Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 41(5): 629-637, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31911638

RESUMEN

Geissoschizine methyl ether (GM) is an indole alkaloid isolated from Uncaria rhynchophyll (UR) that has been used for the treatment of epilepsy in traditional Chinese medicine. An early study in a glutamate-induced mouse seizure model demonstrated that GM was one of the active ingredients of UR. In this study, electrophysiological technique was used to explore the mechanism underlying the antiepileptic activity of GM. We first showed that GM (1-30 µmol/L) dose-dependently suppressed the spontaneous firing and prolonged the action potential duration in cultured mouse and rat hippocampal neurons. Given the pivotal roles of ion channels in regulating neuronal excitability, we then examined the effects of GM on both voltage-gated and ligand-gated channels in rat hippocampal neurons. We found that GM is an inhibitor of multiple neuronal channels: GM potently inhibited the voltage-gated sodium (NaV), calcium (CaV), and delayed rectifier potassium (IK) currents, and the ligand-gated nicotinic acetylcholine (nACh) currents with IC50 values in the range of 1.3-13.3 µmol/L. In contrast, GM had little effect on the voltage-gated transient outward potassium currents (IA) and four types of ligand-gated channels (γ-amino butyric acid (GABA), N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainite (AMPA/KA receptors)). The in vivo antiepileptic activity of GM was validated in two electricity-induced seizure models. In the maximal electroshock (MES)-induced mouse seizure model, oral administration of GM (50-100 mg/kg) dose-dependently suppressed generalized tonic-clonic seizures. In 6-Hz-induced mouse seizure model, oral administration of GM (100 mg/kg) reduced treatment-resistant seizures. Thus, we conclude that GM is a promising antiepileptic candidate that inhibits multiple neuronal channels.


Asunto(s)
Anticonvulsivantes/farmacología , Hipocampo/efectos de los fármacos , Alcaloides Indólicos/farmacología , Activación del Canal Iónico/efectos de los fármacos , Neuronas/efectos de los fármacos , Convulsiones/tratamiento farmacológico , Animales , Canales de Calcio , Modelos Animales de Enfermedad , Electrochoque , Activación del Canal Iónico/genética , Masculino , Ratones , Ratones Endogámicos , Ratas , Ratas Sprague-Dawley
2.
Front Neural Circuits ; 11: 68, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29033795

RESUMEN

Predator pressure and olfactory cues (alarm substance) have been shown to modulate Mauthner cell (M-cell) initiated startle escape responses (C-starts) in teleost fish. The regulation of such adaptive responses to potential threats is thought to involve the release of steroid hormones such as cortisol. However, the mechanism by which cortisol may regulate M-cell excitability is not known. Here, we used intrasomatic, in vivo recordings to elucidate the acute effects of cortisol on M-cell membrane properties and sound evoked post-synaptic potentials (PSPs). Cortisol tonically decreased threshold current in the M-cell within 10 min before trending towards baseline excitability over an hour later, which may indicate the involvement of non-genomic mechanisms. Consistently, current ramp injection experiments showed that cortisol increased M-cell input resistance in the depolarizing membrane, i.e., by a voltage-dependent postsynaptic mechanism. Cortisol also increases the magnitude of sound-evoked M-cell PSPs by reducing the efficacy of local feedforward inhibition (FFI). Interestingly, another pre-synaptic inhibitory network mediating prepulse inhibition (PPI) remained unaffected. Together, our results suggest that cortisol rapidly increases M-cell excitability via a post-synaptic effector mechanism, likely a chloride conductance, which, in combination with its dampening effect on FFI, will modulate information processing to reach threshold. Given the central role of the M-cell in initiating startle, these results are consistent with a role of cortisol in mediating the expression of a vital behavior.


Asunto(s)
Hidrocortisona/metabolismo , Neuronas/citología , Neuronas/metabolismo , Reflejo de Sobresalto/fisiología , Estimulación Acústica , Animales , Percepción Auditiva/fisiología , Retroalimentación Fisiológica/fisiología , Carpa Dorada , Potenciales de la Membrana/fisiología , Microelectrodos , Inhibición Neural/fisiología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo
3.
J Pharmacol Toxicol Methods ; 87: 11-23, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28408211

RESUMEN

Voltage gated ion channels are central in defining the fundamental properties of the ventricular cardiac action potential (AP), and are also involved in the development of drug-induced arrhythmias. Many drugs can inhibit cardiac ion currents, including the Na+ current (INa), L-type Ca2+ current (Ica-L), and K+ currents (Ito, IK1, IKs, and IKr), and thereby affect AP properties in a manner that can trigger or sustain cardiac arrhythmias. Since publication of ICH E14 and S7B over a decade ago, there has been a focus on drug effects on QT prolongation clinically, and on the rapidly activating delayed rectifier current (IKr), nonclinically, for evaluation of proarrhythmic risk. This focus on QT interval prolongation and a single ionic current likely impacted negatively some drugs that lack proarrhythmic liability in humans. To rectify this issue, the Comprehensive in vitro proarrhythmia assay (CiPA) initiative has been proposed to integrate drug effects on multiple cardiac ionic currents with in silico modelling of human ventricular action potentials, and in vitro data obtained from human stem cell-derived ventricular cardiomyocytes to estimate proarrhythmic risk of new drugs with improved accuracy. In this review, we present the physiological functions and the molecular basis of major cardiac ion channels that contribute to the ventricle AP, and discuss the CiPA paradigm in drug development.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Cardiotoxinas/farmacología , Canales Iónicos/fisiología , Farmacología/métodos , Animales , Cardiotoxinas/efectos adversos , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiología , Humanos , Canales Iónicos/agonistas , Canales Iónicos/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Farmacología/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA