Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Fitoterapia ; 173: 105778, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38128620

RESUMEN

Saikosaponin d (SSd) is the main component of Bupleuri Radix, a famous traditional Chinese herbal medicine, with high medicinal value. An endophytic fungus (CHS3) was isolated from Bupleurum scorzonerifolium Willd. in the early stage of our research, and we found that CHS3 could promote the accumulation of SSd in Bupleurum scorzonerifolium Willd. suspension cells (BSS cells). It is of practical significance to identify the mechanism that CHS3 promoted the accumulation of SSd and increased the production of SSd in suspension cells. To search the influence of CHS3 on SSd synthesis in the BSS cells, we co-cultured CHS3 with the BSS cells and compared the SSd content in BSS cells before and after co-culture using high-performance liquid chromatography (HPLC). Then the Illumina HiSeq 2500 was performed to detect the transcriptome of the BSS cells before and after co-culture and analyzed for the KEGG enrichment. The expression of genes involved in SSd synthesis was finally corroborated by qPCR analysis. Among which 11 key genes in connection with SSd synthesis were increased in BSS cells of co-cultured group compared with the BSS cells of the control group. In conclusion, CHS3 could promote the accumulation of SSd in BSS cells, and the molecular mechanism was related to its ability to regulate the MVA pathway, the calcium signaling pathway, and the AMPK signaling pathway by upregulating the expressions of ANT, CypD, CaM, AMPK, AATC, HMGS, HMGR, MVK, MVD, SS, and SE.


Asunto(s)
Bupleurum , Medicamentos Herbarios Chinos , Ácido Oleanólico/análogos & derivados , Saponinas , Bupleurum/química , Medicamentos Herbarios Chinos/química , Proteínas Quinasas Activadas por AMP , Estructura Molecular , Saponinas/química , Perfilación de la Expresión Génica
2.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5278-5284, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114117

RESUMEN

This study aims to investigate the effect and mechanism of saikosaponin D on the proliferation, apoptosis, and autophagy of pancreatic cancer Panc-1 cells. The cell counting kit(CCK-8) was used to examine the effects of 7, 10, 13, 16, 19, 22, 25, and 28 µmol·L~(-1) saikosaponin D on the proliferation of Panc-1 cells. Three groups including the control(0 µmol·L~(-1)), low-concentration(10 µmol·L~(-1)) saikosaponin D, and high-concentration(16 µmol·L~(-1)) saikosaponin D groups were designed. The colony formation assay was employed to measure the effect of saikosaponin D on the colony formation rate of Panc-1 cells. The cells treated with saikosaponin D were stained with hematoxylin-eosin(HE), and the changes of cell morphology were observed. Hoechst 33258 fluorescent staining was used to detect the effect of saikosaponin D on the cell apoptosis. The autophagy staining assay kit with MDC was used to examine the effect of saikosaponin D on the autophagy of Panc-1 cells. Western blot and immunocytochemistry(ICC) were employed to examine the effect of saikosaponin D on the expression levels and distribution of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), cleaved caspase-3, autophagy-associated protein Beclin1, microtubule-associated protein light chain 3(LC3), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results showed that compared with the control group, saikosaponin D decreased the proliferation rate of Panc-1 cells in a dose-dependent and time-dependent manner. The colony formation rate of the cells significantly decreased after saikosaponin D treatment. Compared with the control group, the cells treated with saikosaponin D became small, accompanied by the formation of apoptotic bodies. The saikosaponin D groups showed increased apoptosis rate and autophagic vesicle accumulation. Compared with the control group, saikosaponin D up-regulated the expression of Bax, cleaved caspase3, Beclin1, LC3Ⅱ/LC3Ⅰ and down-regulated the expression of Bcl-2, caspase-3, p-Akt/Akt, and p-mTOR/mTOR. In addition, these proteins mainly existed in the cytoplasm. In conclusion, saikosaponin D can inhibit the proliferation and induce the apoptosis and autophagy of Panc-1 cells via inhibiting the Akt/mTOR pathway.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Caspasa 3 , Proteína X Asociada a bcl-2 , Beclina-1/farmacología , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/genética , Apoptosis , Neoplasias Pancreáticas/tratamiento farmacológico , Caspasas , Autofagia
3.
Acta Histochem ; 125(8): 152100, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37837833

RESUMEN

OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is considered as a chronic interstitial lung disease with underlying mechanism of IPF remaining unclear, while there are no definitive treatment options. In recent years, scientists have gradually paid attention to the influence of angiogenesis on IPF. Because IPF is a progressive with microvascular remodeling disorder, scientists have postulated that angiogenesis may also be one of the initiating and contributing factors of the disease. Bupleurum is a common natural Chinese herbal medicine with antibacterial, anti-inflammatory, anti-tumor and other pharmacological effects. As the most important active monomer of Bupleurum, Saikosaponin-d (SSd) is a new discovery with anti-pulmonary fibrosis (PF) activity. This study attempts to investigate the role of SSd in the interference of PF through regulation of angiogenesis in IPF through Angiopoietin (Angpt) /Tie receptor 2 (Tie2) pathway. METHODS: Randomly, we allocated C57BL/6 mice into four groups (n = 20 in each group). Afterwards, establishment of IPF model was accomplished via intratracheal administration of bleomycin (BLM, 5 mg/kg), while corresponding drug intervention was given accordingly. On 3rd, 7th, 14th and 28th days after modeling, we performed histopathological examination through staining. Meanwhile, immunohistochemistry (IHC) of PF and the expression of related factors were observed, while Ang/Tie2 pathway was assessed by ELISA with the effect of SSd on angiogenesis related proteins in IPF being explored with IHC and Western Blot technique. RESULTS: Our results showed that SSd could reduce inflammation and PF levels in lung tissue of experimental mice, while levels of angiogenesis-related factors, namely Tie-2, Ang-1 and ANGPT2 (Ang-2), fibrosis- associated factors like Alpha-smooth muscle actin (α-SMA), collagen-I and hydroxyproline in SSd and dexamethasone (DXM) mice were significantly reduced at each time point compared to BLM (p < 0.01). Additionally, we discovered substantial decreased expressions of Ang-1, Ang-2, Tie-2, α-SMA and collagen-I at protein level in SSd and DXM mice at each time point compared to BLM (p < 0.05). Besides, insignificant differences were observed between SSd and DXM groups (p > 0.05). CONCLUSION: This study has demonstrated that SSd could down-regulate the expression of ANG-1, Ang-2 and Tie2 in the Ang/Tie2 pathway, and may reduce lung inflammation and PF in BLM-induced mice via inhibition of angiogenesis.


Asunto(s)
Angiopoyetinas , Fibrosis Pulmonar Idiopática , Ratones , Animales , Angiopoyetinas/metabolismo , Angiopoyetinas/farmacología , Ratones Endogámicos C57BL , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Colágeno Tipo I/metabolismo , Bleomicina/farmacología , Bleomicina/metabolismo
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1404-1414, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37489008

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) is a highly fatal malignancy with rapidly increasing incidence and mortality worldwide. Currently, gemcitabine-based systemic chemotherapy is the main clinical therapeutic regimen; however, its efficacy is poor, and its mechanism has not been elucidated. In this study, we use a Seahorse Extracellular Flux analyser to measure glycolysis capacity (extracellular acidification rate, ECAR) and oxygen consumption rate (OCR). The glucose uptake or lactic acid content is detected, and the effects of saikosaponin D, an active compound derived from Bupleuri Radix (a traditional Chinese medicine for soothing the liver and relieving depression), on gemcitabine cytotoxicity in norepinephrine-stimulated iCCA cells are analysed. We find that adrenergic signaling plays a fundamental role in chronic stress-induced therapeutic resistance in iCCA. Norepinephrine (NE) and epinephrine (E) enhance the proliferation of iCCA cells and interfere with the response to gemcitabine through activation of the ß2-adrenergic receptor (ADRB2). Furthermore, we find that NE upregulates the expressions of several drug efflux-related genes (such as ABCG2 and MDR1) and promotes glycolysis in iCCA cells. In addition, saikosaponin D reverses the poor response of iCCA cells to gemcitabine by downregulating ADRB2 level. Furthermore, saikosaponin D inhibits drug efflux and glycolysis in iCCA cells by regulating the expressions of MDR1, ABCG2, HK2, and GLUT1. Collectively, saikosaponin D enhances the antitumor effect of gemcitabine by controlling glucose metabolism and drug efflux by inhibiting the ADRB2 signaling. Therefore, the combination of saikosaponin D and gemcitabine may be a potential therapeutic strategy for the treatment of iCCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Gemcitabina , Norepinefrina/uso terapéutico , Colangiocarcinoma/genética , Epinefrina/farmacología , Epinefrina/uso terapéutico , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/genética , Glucólisis , Receptores Adrenérgicos beta 2/genética
5.
Phytother Res ; 37(3): 809-819, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36447385

RESUMEN

Cancer cachexia is a metabolic syndrome that is characterized by progressive loss of skeletal muscle mass, and effective therapeutics have yet to be developed. Saikosaponin D (SSD), a major bioactive component of Radix Bupleuri, exhibits antiinflammatory, anti-tumor, anti-oxidant, anti-viral, and hepatoprotective effects. In this study, we demonstrated that SSD is a promising agent for the treatment of cancer cachexia. SSD could alleviate TCM-induced myotube atrophy and inhibit the expression of E3 ubiquitin ligases muscle RING-finger containing protein-1 (MuRF1) and muscle atrophy Fbox protein (Atrogin-1/MAFbx) in vitro. Moreover, SSD suppressed the progression of cancer cachexia, with significant improvements in the loss of body weight, gastrocnemius muscle, and tibialis anterior muscle mass in vivo. Mechanism investigations demonstrated that SSD could directly bind to STAT3 and specifically inhibit its phosphorylation as well as its transcriptional activity. Overexpression of STAT3 partially abolished the inhibitory effect of SSD on myotube atrophy, indicating that the therapeutic effect of SSD was attributed to STAT3 inhibition. These findings provide novel strategies for treatment of cancer cachexia by targeting STAT3, and SSD may be a promising drug candidate for cancer cachexia.


Asunto(s)
Caquexia , Neoplasias , Humanos , Caquexia/tratamiento farmacológico , Caquexia/metabolismo , Caquexia/patología , Neoplasias/patología , Músculo Esquelético , Atrofia Muscular/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo
6.
World J Microbiol Biotechnol ; 38(12): 242, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36280622

RESUMEN

Saikosaponin d (SSd) is an important bioactive compound of traditional Chinese medicinal plant Bupleurum scorzonerifolium Willd. and exhibits many effects, such as anti-tumor, anti-inflammation and immunomodulatory. Since endophytic fungi possess the natural capacity to produce the similar secondary metabolite to that of their host plants, they are promising as alternative sources of plant bioactive natural products. In this study, in order to search for SSd-producing strains, endophytes were isolated from B. scorzonerifolium and were authenticated by the ITS sequence and the translation elongation factor-1alpha gene (TEF-1α) sequence analysis. The profile of metabolites present in the crude exacts was carried out by ultra performance liquid chromatography time-of-flight mass spectrometry (UPLC/Q-TOF-MS) analysis. The results showed that two strains, CHS2 and CHS3 from B. scorzonerifolium could produce SSd by UPLC/Q-TOF-MS analysis, and the amount of SSd produced by strain CHS2 and CHS3 were about 2.17 and 2.40 µg/mL, respectively. CHS2 and CHS3 showed a close phylogenetic relationship to Fusarium oxysporum and Fusarium acuminatum, respectively. According to our concern, no endophytic fungi capable of producing SSd from B. scorzonerifolium have been found before. Our clear intention was to isolate and identify these endophytic fungi that produce important active secondary metabolites, and then study the strains that produce this compound on a large scale through fermentation or even genetic study, to provide a feasible and more convenient way for the production of SSd.


Asunto(s)
Productos Biológicos , Bupleurum , Plantas Medicinales , Bupleurum/química , Bupleurum/genética , Filogenia , Hongos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Productos Biológicos/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo
7.
Curr Cancer Drug Targets ; 23(1): 2-14, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35946101

RESUMEN

Since their discovery, saikosaponins (SSs) have been found to play an important role in treating a variety of cancers via diverse mechanisms of action. This review summarizes the current research status and prospects of the anti-cancer activities of SSs, providing novel insights into the limitations of current studies. In addition, it discusses whether SSs can be applied in immunotherapy and the possible mechanisms by which SSs may facilitate immunotherapy. The research is significant to understanding the anti-cancer potents of SSs in the development of SSs-based therapeutic strategies and clinical practice.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias , Ácido Oleanólico , Saponinas , Humanos , Saponinas/farmacología , Saponinas/uso terapéutico , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Neoplasias/tratamiento farmacológico
8.
J Nat Med ; 76(3): 584-593, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35171398

RESUMEN

Medulloblastoma (MB), accounting for nearly 10% of all childhood brain tumors, are implicated with aberrant activation of the Hedgehog (Hh) signaling pathway. Saikosaponin B1 (SSB1) and Saikosaponin D (SSD), two bioactive constituents of Radix Bupleuri, are reported to have many biological activities including anticancer activities. In our work, we evaluated the inhibition of SSB1 and SSD on MB tumor growth in allograft mice and explored the underlying mechanisms. The associated biological activity was investigated in Shh Light II cells, an Hh-responsive fibroblast cell line, using the Dual-Glo® Luciferase Assay System. First, SSB1 (IC50, 241.8 nM) and SSD (IC50, 168.7 nM) inhibited GLI-luciferase activity in Shh Light II cells stimulated with ShhN CM, as well as Gli1 and Ptch1 mRNA expression. In addition, both compounds suppressed the Hh signaling activity provoked by smoothened agonist (SAG) or excessive Smoothened (SMO) expression. Meanwhile, SSB1 and SSD did not inhibit glioma-associated oncogene homolog (GLI) luciferase activity activated by abnormal expression of downstream molecules, suppressor of fuse (SUFU) knockdown or GLI2 overexpression. Consequently, SSB1 (30 mg/kg, ip) and SSD (10 mg/kg, ip) displayed excellent in vivo inhibitory activity in MB allografts, and the tumor growth inhibition ratios were approximately 50% and 70%, respectively. Our findings, thus, identify SSB1 and SSD significantly inhibit tumor growth in MB models by inhibiting the Hedgehog pathway through targeting SMO.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Aloinjertos/metabolismo , Aloinjertos/patología , Animales , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ácido Oleanólico/análogos & derivados , Saponinas , Transducción de Señal , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
9.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34768813

RESUMEN

Liver disorders are a major health concern. Saikosaponin-d (SSd) is an effective active ingredient extracted from Bupleurum falcatum, a traditional Chinese medicinal plant, with anti-inflammatory and antioxidant properties. However, its hepatoprotective properties and underlying mechanisms are unknown. We investigated the effects and underlying mechanisms of SSd treatment for thioacetamide (TAA)-induced liver injury and high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) in male C57BL/6 mice. The SSd group showed significantly higher food intake, body weight, and hepatic antioxidative enzymes (catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)) and lower hepatic cyclooxygenase-2 (COX-2), serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and fibroblast growth factor-21 (FGF21) compared with controls, as well as reduced expression of inflammation-related genes (nuclear factor kappa B (NF-κB) and inducible nitric oxide synthase (iNOS)) messenger RNA (mRNA). In NAFLD mice, SSd reduced serum ALT, AST, triglycerides, fatty acid-binding protein 4 (FABP4) and sterol regulatory element-binding protein 1 (SREBP1) mRNA, and endoplasmic reticulum (ER)-stress-related proteins (phosphorylated eukaryotic initiation factor 2α subunit (p-eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). SSd has a hepatoprotective effect in liver injury by suppressing inflammatory responses and acting as an antioxidant.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología , Alanina Transaminasa/análisis , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Aspartato Aminotransferasas/análisis , Catalasa/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Saponinas/uso terapéutico , Superóxido Dismutasa/análisis , Tioacetamida/toxicidad
10.
Front Pharmacol ; 12: 735079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744719

RESUMEN

Chronic pancreatitis (CP) is a progressive fibro-inflammatory syndrome. The damage of acinar cells is the main cause of inflammation and the activation of pancreatic stellate cells (PSCs), which can thereby possibly further aggravate the apoptosis of more acinar cells. Saikosaponind (SSd), a major active ingredient derived from Chinese medicinal herb bupleurum falcatum, which exerted multiple pharmacological effects. However, it is not clear whether SSd protects pancreatic injury of CP via regulating the apoptosis of pancreatic acinar cells. This study systematically investigated the effect of SSd on pancreatic injury of CP in vivo and in vitro. The results revealed that SSd attenuate pancreatic damage, decrease the apoptosis and suppress the phosphorylation level of MAPK family proteins (JNK1/2, ERK1/2, and p38 MAPK) significantly in the pancreas of CP rats. In addition, SSd markedly reduced the apoptosis and inflammation of pancreatic acinar AR42J cells induced by cerulein, a drug induced CP, or Conditioned Medium from PSCs (PSCs-CM) or the combination of PSCs-CM and cerulein. Moreover, SSd significantly inhibited the activated phosphorylation of JNK1/2, ERK1/2, and p38 MAPK induced by cerulein or the combination of PSCs-CM and cerulein in AR42J cells. Furthermore, SSd treatment markedly decreased the protein levels of p-JNK and p-p38 MAPK caused by PSCs-CM alone. In conclusion, SSd ameliorated pancreatic injury, suppressed AR42J inflammation and apoptosis induced by cerulein, interrupted the effect of PSCs-CM on AR42J cells inflammation and apoptosis, possibly through MAPK pathway.

11.
Front Pharmacol ; 12: 625074, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776766

RESUMEN

Often associated with sexual dysfunction (SD), chronic stress is the main contributing risk factor for the pathogenesis of depression. Radix bupleuri had been widely used in traditional Chinese medicine formulation for the regulation of emotion and sexual activity. As the main active component of Radix bupleuri, saikosaponin D (SSD) has a demonstrated antidepressant effect in preclinical studies. Herein, we sought to investigate the effect of SSD to restore sexual functions in chronically stressed mice and elucidate the potential brain mechanisms that might underly these effects. SSD was gavage administered for three weeks during the induction of chronic mild stress (CMS), and its effects on emotional and sexual behaviors in CMS mice were observed. The medial posterodorsal amygdala (MePD) was speculated to be involved in the manifestation of sexual dysfunctions in CMS mice. Our results revealed that SSD not only alleviated CMS-induced depressive-like behaviors but also rescued CMS-induced low sexual motivation and poor sexual performance. CMS destroyed astrocytes and activated microglia in the MePD. SSD treatment reversed the changes in glial pathology and inhibited neuroinflammatory and oxidative stress in the MePD of CMS mice. The neuronal morphological and functional deficits in the MePD were also alleviated by SSD administration. Our results provide insights into the central mechanisms involving the brain associated with sexual dysfunction. These findings deepen our understanding of SSD in light of the psychopharmacology of stress and sexual disorders, providing a theoretical basis for its potential clinical application.

12.
Drug Des Devel Ther ; 14: 5251-5258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33273809

RESUMEN

BACKGROUND: Bupleurum is one of the most important traditional Chinese medicines and an ingredient in many compound preparations. It is widely used together with other drugs in clinical practice, and thus there is great potential for drug-drug interactions. Saikosaponin D (SsD) is a major bioactive triterpenoid saponin extracted from Bupleurum with anti-inflammatory, anticancer, antioxidative, and antihepatic fibrosis effects. Effects of the main components of Bupleurum on cytochromes P450 (CYPs) need to be clarified in the clinical application of combination therapies of formulations containing SsD or Bupleurum. PURPOSE: This study aimed to investigate the effects of SsD on the CYP1A2 and CYP2D6 mRNAs, protein expression, and relative enzyme activities in HepaRG cells. METHODS: HepaRG cells were cultured with SsD at concentrations of 0.5, 1, 5 and 10 µM for 72 hours. mRNA and protein expression of CYP1A2 and CYP2D6 were analyzed with real-time PCR and Western blot analysis. Relative enzyme activities were analyzed with HPLC based on consumption of the specific probe substrate. RESULTS: SsD significantly induced expression of mRNA and increased relative activity of CYP1A2 in HepaRG cells after the cells had been treated with SsD at concentrations of 1, 5 and 10 µM. SsD also induced protein expression of CYP1A2 at concentrations of 5 and 10 µM. SsD exhibited an inductive effect on CYP2D6 mRNA and protein expression, while increasing the relative activity of CYP2D6 at concentrations of 5 and 10 µM. CONCLUSION: This study is the first to investigate the effect of SsD on CYP1A2 and CYP2D6 in HepaRG cells, and the results may provide some useful information on potential drug-drug interactions related to clinical preparations containing SsD or Bupleurum.


Asunto(s)
Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología , Bupleurum/química , Células Cultivadas , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP2D6/genética , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/química , Humanos , Medicina Tradicional China , Conformación Molecular , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saponinas/química
13.
Exp Ther Med ; 20(2): 1082-1090, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32742347

RESUMEN

Alzheimer's disease (AD), is a severe neurodegenerative disease that currently lacks an optimally effective therapeutic agent for its management. Saikosaponin D (SSD) is a component extracted from the herb Bupleurum falcatum that is commonly used in Chinese medicine. Although SSD has been reported to exert neuroprotective effects, its pharmacological role in AD has not been previously elucidated. Therefore, the aim of the present study was to investigate whether SSD treatment improves the cognitive function and pathological features of 3xTg mice, a triple-transgenic mouse model of AD that displays classical pathological features of AD. The effects of SSD treatment on the behavioral, histological and physiological features of the animal were quantified. Results from the behavioral experiments on the SSD-treated 3xTg mice identified a significant reduction in memory impairment. In addition, histological staining results indicated that SSD application could preserve the morphology of neurons, reduce apoptosis and significantly inhibit amyloid-ß deposition in the hippocampus of 3xTg mice. SSD treatment also decelerated the activation of microglia and astrocytes in the hippocampus of 3xTg mice, possibly via the inhibition of the NF-κB signal transduction pathway. Therefore, the present study demonstrated the protective effects of SSD against progressive neurodegeneration and identified the potential underlying pharmacological mechanism. It was speculated that SSD may serve as a possible therapeutic agent in AD treatment in the future.

14.
Pharmacol Res ; 160: 105149, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32822868

RESUMEN

Cancer chemotherapy induced neutropenia (CCIN) is one of the most common toxicity caused by cytotoxic anticancer agents. Despite granulocyte colony-stimulating factor (GCSF) is widely used in clinical practice, the infection and infection-related mortality rate is still high for lack of functionally mature neutrophils. Saikosaponin d (SSD) is one of the major bioactive constituents of Radix Bupleuri (RB), which exerts immune-modulatory properties. We explored the function of SSD in CCIN therapy, we found that SSD contributed to generate functional mature neutrophils which capable of fighting infection both in vitro and in vivo. Network pharmacology was employed to explore the mechanism, 61 signal pathways might play an important role in CCIN treatment. Western Blot was employed to further confirm the potential pathway involved. We found CBL-ERK1/2 pathway was activated by SSD, followed by upregulating PU.1 and CEBPß expression and leading to neutrophil differentiation. Our findings suggest a natural regimen SSD which could regenerate microbicidal neutrophils to effectively reduce CCIN-associated infection via activating CBL-ERK1/2, providing a rationale for future therapeutic approaches.


Asunto(s)
Antineoplásicos/efectos adversos , Factores Inmunológicos/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Neutropenia/inducido químicamente , Neutropenia/tratamiento farmacológico , Neutrófilos/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Proteína Oncogénica v-cbl/efectos de los fármacos , Saponinas/uso terapéutico , Animales , Actividad Bactericida de la Sangre , Proteína beta Potenciadora de Unión a CCAAT/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Control de Infecciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Oleanólico/uso terapéutico
15.
Int Immunopharmacol ; 81: 106288, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32062075

RESUMEN

Saikosaponin-d (SSd), extracts from Bupleurum falcatum L, exhibits anti-inflammatory and anti-infectious activities. However, the effect of SSd on intestinal inflammation has not been investigated. The aim of this study was to evaluate the effect of SSd on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice, and to elucidate the underlying mechanisms. UC was induced in mice by administrating 3% DSS in drinking water for 7 days. SSd (4 mg/kg and 8 mg/kg) was administered by gavage every day during the experimental process. The results showed that SSd treatment (8 mg/kg) significantly ameliorated UC mice by decreasing disease activity index (DAI), increasing colon length and improving pathological characteristics. SSd treatment (8 mg/kg) significantly suppressed the mRNA levels of pro-inflammatory cytokines including TNF-α, IL-6 and IL-1ß, increased that of anti-inflammatory cytokine IL-10. Furthermore, SSd (8 mg/kg) suppressed the activation of NF-κB by decreasing the degradation and phosphorylation of IκB. SSd (8 mg/kg) also protected the intestinal barrier by increasing the mRNA levels of mucin (Muc1 and Muc2) and the protein levels of zonula occludens-1 (ZO-1) and Claudin-1. The 16S rDNA gene high-throughput sequencing revealed that SSd treatment (8 mg/kg) increased the alpha diversity and regulated the structure of gut microbiota in UC mice. Taken together, our findings demonstrated that SSd (8 mg/kg) improved DSS-induced intestinal inflammation by inhibiting NF-κB activation and regulated the gut microbiota.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Colitis/tratamiento farmacológico , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , FN-kappa B/metabolismo , Ácido Oleanólico/análogos & derivados , Saponinas/uso terapéutico , Animales , Colitis/inducido químicamente , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/genética , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mucinas/genética , Mucinas/metabolismo , Ácido Oleanólico/uso terapéutico , Transducción de Señal
16.
Brain Res Bull ; 157: 69-76, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926302

RESUMEN

Saikosaponin d (SSd) is a traditional Chinese medicine that has been widely used in depression treatment. Given the lack of studies demonstrating the underlying mechanism of action of SSd in depression, the presented study was conducted with aims of investigating the effect of SSd on rats with depression-like behaviors induced by unpredicted chronic mild stress (UCMS) and its underlying molecular mechanism. To investigate the effect of SSd on depression, rat models with depression-like behaviors were established through 3-week exposure to UCMS, followed by administration of 10 mg/kg fluoxetine, 0.75 mg/kg SSd, 1.50 mg/kg SSd, or 10 mg/kg caffeic acid phenethyl ester (CAPE). The depression-like behaviors of rats were evaluated by sucrose preference test, open field test, forced swimming test, and tail suspension test. Afterwards, the regulatory relationship among nuclear factor-κB (NF-κB), microRNA (miR)-155 and fibroblast growth factor 2 (FGF2) were detected by dual-luciferase reporter gene assay and ChIP. RT-qPCR and Western blot analysis was conducted to determine the expression of genes and proteins. Finally, hippocampal neurons were extracted from modeled rats and transfected with miR-155 mimic, miR-155 inhibitor, NF-κB overexpression plasmid, or siRNA against NF-κB. The results showed that the depression-like behaviors induced by UCMS in rats was successfully attenuated by SSd. In hippocampal neurons of rats treated with SSd, NF-κB was significantly downregulated while FGF2 was significantly upregulated. NF-κB targets miR-155 and negatively regulates the expression of FGF2. NF-κB knockdown resulted in reduced depression-like behaviors of rats. These findings provide evidence that SSd could ameliorate depression-like behaviors in the rats treated with UCMS by downregulating NF-κB and miR-155, and upregulating FGF2.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hipocampo/metabolismo , MicroARNs/genética , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología , Animales , Depresión/tratamiento farmacológico , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Suspensión Trasera/fisiología , Hipocampo/efectos de los fármacos , Masculino , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacología , Ratas Sprague-Dawley , Saponinas/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/metabolismo
17.
Int Immunopharmacol ; 80: 106181, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31926446

RESUMEN

Saikosaponin-d (SSd), a triterpenoid saponins compound extracted from Radix Bupleuri, has been demonstrated to effectively alleviate chronic mild stress-induced depressive behaviors in rats, but the underlying molecular mechanisms are still uncertain. Increasing evidence indicated that microglia activation and inflammatory responses were involved in the pathogenesis of depression. Thus, we desired to induce inflammation-related depressive-like behaviors in mice by injecting lipopolysaccharide (LPS) to investigate whether the antidepressant effect of SSd is related to inhibiting inflammation. The results of behavioral tests showed that SSd administration ameliorated LPS-induced depressive-like behaviors, as shown by increased sucrose consumption in the sucrose preference test and decreased immobility time in the tail suspension test and forced swimming test. Furthermore, immunostaining results showed that SSd pretreatment inhibited LPS-induced microglia activation in the hippocampus of mice and primary microglia cells. Enzyme-linked immunosorbent assay (ELISA) results showed that SSd pretreatment suppressed LPS-induced overexpression of inflammatory factors such as interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α both in vivo and in vitro. Immunostaining and western blot analysis results demonstrated that SSd pretreatment also inhibited LPS-induced HMGB1 translocation from nuclear to extracellular and decreased the protein levels of TLR4, p-IκB-α, NF-κBp65. These results suggested that SSd effectively improved LPS-induced inflammation-related depressive-like behaviors by inhibiting LPS-induced microglia activation and neuroinflammation, and the possible mechanism might associate with the regulation of the HMGB1/TLR4/NF-κB signaling pathway.


Asunto(s)
Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Encefalitis/tratamiento farmacológico , Microglía/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/uso terapéutico , Animales , Antidepresivos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Depresión/inducido químicamente , Depresión/metabolismo , Encefalitis/inducido químicamente , Encefalitis/metabolismo , Proteína HMGB1/metabolismo , Lipopolisacáridos , Masculino , Ratones Endogámicos ICR , Microglía/metabolismo , FN-kappa B/metabolismo , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
18.
Artículo en Chino | WPRIM | ID: wpr-846475

RESUMEN

Objective: To predict the efficacy components and key targets of Chaihu Guizhi Ganjiang Decoction (CGGD) in the intervention of novel coronavirus pneumonia in the cold-dampness obstructing lungs in early stage, and clarify its mechanism. Methods: The novel coronavirus pneumonia TCM stage, clinical manifestations and the function of CGGD were analyzed by literature mining and clinical reports. TCMSP database was used to screen potential active components and related targets in CGGD. PubMed database was used to screen pneumonia, cough and fever related targets. With the help of Cytoscape software, a “drug-disease-target” visual network diagram and protein interaction network were constructed, and GO and pathway enrichment analysis of key targets was performed through the STRING database. The active ingredients were molecularly docked with SARS-CoV-2 3CL hydrolase protein and ACE2 by AutoDock Vina. Results: The analysis of the relationship between prescriptions and syndromes showed that CGGD could play warm-yang scattered cold, resolve dampness, clear stagnation and heat, and open up membrane’s power to intervene in early cold-dampness lung type COVID-19. Through screening, the therapeutic effects of CGGD were mainly in 156 chemical components acting on 159 related targets. The core 27 genes predicted and analyzed included EGFR, TP53, YWHAZ, HSP90AB1, PIK3R1, GRB2, etc. GO and pathway analysis showed that CGGD was mainly involved in biological processes such as cell regulation and immune system related pathways to play a therapeutic role. The 10 core components were molecularly docked, saikosaponin A, saikosaponin D, and peroxyergosterol in CGGD had good affinity with 3CL hydrolase protein and ACE2. Conclusion: Using network pharmacology and molecular docking technology to predict that CGGD can be used for the treatment of novel coronavirus pneumonia with symptom of cold-dampness obstructing lungs in early stage, potential antiviral ingredients contained in prescription of CGGD, can play a therapeutic role in the treatment of new type of coronavirus pneumonia in the early stage by regulating the immune system. It explains the characteristics of “multi-component-multi-target-multi-disease” of Chinese materia medica, and provides theoretical basis for clinical rational use of medicines.

19.
J Cancer ; 10(20): 4947-4953, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31598167

RESUMEN

Radiotherapy for liver cancer can affect the level of autophagy in cells, and effective autophagy regulation can increase the radiosensitivity of liver cancer cells.Saikosaponin-d (SSd) is an effective active ingredient extracted from traditional Chinese medicine Bupleurum. We have confirmed previously in vitro and in vitro experiments that SSd can significantly induce apoptosis of liver cancer cells, increase the radiosensitivity of liver cancer cells.This study explored the role of autophagy in SSd-mediated radiosensitivity of liver cancer cells. MTT and clone formation experiments showed that radiation can inhibit the proliferation of hepatoma cells and reduce the colony formation of hepatoma cells. After the addition of SSd, the inhibitory effect of radiation on the proliferation and clonal formation of hepatoma cells was further enhanced. However, the addition of the autophagy inhibitor chloroquine or mTOR agonist can partially reverse the inhibitory effect of the combined treatment of SSd with radiation on the proliferation of hepatoma cells. Similarly, transmission electron microscopy and laser confocal microscopy showed that after the addition of SSd, the number of radiation-induced autophagosomes increased significantly in hepatoma cells and the intervention of mTOR agonist can reduce the formation of autophagosomes in hepatoma cells.In addition,Western blot analysis presented that radiation significantly increased LC3-II levels. Especially when SSd is added, LC3-II levels is further increased. Our data indicate that SSd can inhibit the growth of liver cancer cells and enhance cell radiosensitivity by inducing autophagy formation.

20.
Front Pharmacol ; 10: 1039, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616295

RESUMEN

Chemosensitivity is one of the key factors affecting the therapeutic effect on cancer, but the clinical application of corresponding drugs is rare. Hypoxia, a common feature of many solid tumors, including hepatocellular carcinoma (HCC), has been associated with resistance to chemotherapy in part through the activation of the Sonic Hedgehog (SHh) pathway. Hypoxia has also been associated with the increased SUMOylation of multiple proteins, including GLI family proteins, which are key mediators of SHh signaling, and has become a promising target to develop drug-resistant drugs for cancer treatment. However, there are few target drugs to abrogate chemotherapy resistance. Saikosaponin-d (Ssd), one of the main bioactive components of Radix bupleuri, has been reported to exert multiple biological effects, including anticancer activity. Here, we first found that Ssd inhibits the malignant phenotype of HCC cells while increasing their sensitivity to the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) drug system under hypoxia in vitro and in vivo. Furthermore, we had explored that GLI family activation and extensive protein SUMOylation were characteristics of HCC cells, and hypoxia could activate the SHh pathway and promote epithelial-mesenchymal transition (EMT), invasion, and chemosensitivity in HCC cells. SUMOylation is required for hypoxia-dependent activation of GLI proteins. Finally, we found that Ssd could reverse the effects promoted by hypoxia, specifically active sentrin/small ubiquitin-like modifier (SUMO)-specific protease 5 (SENP5), a SUMO-specific protease, in a time- and dose-dependent manner while inhibiting the expression of SUMO1 and GLI proteins. Together, these findings confirm the important role of Ssd in the chemoresistance of liver cancer, provide some data support for further understanding the molecular mechanisms of Ssd inhibition of malignant transformation of HCC cells, and provide a new perspective for the application of traditional Chinese medicine in the chemical resistance of liver cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA