Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytother Res ; 38(5): 2198-2214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38414297

RESUMEN

Quercetin is the most common polyphenolic flavonoid present in fruits and vegetables demonstrating versatile health-promoting effects. This study aimed to examine the effects of quercetin (QR) and sclareol (SCL) on the thiopental sodium (TS)-induced sleeping and forced swimming test (FST) mouse models. SCL (1, 5, and 10 mg/kg, p.o.) or QR (50 mg/kg, p.o.) and/or diazepam (DZP) (3 mg/kg, i.p.) were employed. After 30 min of TS induction, individual or combined effects on the animals were checked. In the FST test, the animals were subjected to forced swimming after 30 min of administration of the test and/or controls for 5 min. In this case, immobility time was measured. In silico studies were conducted to evaluate the involvement of GABA receptors. SCL (5 and 10 mg/kg) significantly increased the latency and decreased sleeping time compared to the control in the TS-induced sleeping time study. DZP (3 mg/kg) showed a sedative-like effect in animals in both sleeping and FST studies. QR (50 mg/kg) exhibited a similar pattern of activity as SCL. However, its effects were more prominent than those of SCL groups. SCL (10 mg/kg) altered the DZP-3-mediated effects. SCL-10 co-treated with QR-50 significantly (p < 0.05) increased the latency and decreased sleep time and immobility time, suggesting possible synergistic antidepressant-like effects. In silico studies revealed that SCL and QR demonstrated better binding affinities with GABAA receptor, especially α2, α3, and α5 subunits. Both compounds also exhibited good ADMET and drug-like properties. In animal studies, the both compounds worked synergistically to provide antidepressant-like effects in a slightly different fashion. As a conclusion, the combined administration of SCL and QR may be used in upcoming neurological clinical trials, according to in vivo and in silico findings. However, additional investigation is necessary to verify this behavior and clarify the potential mechanism of action.


Asunto(s)
Antidepresivos , Diazepam , Quercetina , Sueño , Tiopental , Animales , Ratones , Antidepresivos/farmacología , Masculino , Quercetina/farmacología , Diazepam/farmacología , Sueño/efectos de los fármacos , Tiopental/farmacología , Natación , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular , Hipnóticos y Sedantes/farmacología , Receptores de GABA-A/metabolismo
2.
J Biomol Struct Dyn ; 42(7): 3382-3395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37211911

RESUMEN

Tuberculosis (TB) is still one of the world's most challenging infectious diseases and the emergence of drug-resistant Mycobacterium tuberculosis poses a significant threat to the treatment of TB. Identifying new medications based on local traditional remedies has become more essential. Gas Chromatography-Mass spectrometry (GC-MS) (Perkin-Elmer, MA, USA) was used to identify potential bioactive components in Solanum surattense, Piper longum, and Alpinia galanga plants sections. The fruits and rhizomes' chemical compositions were analyzed using solvents like petroleum ether, chloroform, ethyl acetate, and methanol. A total of 138 phytochemicals were identified, further categorized and finalized with 109 chemicals. The phytochemicals were docked with selected proteins (ethA, gyrB, and rpoB) using AutoDock Vina. The top complexes were selected and preceded with molecular dynamics simulation. It was found that the rpoB-sclareol complex is very stable, which means it could be further explored. The compounds were further studied for ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties. Sclareol has obeyed all the rules and it might be a potential chemical to treat TB.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Diterpenos , Plantas Medicinales , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Plantas Medicinales/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tuberculosis/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/química , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Solventes/química , Simulación del Acoplamiento Molecular
3.
Phytother Res ; 37(9): 3898-3912, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37132081

RESUMEN

Liver fibrosis is a key global health care burden. Sclareol, isolated from Salvia sclarea, possesses various biological activities. Its effect on liver fibrosis remains unknown. This study was proposed to evaluate the antifibrotic activity of sclareol (SCL) and explore its underlying mechanisms. Stimulated hepatic stellate cells served as an in vitro liver fibrosis model. The expression of fibrotic markers was assessed by western blot and real-time PCR. Two classical animal models, bile duct-ligated rats and carbon tetrachloride-treated mice, were utilized for the in vivo experiments. The liver function and fibrosis degree were determined by serum biochemical and histopathological analyses. VEGFR2 SUMOylation was analyzed using coimmunoprecipitation assay. Our results indicated that SCL treatment restricted the profibrotic propensity of activated HSCs. In fibrotic rodents, SCL administration alleviated hepatic injury and reduced collagen accumulation. Mechanistic studies indicated that SCL downregulated the protein level of SENP1 and enhanced VEGFR2 SUMOylation in LX-2 cells, which affected its intracellular trafficking. Blockade of the interaction between VEGFR2 and STAT3 was observed, resulting in the suppression of downstream STAT3 phosphorylation. Our findings demonstrated that SCL has therapeutic efficacy against liver fibrosis through mediating VEGFR2 SUMOylation, suggesting that SCL may be a potential candidate compound for its treatment.


Asunto(s)
Cirrosis Hepática , Sumoilación , Ratas , Ratones , Animales , Cirrosis Hepática/tratamiento farmacológico , Hígado , Transducción de Señal , Fibrosis , Células Estrelladas Hepáticas
4.
Phytother Res ; 37(2): 578-591, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36178264

RESUMEN

Chronic inflammation plays an important role in hypertensive heart failure. Suppressing angiotensin II (Ang II)-induced cardiac inflammation may contribute to the treatment of hypertension-associated heart failure. Sclareol, a natural product initially isolated from the leaves and flowers of Salvia sclarea, possesses antiinflammatory and immune-regulation activity in various systems. However, its effect on Ang II-induced cardiac remodeling remains unknown. In this study, we have explored the potential effects of sclareol on Ang II-induced heart failure. In vivo experiments were conducted in mice with Ang II-pump infusion for 28 days. Sclareol administration at 5 mg·kg-1 ·d-1 significantly reduced the expression of myocardial injury markers. Sclareol also exerts protective effects against Ang II-induced cardiac dysfunction in mice which is associated with alleviated cardiac inflammation and fibrosis. Transcriptome analysis revealed that inhibition of the Ang II-activated mitogen-activated protein kinase (MAPK) pathway contributed to the protective effect of sclareol. Sclareol inhibits Ang II-activated MAPKs pathway to reduce inflammatory response in mouse hearts and cultured cardiomyocytes. Blockage of MAPKs in cardiomyocytes abolished the antiinflammatory effects of sclareol. In conclusion, we show that sclareol protects hearts against Ang II-induced injuries through inhibiting MAPK-mediated inflammation, indicating the potential use of sclareol in the prevention of hypertensive heart failure.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Ratones , Animales , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Angiotensina II/efectos adversos , Remodelación Ventricular/fisiología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Miocitos Cardíacos/metabolismo , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Fibrosis , Inflamación/tratamiento farmacológico , Inflamación/patología , Miocardio/patología , Ratones Endogámicos C57BL
5.
Phytother Res ; 36(6): 2511-2523, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35434887

RESUMEN

Diabetic nephropathy (DN) represents the most serious complication of diabetes. Previous studies have shown that the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) are linked to inflammation in the development of DN. Sclareol, a natural diterpene compound, has beneficial effects on inflammation. Thus, we hypothesized that sclareol might prevent DN via anti-inflammatory actions. This study aimed to investigate the actions of sclareol in the progression of DN, and explored the related molecular mechanism. Sclareol treatment significantly alleviated renal dysfunction, fibrosis, and inflammatory cytokine levels in a dose-dependent manner in diabetic mice. Moreover, sclareol inhibited the activations of MAPKs and NF-κB in diabetic kidney tissues. The therapeutic effects of sclareol were confirmed under high levels of glucose in SV40 cells, and sclareol prevented high glucose-induced fibrosis and inflammatory responses, which was largely driven by MAPKs and NF-κB inhibitions. In particular, MAPKs inhibitors mixture could suppress the NF-κB pathway and release of inflammatory cytokines that sclareol was involved in. In conclusion, sclareol has benefits for diabetes-induced renal dysfunction, which was partially associated with amelioration of fibrosis and inflammation via mediation of the MAPK/NF-κB signaling pathway. Sclareol may be a promising agent for preventing the progression of DN.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Diterpenos , Hiperglucemia , Animales , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Diterpenos/farmacología , Fibrosis , Glucosa/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Inflamación/tratamiento farmacológico , Riñón , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal
6.
Molecules ; 26(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34771089

RESUMEN

Quorum-sensing (QS) is a regulatory mechanism in bacterial communication, important for pathogenesis control. The search for small molecules active as quorum-sensing inhibitors (QSI) that can synergize with antibiotics is considered a good strategy to counteract the problem of antibiotic resistance. Here the antimicrobial labdane diterpenoids sclareol (1) and manool (2) extracted from Salvia tingitana were considered as potential QSI against methicillin-resistant Staphylococcus aureus. Only sclareol showed synergistic activity with clindamycin. The quantification of these compounds by LC-MS analysis in the organs and in the calli of S. tingitana showed that sclareol is most abundant in the flower spikes and is produced by calli, while manool is the major labdane of the roots, and is abundant also in the leaves. Other metabolites of the roots were abietane diterpenoids, common in Salvia species, and pentacyclic triterpenoids, bearing a γ-lactone moiety, previously undescribed in Salvia. Docking simulations suggested that 1 and 2 bind to key residues, involved in direct interactions with DNA. They may prevent accessory gene regulator A (AgrA) binding to DNA or AgrA activation upon phosphorylation, to suppress virulence factor expression. The antimicrobial activity of these two compounds probably achieves preventing upregulation of the accessory gene regulator (agr)-regulated genes.


Asunto(s)
Antibacterianos/farmacología , Clindamicina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Extractos Vegetales/farmacología , Salvia/química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Percepción de Quorum/efectos de los fármacos , Relación Estructura-Actividad
7.
J Cosmet Dermatol ; 15(4): 475-483, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27466023

RESUMEN

BACKGROUND: Ultraviolet (UV) irradiation triggers skin photoaging processes, which disrupt the normal three-dimensional integrity of skin. UV-induced oxidative stress, both directly and indirectly, stimulates complex signaling pathways. UV radiation activates skin cell surface receptors on a molecular level and triggers severe changes in extracellular matrix (ECM) proteins, resulting in skin photoaging. AIMS: Sclareol isolated from Salvia officinalis is widely used as a fragrance material. Sclareol is known to exert various biological activities, but its antiphotoaging effect has not been elucidated to date. Therefore, we evaluated wrinkle improvement efficacy of sclareol. METHODS: Human dermal fibroblast cell line (Hs68) and a reconstructed human epidermis (RHE) model were used to evaluate the antiphotoaging effect of sclareol in vitro. A clinical study treated with 0.02% sclareol-containing cream was conducted to identify the ability of sclareol to improve wrinkles. RESULTS: First, sclareol enhanced cellular proliferation and blocked UVB-induced cell death. Sclareol inhibited the UVB-induced mRNA expression of matrix metalloproteinases (MMPs) by regulating the protein expression of AP-1 constituents. In RHE model, sclareol recovered the UVB-induced decrease in epidermal thickness and the expression of proliferating cell nuclear antigen (PCNA). In clinical trial, visually assessed changes and several wrinkle parameters were considered to be statistically different between the test and control groups at 12 weeks. CONCLUSIONS: In this study, sclareol inhibited various photoaging phenomena in human fibroblasts and RHE model. In addition, sclareol-containing cream improved wrinkles in a clinical trial. Taken together, sclareol alleviates facial wrinkle formation via an antiphotoaging mechanism and may be an effective candidate ingredient.


Asunto(s)
Diterpenos/farmacología , Extractos Vegetales/farmacología , Salvia officinalis , Envejecimiento de la Piel/efectos de los fármacos , Adulto , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular , Proliferación Celular/efectos de los fármacos , Diterpenos/uso terapéutico , Epidermis/efectos de los fármacos , Cara , Femenino , Fibroblastos , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Humanos , Metaloproteinasas de la Matriz/genética , Persona de Mediana Edad , Fitoterapia , Extractos Vegetales/uso terapéutico , Antígeno Nuclear de Célula en Proliferación/metabolismo , Crema para la Piel/uso terapéutico , Factor de Transcripción AP-1/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Rayos Ultravioleta
8.
Int J Phytoremediation ; 17(12): 1171-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25996359

RESUMEN

A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012-2013. Six doses (0, 20, 40, 60, 80, 100 tha(-1)) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha(-1)of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha(-1). Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha(-1)sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Metales Pesados/metabolismo , Aceites de Plantas/química , Salvia/efectos de los fármacos , Aguas del Alcantarillado/química , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , India , Salvia/crecimiento & desarrollo , Salvia/metabolismo , Estaciones del Año , Curtiembre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA