively evaluated 614 patients (225 men, 389 women) diagnosed with RLS. To enhance the robustness of the study, an age-matched control group of 179 men and 286 women without sleep disorders was also included. Information on demographics and sleep-related questionnaires were collected. Iron status was evaluated using blood samples, and polysomnography was performed to evaluate periodic leg movements and comorbid sleep disorders. RESULTS: Our analysis revealed no sex difference in the severity of RLS but a difference in the pattern of symptoms. Women had more frequent symptoms of pain and awakening during sleep, while men had more common motor symptoms (both self-reported symptoms and periodic leg movement on polysomnography). Women with RLS also had lower iron parameters and received more frequent iron supplementation therapy than men. In contrast to women with RLS, who presented higher sleep disturbances and depressive mood, men with RLS had a higher risk of comorbidities such as hypertension and cardiovascular disease. These sex differences were notably more pronounced than in the control group. CONCLUSIONS: This study suggests that sex differences exist in RLS phenotypes, and clinicians should consider these differences for treatment. CITATION: Kim J, Kim JR, Park HR, Joo EY. Sex-specific patterns of discomfort in patients with restless legs syndrome. J Clin Sleep Med. 2024;20(2):253-259.


Asunto(s)
Síndrome de las Piernas Inquietas , Humanos , Masculino , Femenino , Estudios Retrospectivos , Sueño , Polisomnografía , Hierro/uso terapéutico
15.
Ageing Res Rev ; 93: 102160, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065225

RESUMEN

Central nervous system (CNS) diseases have become one of the leading causes of death in the global population. The pathogenesis of CNS diseases is complicated, so it is important to find the patterns of the disease to improve the treatment strategy. Microglia are considered to be a double-edged sword, playing both harmful and beneficial roles in CNS diseases. Therefore, it is crucial to understand the progression of the disease and the changes in the polar phenotype of microglia to provide guidance in the treatment of CNS diseases. Microglia activation may evolve into different phenotypes: M1 and M2 types. We focused on the roles that M1 and M2 microglia play in regulating intercellular dialogues, pathological reactions and specific diseases in CNS diseases. Importantly, we summarized the strategies used to modulate the polarization phenotype of microglia, including traditional pharmacological modulation, biological therapies, and physical strategies. This review will contribute to the development of potential strategies to modulate microglia polarization phenotypes and provide new alternative therapies for CNS diseases.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Microglía , Humanos , Microglía/patología , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades del Sistema Nervioso Central/patología , Fenotipo
16.
Phytother Res ; 38(2): 620-635, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37953063

RESUMEN

Idiopathic pulmonary fibrosis (IPF), as the most common idiopathic interstitial pneumonia, is caused by a complex interaction of pathological mechanisms. Interestingly, IPF frequently occurs in the middle-aged and elderly populations but rarely affects young people. Salvianolic acid B (SAB) exerts antioxidant, antiinflammatory, and antifibrotic bioactivities and is considered a promising drug for pulmonary disease treatment. However, the pharmacological effects and mechanisms of SAB on cellular senescence of lung cells and IPF development remain unclear. We used bleomycin (BLM)-induced pulmonary fibrosis mice and different lung cells to investigate the antisenescence impact of SAB and explain its underlying mechanism by network pharmacology and the Human Protein Atlas database. Here, we found that SAB significantly prevented pulmonary fibrosis and cellular senescence in mice, and reversed the senescence trend and typical senescence-associated secretory phenotype (SASP) factors released from lung macrophages and alveolar type II (AT2) epithelial cells, which further reduced lung fibroblasts activation. Additionally, SAB alleviated the epithelial-mesenchymal transition process of AT2 cells induced by transforming growth factor beta. By predicting potential targets of SAB that were then confirmed by chromatin immunoprecipitation-qPCR technology, we determined that SAB directly hampered the binding of transcription factor stimulating protein 1 to the promoters of SASPs (P21 and P16), thus halting lung cell senescence. We demonstrated that SAB reduced BLM-induced AT2 and macrophage senescence, and the subsequent release of SASP factors that activated lung fibroblasts, thereby dual-relieving IPF. This study provides a new scientific foundation and perspective for pulmonary fibrosis therapy.


Asunto(s)
Benzofuranos , Depsidos , Fibrosis Pulmonar Idiopática , Pulmón , Persona de Mediana Edad , Anciano , Humanos , Ratones , Animales , Adolescente , Pulmón/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/genética , Senescencia Celular/fisiología , Macrófagos Alveolares , Bleomicina/efectos adversos
18.
J Ethnopharmacol ; 322: 117563, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104876

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tetrastigma hemsleyanum is an endemic Chinese herb with a wide range of pharmacological activities, including anti-inflammatory, antiviral, antioxidant, antitumor, and immunomodulatory activities. However, the effect and mechanisms of the anti-inflammatory activity of T. hemsleyanum root extract against dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) have not yet been fully investigated. AIM OF THE STUDY: This study aimed to explore the therapeutic effect and molecular mechanisms of T. hemsleyanum root extract in DSS-induced UC mice and knockdown cells. MATERIALS AND METHODS: T. hemsleyanum root extract was obtained and analyzed by high-performance liquid chromatography (HPLC). The therapeutic effects of T. hemsleyanum root extract on DSS-induced UC mice were evaluated by the disease activity index (DAI) score, colon length, serum inflammatory cytokines and oxidant/antioxidant levels, and histopathological features of the ileum and colon. Genome-wide gene expression profiles of ileal and colonic tissues were collected by transcriptomics, and signaling pathways were analyzed by the KEGG database. UC-related pathways were uploaded to the STRING database, then the protein-protein interactions (PPIs) were determined by Cytoscape, and the enriched genes were evaluated by real-time quantitative PCR (qPCR). The protein-ligand complexes were docked by AutoDock, and the genes were knocked down in Caco-2 cells by shRNA. The non-targeted metabolomic profiling of ileal contents was analyzed by ultra-high-performance liquid chromatography (UHPLC), and gut microflora were sequenced by an Illumina MiSeq System. RESULTS: Ten components that alleviated UC symptoms in mice by decreasing the DAI and serum inflammatory cytokines and oxidant levels, promoting intestinal development, and increasing serum antioxidant levels were identified in T. hemsleyanum root extract. T. hemsleyanum root extract activated the B cell receptor signaling pathway in the colon tissue of UC mice, in which two components, rutin and astragaline, bound to the spleen tyrosine kinase (SYK) protein but also restored gut microflora diversity and increased the proportion of probiotics. Furthermore, metabolites of T. hemsleyanum root extract were involved in vitamin metabolism, fatty acid metabolism, and ferroptosis. CONCLUSIONS: The rutin and astragaline components of T. hemsleyanum root extract, by binding to SYK protein, activated the B cell receptor signaling pathway and restored gut microflora diversity to alleviate UC symptoms in mice.


Asunto(s)
Colitis Ulcerosa , Colitis , Quinasa Syk , Animales , Ratones , Humanos , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Células CACO-2 , Citocinas/genética , Inflamación , Transducción de Señal , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Oxidantes , Rutina , Receptores de Antígenos de Linfocitos B , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Colon , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
19.
Mol Med ; 29(1): 168, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093172

RESUMEN

BACKGROUND: Shenqi Compound (SQC) has been used in clinic for several decades in the prevention and treatment of diabetes and its complications. But this is merely a heritage of experience. The primary aim of this study is to scientifically validate the therapeutic effects of SQC on diabetic vascular calcification (DVC) in an animal model and, simultaneously, uncover its potential underlying mechanisms. METHOD: Spontaneous diabetic rat- Goto Kakizaki (GK) rats were selected for rat modeling. We meticulously designed three distinct groups: a control group, a model group, and an SQC treatment group to rigorously evaluate the influence of SQC. Utilizing a comprehensive approach that encompassed methods such as pathological staining, western blot analysis, qRT-PCR, and RNA sequencing, we thoroughly investigated the therapeutic advantages and the underlying mechanistic pathways associated with SQC in the treatment of DVC. RESULT: The findings from this investigation have unveiled the extraordinary efficacy of SQC treatment in significantly mitigating DVC. The underlying mechanisms driving this effect encompass multifaceted facets, including the restoration of aberrant glucose and lipid metabolism, the prevention of phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteogenic-like states, the subsequent inhibition of cell apoptosis, the modulation of inflammation responses, the remodeling of the extracellular matrix (ECM), and the activation of the Hippo-YAP signaling pathway. Collectively, these mechanisms lead to the dissolution of deposited calcium salts, ultimately achieving the desired inhibition of DVC. CONCLUSION: Our study has provided compelling and robust evidence of the remarkable efficacy of SQC treatment in significantly reducing DVC. This reduction is attributed to a multifaceted interplay of mechanisms, each playing a crucial role in the observed therapeutic effects. Notably, our findings illuminate prospective directions for further research and potential clinical applications in the field of cardiovascular health.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Calcificación Vascular , Ratas , Animales , Estudios Prospectivos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/complicaciones , Calcificación Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
20.
Front Endocrinol (Lausanne) ; 14: 1251718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116308

RESUMEN

A Chinese family was identified to have two patients with rickets, an adult female and a male child (proband), both exhibiting signs related to X-linked hypophosphatemic rickets (XLH). Gene sequencing analysis revealed a deletion of adenine at position 1985 (c.1985delA) in the PHEX-encoding gene. To investigate the relationship between this mutation and the pathogenicity of XLH, as well as analyze the effects of different dosages of PHEX gene mutations on clinical phenotypes, we developed a rat model carrying the PHEX deletion mutation. The CRISPR/Cas9 gene editing technology was employed to construct the rat model with the PHEX gene mutation (c.1985delA). Through reproductive procedures, five genotypes of rats were obtained: female wild type (X/X), female heterozygous (-/X), female homozygous wild type (-/-), male wild type (X/Y), and male hemizygous (-/Y). The rats with different genotypes underwent analysis of growth, serum biochemical parameters, and bone microstructure. The results demonstrated the successful generation of a stable rat model inheriting the PHEX gene mutation. Compared to the wild-type rats, the mutant rats displayed delayed growth, shorter femurs, and significantly reduced bone mass. Among the female rats, the homozygous individuals exhibited the smallest body size, decreased bone mass, shortest femur length, and severe deformities. Moreover, the mutant rats showed significantly lower blood phosphorus concentration, elevated levels of FGF23 and alkaline phosphatase, and increased expression of phosphorus regulators. In conclusion, the XLH rat model with the PHEX gene mutation dosage demonstrated its impact on growth and development, serum biochemical parameters, and femoral morphology.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Animales , Femenino , Masculino , Ratas , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/diagnóstico , Genotipo , Mutación , Linaje , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA