Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 31(2): 366-372, 2020 Feb.
Artículo en Chino | MEDLINE | ID: mdl-32476327

RESUMEN

Ecological stoichiometry provides a new method for understanding the characteristics, driving forces and mechanisms of C, N and P coupled cycles. However, there are few reports on the variation in ecological stoichiometry of plants during their growth. In this study, we fitted the total elemental mass of different module based on the size of Nitraria tangutorum, and derived the ecological stoichiometry models of different module and whole ramet by measuring the biomass and nutrient concentrations of the current-year stems in 2017, 2-year-old stems, more than 2-year-old stems, leaves, roots and layerings of N. tangutorum ramet. Our results showed that the derivation model could well reflect the changes in ecological stoichiometry during plant growth. The old stems and the layering had higher N:P and C:P, while leaves,current-year stems, and roots had lower N:P and C:P. The whole plant nutrient elements cumulative rate was P:N:C during the growth process. These results were consistent with the growth rate hypothesis and allometric theory, and provide evidence for nutrient reabsorption. This model could be used as an effective way to analyze the dynamic characteristics of elements in plant growth.


Asunto(s)
Magnoliopsida , Biomasa , Nitrógeno , Fósforo , Hojas de la Planta , Raíces de Plantas , Plantas
2.
Tree Physiol ; 39(5): 755-766, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30924868

RESUMEN

Tree species vary in how they invest resources to different functions throughout their life histories, and investigating the detailed patterns of ontogenetic changes in key functional traits will aid in predicting forest dynamics and ecosystem processes. In this context, we investigated size-dependent changes in key leaf functional traits and nitrogen (N) allocation trade-offs in black locust (Robinia pseudoacacia L., an N-fixing pioneer species) and giant dogwood (Cornus controversa Hemsl., a mid-successional species), which have different life-history strategies, especially in their light use. We found that the leaf mass per area and leaf carbon concentrations increased linearly with tree size (diameter at breast height, DBH), whereas leaf N concentrations decreased nonlinearly, with U- and hump-shaped patterns in black locust and giant dogwood, respectively. We also discovered large differences in N allocation between the two species. The fraction of leaf N invested in cell walls was much higher in black locust than in giant dogwood, while the opposite was true for the light harvesting N fraction. Furthermore, these fractions were related to DBH to varying degrees: the cell wall N fraction increased with DBH for both species, whereas the light harvesting N fraction of giant dogwood decreased nonlinearly and that of black locust remained constant. Instead, black locust reduced the fraction of leaf N invested in other N pools, resulting in a smaller fraction compared to that of giant dogwood. On the other hand, both species had similar fraction of leaf N invested in ribulose-1,5-bisphosphate carboxylase/oxygenase across tree size. This study indicated that both species increased leaf mechanical toughness through characteristic changes in N allocation trade-offs over the lifetimes of the trees.


Asunto(s)
Cornus/fisiología , Nitrógeno/metabolismo , Hojas de la Planta/fisiología , Robinia/fisiología , Rasgos de la Historia de Vida , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA