Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.277
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Biomed Pharmacother ; 173: 116407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460367

RESUMEN

Acute kidney injury frequently occurs after cardiac surgery, and is primarily attributed to renal ischemia-reperfusion (I/R) injury and inflammation from surgery and cardiopulmonary bypass. Vitamin C, an antioxidant that is often depleted in critically ill patients, could potentially mitigate I/R-induced oxidative stress at high doses. We investigated the effectiveness of high-dose vitamin C in preventing I/R-induced renal injury. The ideal time and optimal dosage for administration were determined in a two-phase experiment on Sprague-Dawley rats. The rats were assigned to four groups: sham, IRC (I/R + saline), and pre- and post-vitC (vitamin C before and after I/R, respectively), with vitamin C administered at 200 mg/kg. Additional groups were examined for dose modification based on the optimal timing determined: V100, V200, and V300 (100, 200, and 300 mg/kg, respectively). Renal I/R was achieved through 45 min of ischemia followed by 24 h of reperfusion. Vitamin C administration during reperfusion significantly reduced renal dysfunction and tubular damage, more than pre-ischemic administration. Doses of 100 and 200 mg/kg during reperfusion reduced oxidative stress markers, including myeloperoxidase and inflammatory responses by decreasing high mobility group box 1 release and nucleotide-binding and oligomerization domain-like receptor 3 inflammasome. Overall beneficial effect was most prominent with 200 mg/kg. The 300 mg/kg dose, however, showed no additional benefits over the IRC group regarding serum blood urea nitrogen and creatinine levels and histological evaluation. During reperfusion, high-dose vitamin C administration (200 mg/kg) significantly decreased renal I/R injury by effectively attenuating the major triggers of oxidative stress and inflammation.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Daño por Reperfusión , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Riñón , Estrés Oxidativo , Lesión Renal Aguda/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Ácido Ascórbico/metabolismo , Daño por Reperfusión/patología , Antineoplásicos/farmacología , Inflamación/metabolismo , Isquemia/metabolismo , Creatinina
2.
Food Chem ; 446: 138866, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430769

RESUMEN

Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.


Asunto(s)
Antioxidantes , Solanum tuberosum , Antioxidantes/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/metabolismo , Solanum tuberosum/metabolismo , Fenoles/metabolismo , Ácido Ascórbico/metabolismo , Catecol Oxidasa/metabolismo
3.
J Exp Bot ; 75(9): 2604-2630, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38300237

RESUMEN

Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.


Asunto(s)
Ácido Ascórbico , Plantas , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis , Plantas/metabolismo , Plantas/genética , Regulación de la Expresión Génica de las Plantas , Vías Biosintéticas
4.
Biochem Biophys Res Commun ; 695: 149463, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176172

RESUMEN

Cisplatin-induced acute kidney injury (AKI) restricts the use of cisplatin as a first-line chemotherapeutic agent. Our previous study showed that prophylactic vitamin C supplementation may act as an epigenetic modulator in alleviating cisplatin-induced AKI in mice. However, the targets of vitamin C and the mechanisms underlying the epigenetics changes remain largely unknown. Herein, whole-genome bisulfite sequencing and bulk RNA sequencing were performed on the kidney tissues of mice treated with cisplatin with prophylactic vitamin C supplementation (treatment mice) or phosphate-buffered saline (control mice) at 24 h after cisplatin treatment. Ascorbyl phosphate magnesium (APM), an oxidation-resistant vitamin C derivative, was found that led to global hypomethylation in the kidney tissue and regulated different functional genes in the promoter region and gene body region. Integrated evidence suggested that APM enhanced renal ion transport and metabolism, and reduced apoptosis and inflammation in the kidney tissues. Strikingly, Mapk15, Slc22a6, Cxcl5, and Cd44 were the potential targets of APM that conferred protection against cisplatin-induced AKI. Moreover, APM was found to be difficult to rescue cell proliferation and apoptosis caused by cisplatin in the Slc22a6 knockdown cell line. These results elucidate the mechanism by which vitamin C as an epigenetic regulator to protects against cisplatin-induced AKI and provides a new perspective and evidence support for controlling the disease process through regulating DNA methylation.


Asunto(s)
Lesión Renal Aguda , Antineoplásicos , Ratones , Animales , Cisplatino/efectos adversos , Antineoplásicos/farmacología , Desmetilación del ADN , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Riñón/metabolismo , Apoptosis , Magnesio/metabolismo , Vitaminas/farmacología , Suplementos Dietéticos , Ácido Ascórbico/metabolismo , Fosfatos/metabolismo , Ratones Endogámicos C57BL
5.
Nat Commun ; 15(1): 422, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212310

RESUMEN

To mobilize sparingly available phosphorus (P) in the rhizosphere, many plant species secrete malate to release P sorbed onto (hydr)oxides of aluminum and iron (Fe). In the presence of Fe, malate can provoke Fe over-accumulation in the root apoplast, triggering a series of events that inhibit root growth. Here, we identified HYPERSENSITIVE TO LOW P1 (HYP1), a CYBDOM protein constituted of a DOMON and a cytochrome b561 domain, as critical to maintain cell elongation and meristem integrity under low P. We demonstrate that HYP1 mediates ascorbate-dependent trans-plasma membrane electron transport and can reduce ferric and cupric substrates in Xenopus laevis oocytes and in planta. HYP1 expression is up-regulated in response to P deficiency in the proximal zone of the root apical meristem. Disruption of HYP1 leads to increased Fe and callose accumulation in the root meristem and causes significant transcriptional changes in roots. We further demonstrate that HYP1 activity overcomes malate-induced Fe accumulation, thereby preventing Fe-dependent root growth arrest in response to low P. Collectively, our results uncover an ascorbate-dependent metalloreductase that is critical to protect root meristems of P-deficient plants from increased Fe availability and provide insights into the physiological function of the yet poorly characterized but ubiquitous CYBDOM proteins.


Asunto(s)
Meristema , Fósforo , Meristema/metabolismo , Fósforo/metabolismo , Malatos/metabolismo , Hierro/metabolismo , Plantas/metabolismo , Ácido Ascórbico/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Prev Vet Med ; 224: 106122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241900

RESUMEN

The objective of this study was to investigate how supplementing vitamin C (VC) in milk affects growth, starter intake, blood metabolites, and the health of young calves classified into healthy or diarrheic groups. Calves were classified as diarrheic if they experienced diarrhea for at least 3 days from birth to day 7, otherwise, they were classified as healthy (i.e., days with diarrhea < 3). From day 8 of age, a total of 48 Holstein calves were divided into four groups based on a 2 × 2 factorial arrangement, with calf health status (healthy or diarrheic) and VC supplementation (VC+ or VC-) to pasteurized milk (0 or 2 g/d; 50% purity) being the main experimental factors. Calves were fed equal amounts of milk until weaning (d 60). Calves continued to be monitored until they reached 74 days of age. Calves in the VC+ group were heavier at weaning (74.3 vs. 72.2 kg; P = 0.04) compared to those calves that did not receive VC. Blood total antioxidant capacity (d 53 and 67) and superoxide dismutase activity (d 53) were greater (P < 0.01) in VC+ vs. VC- calves. Calf health status and VC supplementation interacted (P = 0.03) for blood ß-hydroxybutyrate on d 53, with the lowest concentration observed in diarrheic/VC- calves. Calves in the diarrheic group had a lower total antioxidant capacity (P = 0.01) but a greater neutrophil-to-lymphocyte ratio on d 53 and 67 (P < 0.01) than calves in the healthy group. Before weaning (d 53), neutrophil-to-lymphocyte ratio was greater, but hemoglobin was lower (P = 0.02) in calves classified into the diarrheic group that did not receive supplemental VC. The number of days medicated for diarrhea treatment was lower in VC+ calves than those in VC- group (1.73 vs. 2.47 days; P = 0.05). Overall, VC supplementation in pasteurized milk improved calf growth and health. Calves that experienced elevated episodes of diarrhea within the first week of life benefited more from supplemental VC than those classified into the healthy group.


Asunto(s)
Dieta , Leche , Animales , Bovinos , Leche/metabolismo , Dieta/veterinaria , Antioxidantes/metabolismo , Peso Corporal , Destete , Diarrea/prevención & control , Diarrea/veterinaria , Vitaminas/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Ácido Ascórbico/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos
7.
Antioxid Redox Signal ; 40(7-9): 460-469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37337659

RESUMEN

Background: It is still unclear how ascorbic acid levels relate to the pathogenesis of malaria. This systematic review synthesized different ascorbic acid levels in malaria patients with different severity levels of malaria and Plasmodium species. Methods: The systematic review protocol was registered in the PROSPERO database (CRD42023394849). A systematic search of PubMed, Embase, MEDLINE, Ovid, Scopus, and Google Scholar was conducted to identify studies that reported ascorbic acid and malaria. The pooled standardized mean difference (Cohen's d) with 95% confidence intervals (CIs) was calculated using the random-effects model. Results: A total of 1480 articles were obtained from the searches of the databases, and 30 studies were included for syntheses. The meta-analysis revealed that patients with malaria had lower levels of ascorbic acid than those without malaria or uninfected controls (p < 0.01, Cohen's d = -3.71, 95% CI = -4.44 to -2.98, I2 = 98.87%, 30 studies). Comparable levels of ascorbic acid were observed between patients with severe malaria and those with nonsevere malaria (p = 0.06, Cohen's d = -1.39, 95% CI = -2.85 to 0.07, I2 = 96.58%, 4 studies). Similarly, levels of ascorbic acid were comparable between patients with Plasmodium falciparum and Plasmodium vivax malaria (p = 0.34, Cohen's d = -1.06, 95% CI = -3.23 to 1.12, I2 = 97.30%, 3 studies). Conclusions: The meta-analysis reveals diminished levels of ascorbic acid in malaria cases. Manipulating the host's nutritional status, such as by supplementing it with ascorbic acid to restore reactive oxygen species balance, may alter the progression of malarial infection and prevention of disease severity. Antioxid. Redox Signal. 40, 460-469.


Asunto(s)
Ácido Ascórbico , Malaria , Humanos , Malaria/complicaciones , Malaria Falciparum/complicaciones , Malaria Vivax/complicaciones , Plasmodium falciparum , Revisiones Sistemáticas como Asunto , Ácido Ascórbico/metabolismo
8.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38069418

RESUMEN

Because equine tendinopathies are slow to heal and often recur, therapeutic strategies are being considered that aid tendon repair. Given the success of utilizing vitamin C to promote tenogenesis in other species, we hypothesized that vitamin C supplementation would produce dose-dependent improvements in the tenogenic properties of tendon proper (TP) and peritenon (PERI) cells of the equine superficial digital flexor tendon (SDFT). Equine TP- and PERI-progenitor-cell-seeded fibrin three-dimensional constructs were supplemented with four concentrations of vitamin C. The gene expression profiles of the constructs were assessed with 3'-Tag-Seq and real-time quantitative polymerase chain reaction (RT-qPCR); collagen content and fibril ultrastructure were also analyzed. Moreover, cells were challenged with dexamethasone to determine the levels of cytoprotection afforded by vitamin C. Expression profiling demonstrated that vitamin C had an anti-inflammatory effect on TP and PERI cell constructs. Moreover, vitamin C supplementation mitigated the degenerative pathways seen in tendinopathy and increased collagen content in tendon constructs. When challenged with dexamethasone in two-dimensional culture, vitamin C had a cytoprotective effect for TP cells but not necessarily for PERI cells. Future studies will explore the effects of vitamin C on these cells during inflammation and within the tendon niche in vivo.


Asunto(s)
Tendinopatía , Tendones , Animales , Caballos , Tendones/metabolismo , Colágeno/metabolismo , Ingeniería de Tejidos/métodos , Tendinopatía/tratamiento farmacológico , Tendinopatía/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Dexametasona/farmacología , Dexametasona/metabolismo
9.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958646

RESUMEN

Citrus fruits are a natural source of ascorbic acid, and exosome-like nanovesicles obtained from these fruits contain measurable levels of ascorbic acid. We tested the ability of grapefruit-derived extracellular vesicles (EVs) to inhibit the growth of human leukemic cells and leukemic patient-derived bone marrow blasts. Transmission electron microscopy and nanoparticle tracking analysis (NTA) showed that the obtained EVs were homogeneous exosomes, defined as exosome-like plant-derived nanovesicles (ELPDNVs). The analysis of their content has shown measurable amounts of several molecules with potent antioxidant activity. ELPDNVs showed a time-dependent antiproliferative effect in both U937 and K562 leukemic cell lines, comparable with the effect of high-dosage ascorbic acid (2 mM). This result was confirmed by a clear decrease in the number of AML blasts induced by ELPDNVs, which did not affect the number of normal cells. ELPDNVs increased the ROS levels in both AML blast cells and U937 without affecting ROS storage in normal cells, and this effect was comparable to ascorbic acid (2 mM). With our study, we propose ELPDNVs from grapefruits as a combination/supporting therapy for human leukemias with the aim to improve the effectiveness of the current therapies.


Asunto(s)
Citrus paradisi , Exosomas , Leucemia Mieloide Aguda , Humanos , Exosomas/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agricultura Orgánica , Leucemia Mieloide Aguda/metabolismo
10.
Environ Sci Pollut Res Int ; 30(57): 120044-120062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37936030

RESUMEN

Ascorbic acid (AsA) and selenium nanoparticles (SeNPs) were versatile plant growth regulators, playing multiple roles in promoting plant growth under heavy metal stresses. This study aimed to evaluate the beneficial role of individual and combined effects of AsA and SeNPs on morpho-physio-biochemical traits of rice with or without chromium (Cr) amendment. The results indicated that Cr negatively affected plant biomass, gas exchange parameters, total soluble sugar, proline, relative water contents, and antioxidant-related gene expression via increasing reactive oxygen species (MDA, H2O2, O2•-) formation, resulting in plant growth reduction. The application of AsA and SeNPs, individually or in combination, decreased the uptake and translocation of Cr in rice seedlings, increased seedlings with tolerance to Cr toxicity, and significantly improved the rice seedling growth. Most notably, AsA + SeNP treatment strengthened the antioxidative defense system through ROS quenching and Cr detoxification. The results collectively suggested that the application of AsA and SeNPs alone or in combination had the potential to alleviate Cr toxicity in rice and possibly other crop species.


Asunto(s)
Oryza , Selenio , Antioxidantes/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Plantones , Selenio/farmacología , Selenio/metabolismo , Cromo/metabolismo , Oryza/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Mecanismos de Defensa
11.
Artículo en Inglés | MEDLINE | ID: mdl-37317977

RESUMEN

We, herein, investigated the in vitro effects of galactose on the activity of pyruvate kinase, succinate dehydrogenase (SDH), complex II and IV (cytochrome c oxidase) of the respiratory chain and Na+K+-ATPase in the cerebral cortex, cerebellum and hippocampus of 30-day-old rats. We also determined the influence of the antioxidants, trolox, ascorbic acid and glutathione, on the effects elicited by galactose. Galactose was added to the assay at concentrations of 0.1, 3.0, 5.0 and 10.0 mM. Control experiments were performed without galactose. Galactose, at 3.0, 5.0 and 10.0 mM, decreased pyruvate kinase activity in the cerebral cortex and at 10.0 mM in the hippocampus. Galactose, at 10.0 mM, reduced SDH and complex II activities in the cerebellum and hippocampus, and reduced cytochrome c oxidase activity in the hippocampus. Additionally, decreased Na+K+-ATPase activity in the cerebral cortex and hippocampus; conversely, galactose, at 3.0 and 5.0 mM, increased this enzyme's activity in the cerebellum. Data show that galactose disrupts energy metabolism and trolox, ascorbic acid and glutathione addition prevented the majority of alterations in the parameters analyzed, suggesting the use of antioxidants as an adjuvant therapy in Classic galactosemia.


Asunto(s)
Antioxidantes , Galactosa , Ratas , Animales , Antioxidantes/farmacología , Galactosa/metabolismo , Galactosa/farmacología , Complejo IV de Transporte de Electrones , Piruvato Quinasa/metabolismo , Piruvato Quinasa/farmacología , Ratas Wistar , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Metabolismo Energético , Encéfalo/metabolismo , Glutatión/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología
12.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373207

RESUMEN

Cold stress is a major environmental factor that adversely affects the growth and productivity of tea plants. Upon cold stress, tea plants accumulate multiple metabolites, including ascorbic acid. However, the role of ascorbic acid in the cold stress response of tea plants is not well understood. Here, we report that exogenous ascorbic acid treatment improves the cold tolerance of tea plants. We show that ascorbic acid treatment reduces lipid peroxidation and increases the Fv/Fm of tea plants under cold stress. Transcriptome analysis indicates that ascorbic acid treatment down-regulates the expression of ascorbic acid biosynthesis genes and ROS-scavenging-related genes, while modulating the expression of cell wall remodeling-related genes. Our findings suggest that ascorbic acid treatment negatively regulates the ROS-scavenging system to maintain ROS homeostasis in the cold stress response of tea plants and that ascorbic acid's protective role in minimizing the harmful effects of cold stress on tea plants may occur through cell wall remodeling. Ascorbic acid can be used as a potential agent to increase the cold tolerance of tea plants with no pesticide residual concerns in tea.


Asunto(s)
Ácido Ascórbico , Camellia sinensis , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Camellia sinensis/metabolismo , Perfilación de la Expresión Génica , Té/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Frío
13.
Environ Pollut ; 334: 122008, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356795

RESUMEN

Crop plants face severe yield losses worldwide owing to their exposure to multiple abiotic stresses. The study described here, was conducted to comprehend the response of cucumber seedlings to drought (induced by 15% w/v polyethylene glycol 8000; PEG) and nickel (Ni) stress in presence or absence of titanium dioxide nanoparticle (nTiO2). In addition, it was also investigated how nitrogen (N) and carbohydrate metabolism, as well as the defense system, are affected by endogenous potassium (K+) and hydrogen sulfide (H2S). Cucumber seedlings were subjected to Ni stress and drought, which led to oxidative stress and triggered the defense system. Under the stress, N and carbohydrate metabolism were differentially affected. Supplementation of the stressed seedlings with nTiO2 (15 mg L-1) enhanced the activity of antioxidant enzymes, ascorbate-glutathione (AsA-GSH) system and elevated N and carbohydrates metabolism. Application of nTiO2 also enhanced the accumulation of phytochelatins and activity of the enzymes of glyoxalase system that provided additional protection against the metal and toxic methylglyoxal. Osmotic stress brought on by PEG and Ni, was countered by the increase of proline and carbohydrates levels, which helped the seedlings keep their optimal level of hydration. Application nTiO2 improved the biosynthesis of H2S and K+ retention through regulating Cys biosynthesis and H+-ATPase activity, respectively. Observed outcomes lead to the conclusion that nTiO2 maintains redox homeostasis, and normal functioning of N and carbohydrates metabolism that resulted in the protection of cucumber seedlings against drought and Ni stress. Use of 20 mM tetraethylammonium chloride (K+- channel blocker), 500 µM sodium orthovanadate (PM H+-ATPase inhibitor), and 1 mM hypotaurine (H2S scavenger) demonstrate that endogenous K+ and H2S were crucial for the nTiO2-induced modulation of plants' adaptive responses to the imposed stress.


Asunto(s)
Cucumis sativus , Sulfuro de Hidrógeno , Nanopartículas , Cucumis sativus/metabolismo , Níquel/toxicidad , Níquel/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Sequías , Nitrógeno/metabolismo , Ácido Ascórbico/metabolismo , Plantones/metabolismo , Metabolismo de los Hidratos de Carbono , Nanopartículas/toxicidad
14.
Am J Hematol ; 98(9): 1356-1363, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37357807

RESUMEN

Guidelines generally recommend taking iron supplements in the morning away from meals and with ascorbic acid (AA) to increase iron absorption. However, there is little direct evidence on the effects of dietary factors and time of day on absorption from iron supplements. In iron-depleted women (n = 34; median serum ferritin 19.4 µg/L), we administered 100 mg iron doses labeled with 54 Fe, 57 Fe, or 58 Fe in each of six different conditions with: (1) water (reference) in the morning; (2) 80 mg AA; (3) 500 mg AA; (4) coffee; (5) breakfast including coffee and orange juice (containing ~90 mg AA); and (6) water in the afternoon. Fractional iron absorption (FIA) from these n = 204 doses was calculated based on erythrocyte incorporation of multiple isotopic labels. Compared to the reference: 80 mg AA increased FIA by 30% (p < .001) but 500 mg AA did not further increase FIA (p = .226); coffee decreased FIA by 54% (p = .004); coffee with breakfast decreased FIA by 66% (p < .001) despite the presence of ~90 mg of AA. Serum hepcidin was higher (p < .001) and FIA was 37% lower (p = .059) in the afternoon compared to the morning. Our data suggest that to maximize efficacy, ferrous iron supplements should be consumed in the morning, away from meals or coffee, and with an AA-rich food or beverage. Compared to consuming a 100 mg iron dose in the morning with coffee or breakfast, consuming it with orange juice alone results in a ~ 4-fold increase in iron absorption, and provides ~20 more mg of absorbed iron per dose. The trial was registered at Clinicaltrials.gov(NCT04074707).


Asunto(s)
Anemia Ferropénica , Hierro , Humanos , Femenino , Café/metabolismo , Suplementos Dietéticos , Eritrocitos/metabolismo , Ácido Ascórbico/metabolismo , Hierro de la Dieta
15.
Recent Adv Food Nutr Agric ; 14(2): 107-125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37218195

RESUMEN

BACKGROUND: Ananas comosus L. (family Bromeliaceae) is a plant innate to South America and has been cultivated in various world regions. The plant parts have traditionally been used to treat various ailments, like cancer, diabetes mellitus, bacterial infection, Covid-19 infection, inflammation, arthritis, asthma, malaria, cardiovascular disease, and burn, as debridement agents. The pineapple contains nutrients, including vitamin C, iron, potassium, and protein. It also contains flavonoids, carotenoids, tannins, polyphenols, and alkaloids. METHODS: An extensive literature search was conducted on Ananas comosus using three scientific databases: PubMed, Scopus, and Web of Science. The keywords in this paper were combined to form a search strategy. Ananas comosus and pineapple were the main criteria for judging abstracts, titles, and keywords. In the full text of the paper, the secondary judgment criteria included mentioning "therapeutic potential" or "pharmacological activities". Among the 250 references in the compiled bibliography, there were original articles, books, and web addresses dating back to 2001 to 2023. A review of articles was conducted after abstracts and titles were screened, and 61 duplicate articles were deleted. In this paper, information is provided on the therapeutic potential and pharmacological actions of Ananas comosus and its bioactive compounds. RESULTS: In this review, the therapeutic potential of A. comosus has been detailed. The current review intends to provide an updated comprehensive overview of the versatile plant's use and its clinical trials. CONCLUSION: The plant has gained enormous attention and increasing consideration for treating various diseases. The therapeutic potential of pineapple, its compound, extracts, and their mode of action are discussed briefly. Also, clinical trials are emphasized, which are in great demand and need further in-depth investigation in the future.


Asunto(s)
Ananas , COVID-19 , Taninos/metabolismo , Ácido Ascórbico/metabolismo , Extractos Vegetales/farmacología
16.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047746

RESUMEN

Periodontitis is a common disorder affecting the bone and soft tissues of the periodontal complex. When untreated, it may lead to severe mobility or even loss of teeth. The pathogenesis of periodontitis is complex, with crucial factors being chronic inflammation in gingival and periodontal tissues and oral microbiome alterations. However, recent studies highlight the alleged role of vitamins, such as vitamin C (VitC) and vitamin D (VitD), in the development of the disease. VitC regulates numerous biochemical reactions, but foremost, it is involved in synthesizing collagen. It was reported that VitC deficiency could lead to damage to the periodontal ligaments. VitC supplementation improves postoperative outcomes in patients with periodontitis. VitD is a steroid derivative that can be produced in the skin under ultraviolet radiation and later transformed into an active form in other tissues, such as the kidneys. VitD was established to decrease the expression of proinflammatory cytokines in gingiva and regulate the proper mineral density of teeth. Moreover, the supplementation of VitD was associated with better results in the nonsurgical treatment of periodontitis. In this review, we summarize recent knowledge on the role of vitamins C and D in the pathogenesis and treatment of periodontitis.


Asunto(s)
Deficiencia de Ácido Ascórbico , Ácido Ascórbico , Periodontitis , Deficiencia de Vitamina D , Vitamina D , Ácido Ascórbico/metabolismo , Ácido Ascórbico/uso terapéutico , Vitamina D/metabolismo , Vitamina D/uso terapéutico , Periodontitis/tratamiento farmacológico , Periodontitis/etiología , Deficiencia de Vitamina D/complicaciones , Deficiencia de Ácido Ascórbico/complicaciones , Humanos , Suplementos Dietéticos , Colágeno/metabolismo
17.
Plant Physiol Biochem ; 197: 107656, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37001305

RESUMEN

In modern era, various inorganic fertilizers and pesticides are used as plant growth supplements in a variety of crop in order to gain maximum output and also reported as hazardous to mankind as well as environment. In addition, some of the plants died in initial phase of the growth after germination due to poor nutrient content of the soil or exposure to biotic stresses. In the beginning of sustainable agriculture, these chemical fertilizers were replaced with some alternative growth boosters such as organic fertilizers. In the present study, vermicompost was prepared using garden waste and cattle dung followed by analysis of various physico-chemical properties. Then tomato seeds were allowed to germinate in soil and supplemented with different doses of vermicompost (0-100%). The plants were harvested after 10 and 45 days of their germination and tissues were subjected to analysis of various morphological and biochemical parameters. Morphological parameters included root length, shoot length, root fresh weight, shoot fresh weight and number of leaves. Whereas biochemical parameters such as protein content, antioxidative enzymes (catalase, superoxide dismutase, ascorbate peroxidase, polyphenol oxidase), non-enzymatic antioxidants (ascorbic acid, glutathione, tocopherol), osmolytes (proline, carbohydrate), photosynthetic pigments (chlorophyll, carotenoid) and secondary metabolites (phenol, flavonoid, anthocyanin) were estimated on UV-visible spectrophotometer using standard protocols. Further, structural analysis of plant tissue was done using fourier transform infrared spectroscopy spectra (FTIR) and carbon hydrogen nitrogen (CHN) elemental analyzer. Results obtained from the present study revealed significant difference in all morphological and biochemical markers at both 10 and 45 days intervals of time. Further, growth of all plants was found to be directly proportional to the concentration of vermicompost and exposure duration. FTIR spectra and CHN analyses reveal the breakdown of various complex compounds and their transformation from Vcom amended soil to roots of plants. This is the first study in which significant changes were observed in growth, physiology and structural composition of tomato plants at two different exposure periods (10 and 45 days) under glass house conditions which further concluded that vermicompost has a significant potential for increasing plant growth.


Asunto(s)
Solanum lycopersicum , Animales , Bovinos , Fertilizantes , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Plantas/metabolismo , Suelo/química
18.
Immunopharmacol Immunotoxicol ; 45(5): 521-526, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36794622

RESUMEN

Background: Favipiravir (FPV), an effective antiviral agent, is a drug used to treat influenza and COVID-19 by inhibiting the RNA-dependent RNA polymerase (RdRp) of RNA viruses. FPV has the potential to increase oxidative stress and organ damage. The purpose of this study was to demonstrate the oxidative stress and inflammation caused by FPV in the liver and kidneys of rats, as well as to investigate the curative effects of vitamin C (VitC).Methods: A total of 40 Sprague-Dawley male rats were randomly and equally divided into the following five groups: 1st; Control, 2nd; FPV = 20 mg/kg, 3rd; FPV = 100 mg/kg, 4th; FPV = 20 mg/kg + VitC (150 mg/kg), and 5th; FPV = 100 mg/kg + VitC (150 mg/kg) groups. Rats were given either FPV (orally) or FPV plus VitC (intramuscular) for 14 days. Rat blood, liver, and kidney samples were collected at 15 days to be analyzed for oxidative and histological changes.Results: FPV administration resulted in an increase in proinflammatory cytokines (TNF-α and IL-6) in the liver and kidney, as well as oxidative and histopathologic damage. FPV increased TBARS levels significantly (p < .05) and decreased GSH and CAT levels in liver and kidney tissues but had no effect on SOD activity. VitC supplementation significantly reduced TNF-a, IL-6, and TBARS levels while increasing GSH and CAT levels (p < .05). Furthermore, VitC significantly attenuated FPV-induced histopathological alterations associated with oxidative stress and inflammation in the liver and kidney tissues (p < .05).Conclusion: FPV caused liver and kidney damage in rats. In contrast, co-administration of FPV with VitC improved FPV-induced oxidative, pro-inflammatory, and histopathological changes.


Asunto(s)
COVID-19 , Interleucina-6 , Ratas , Masculino , Animales , Interleucina-6/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Ratas Sprague-Dawley , COVID-19/metabolismo , Estrés Oxidativo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Ácido Ascórbico/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hígado , Riñón , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Suplementos Dietéticos
19.
Biol Trace Elem Res ; 201(11): 5257-5271, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36790584

RESUMEN

Atrazine, as an herbicide, is used widely worldwide. Because of its prolonged persistence in the environment and accumulation in the body, atrazine exposure is a potential threat to human health. The present study evaluated the possible protective effects of zinc oxide nanoparticles and vitamin C against atrazine-induced hepatotoxicity in rats. Atrazine administered to rats orally at a dose of 300 mg/kg for 21 days caused liver oxidative stress as it increased malondialdehyde (MDA) formation and decreased reduced glutathione (GSH) contents. Atrazine induced inflammation accompanied by apoptosis via upregulation of hepatic gene expression levels of NF-κB, TNF-α, BAX, and caspase-3 and downregulation of Bcl-2 gene expression levels. Additionally, it disturbed the metabolic activities of cytochrome P450 as it downregulated hepatic gene expression levels of CYP1A1, CYP1B1, CYP2E1. The liver function biomarkers were greatly affected upon atrazine administration, and the serum levels of AST and ALT were significantly increased, while BWG%, albumin, globulins, and total proteins levels were markedly decreased. As a result of the above-mentioned influences of atrazine, histopathological changes in liver tissue were recorded in our findings. The administration of zinc oxide nanoparticles or vitamin C orally at a dose of 10 mg/kg and 200 mg/kg, respectively, for 30 days prior and along with atrazine, could significantly ameliorate the oxidative stress, inflammation, and apoptosis induced by atrazine and regulated the hepatic cytochrome P450 activities. Furthermore, they improved liver function biomarkers and histopathology. In conclusion, our results revealed that zinc oxide nanoparticles and vitamin C supplementations could effectively protect against atrazine-induced hepatotoxicity.


Asunto(s)
Atrazina , Enfermedad Hepática Inducida por Sustancias y Drogas , Nanopartículas , Óxido de Zinc , Humanos , Ratas , Animales , Óxido de Zinc/farmacología , Atrazina/toxicidad , Atrazina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Hígado/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Apoptosis , Vitaminas/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Inmunomodulación
20.
Int J Med Mushrooms ; 25(2): 23-33, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36749054

RESUMEN

Cantharellus cibarius Fr. is one of the most desirable, popularly known wild edible mushrooms of the genus Cantharellus. Besides having nutritional benefits, this mushroom is reported to harbor significant medicinal potential. In present study, we describe for the first-time bioactive metabolites content and medicinal activities of three different types of extracts including infusion, decoction, and hydroalcoholic fraction from wild Cantharellus cibarius of West Bengal. Bioactive metabolites quantification revealed the phenol and flavonoids present in the range between 0.56-1.46 mg of GAE/g of dried fruit bodies and 0.12-0.29 mg of QE/g of dried fruit bodies, respectively, whereas ascorbic acid contents were also found. Antioxidant activity was assessed using six in vitro systems; decoction displayed better results in all investigated assays with EC50 values ranging between 0.05 and 0.34 mg/ml whereas hydroalcoholic extract showed highest total antioxidant capacity (18 ± 1.61 µg AAE per mg of extract) than other extracts. Moreover, infusion and decoction were found to scavenge highly reactive free radicals like hydroxyl and nitric oxide with their EC50 values ranging between 0.26 and 0.91 mg/ml. Additionally, anti-inflammatory potential of the extracts was evaluated using protein denaturation assay. Hydroalcoholic extract at a concentration range of 0.005-0.1 mg/ml showed comparatively better activity than decoction and infusion, although all the extracts presented dose dependent inhibition of heat induced protein denaturation. Altogether, the present investigation is expected to extend the existing knowledge of this species and recommended its use in pharmaceutical industries as an effective mycomedicine.


Asunto(s)
Agaricales , Basidiomycota , Basidiomycota/metabolismo , Antioxidantes/farmacología , Ácido Ascórbico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA