Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 24(1): 58, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280993

RESUMEN

Acute pancreatitis (AP) is a severe gastrointestinal inflammatory disease with increasing mortality and morbidity. Glycyrrhiza glabra, commonly known as Liquorice, is a widely used plant containing bioactive compounds like Glycyrrhizin, which possesses diverse medicinal properties such as anti-inflammatory, antioxidant, antiviral, and anticancer activities. The objective of this study is to investigate the active components, relevant targets, and underlying mechanisms of the traditional Chinese medicine Glycyrrhiza glabra in the treatment of AP. Utilizing various computational biology methods, we explored the potential targets and molecular mechanisms through Glycyrrhizin supplementation. Computational results indicated that Glycyrrhizin shows promising pharmacological potential, particularly with mitogen-activated protein kinase 3 (MAPK3) protein (degree: 70), forming stable complexes with Glycyrrhizin through ionic and hydrogen bonding interactions, with a binding free energy (ΔGbind) of -33.01 ± 0.08 kcal/mol. Through in vitro experiments, we validated that Glycyrrhizin improves primary pancreatic acinar cell injury by inhibiting the MAPK/STAT3/AKT signaling pathway. Overall, MAPK3 emerges as a reliable target for Glycyrrhizin's therapeutic effects in AP treatment. This study provides novel insights into the active components and potential targets and molecular mechanisms of natural products.


Asunto(s)
Glycyrrhiza , Pancreatitis , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/química , Ácido Glicirrínico/metabolismo , Farmacología en Red , Enfermedad Aguda , Pancreatitis/tratamiento farmacológico , Transducción de Señal , Glycyrrhiza/química , Glycyrrhiza/metabolismo
2.
Plant Cell Physiol ; 65(2): 185-198, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38153756

RESUMEN

Glycyrrhizin, a type of the triterpenoid saponin, is a major active ingredient contained in the roots of the medicinal plant licorice (Glycyrrhiza uralensis, G. glabra and G. inflata), and is used worldwide in diverse applications, such as herbal medicines and sweeteners. The growing demand for licorice threatens wild resources and therefore a sustainable method of supplying glycyrrhizin is required. With the goal of establishing an alternative glycyrrhizin supply method not dependent on wild plants, we attempted to produce glycyrrhizin using hairy root culture. We tried to promote glycyrrhizin production by blocking competing pathways using CRISPR/Cas9-based gene editing. CYP93E3 CYP72A566 double-knockout (KO) and CYP93E3 CYP72A566 CYP716A179 LUS1 quadruple-KO variants were generated, and a substantial amount of glycyrrhizin accumulation was confirmed in both types of hairy root. Furthermore, we evaluated the potential for promoting further glycyrrhizin production by simultaneous CYP93E3 CYP72A566 double-KO and CYP88D6-overexpression. This strategy resulted in a 3-fold increase (∼1.4 mg/g) in glycyrrhizin accumulation in double-KO/CYP88D6-overexpression hairy roots, on average, compared with that of double-KO hairy roots. These findings demonstrate that the combination of blocking competing pathways and overexpression of the biosynthetic gene is important for enhancing glycyrrhizin production in G. uralensis hairy roots. Our findings provide the foundation for sustainable glycyrrhizin production using hairy root culture. Given the widespread use of genome editing technology in hairy roots, this combined with gene knockout and overexpression could be widely applied to the production of valuable substances contained in various plant roots.


Asunto(s)
Glycyrrhiza , Triterpenos , Edición Génica , Vías Biosintéticas/genética , Ácido Glicirrínico/metabolismo , Triterpenos/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
3.
Rev Med Interne ; 44(9): 487-494, 2023 Sep.
Artículo en Francés | MEDLINE | ID: mdl-37005098

RESUMEN

The word "licorice" refers to the plant, its root, and its aromatic extract. From a commercial point of view, Glycyrrhiza glabra is the most important species with a wide range of uses (herbal medicine, tobacco industry, cosmetics, food and pharmaceutical). Glycyrrhizin is one of the main constituents of licorice. Glycyrrhizin is hydrolyzed in the intestinal lumen by bacterial ß-glucuronidases to 3ß-monoglucuronyl-18ß-glycyrrhetinic acid (3MGA) and 18ß-glycyrrhetinic acid (GA), which are metabolized in the liver. Plasma clearance is slow due to enterohepatic cycling. 3MGA and GA can bind to mineralocorticoid receptors with very low affinity, and 3MGA induces apparent mineralocorticoid excess syndrome through dose-dependent inhibition of 11ß-hydroxysteroid dehydrogenase type 2 in renal tissue. The cases of apparent mineralocorticoid excess syndrome reported in the literature are numerous and sometimes severe, even fatal, most often in cases of chronic high dose consumption. Glycyrrhizin poisonings are characterized by hypertension, fluid retention, and hypokalemia with metabolic alkalosis and increased kaliuresis. Toxicity depends on the dose, the type of product consumed, the mode of consumption (acute or chronic) and a very large inter-individual variability. The diagnosis of glycyrrhizin-induced apparent mineralocorticoid excess syndrome is based on the history, clinical examination, and biochemical analysis. Management is primarily based on symptomatic care and stopping licorice consumption.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ácido Glicirretínico , Glycyrrhiza , Síndrome de Exceso Aparente de Mineralocorticoides , Humanos , Ácido Glicirrínico/efectos adversos , Ácido Glicirrínico/química , Ácido Glicirrínico/metabolismo , Síndrome de Exceso Aparente de Mineralocorticoides/inducido químicamente , Ácido Glicirretínico/efectos adversos , Ácido Glicirretínico/metabolismo , Glycyrrhiza/efectos adversos , Glycyrrhiza/química , Glycyrrhiza/metabolismo
4.
Anat Rec (Hoboken) ; 306(12): 3097-3105, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-35730909

RESUMEN

Huangqi decoction, also known as Huangqi Liuyi decoction, was first recorded in the prescriptions of the Bureau of Taiping People's Welfare Pharmacy. It comprises astragalus and licorice, which is a commonly used prescription in traditional Chinese medicine for the clinical treatment of chronic liver disease, especially liver cirrhosis. Total astragalus saponins (AST) is the main component of astragalus, and glycyrrhizic acid (GA) is the main component of licorice. In this study, normal macrophage exosomes were extracted, and the exosomes incubated with lipopolysaccharides (LPS) and those incubated with LPS + AST + GA were co-cultured with JS1 cells (hepatic stellate cell line). The survival rate and the activation of key signaling pathways of JS1 cells in each group were detected and compared. We found that the co-culture of LPS-induced macrophage exosomes with JS1 cells could significantly increase the expression levels of Collagen-1 (Col-1) and Alpha smooth muscle actin (α-SMA)in JS1 cells. However, a significant reversal effect was observed after pretreatment with AST combined with GA. Further evaluation found that the expression levels of phospho (p)-Smad2 and p-Smad3 in the JS1 cells were significantly increased after macrophages were induced with LPS, whereas pretreatment with AST + GA could significantly decrease the expression levels of p-Smad2 and p-Smad3. Preliminary results of this study indicated that LPS-induced macrophage exosomes can promote the activation of hepatic stellate cells, and the pretreatment of AST combined with GA can exert a significant intervention effect. In this study, the new mechanism of anti-hepatic fibrosis effect of traditional Chinese medicine components of Huangqi Decoction was analyzed from the perspective of exosomes.


Asunto(s)
Exosomas , Saponinas , Humanos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/metabolismo , Lipopolisacáridos/toxicidad , Saponinas/farmacología , Saponinas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Macrófagos
5.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 475-484, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35989475

RESUMEN

This study was conducted to evaluate the antioxidant capability of dietary supplementation with monoammonium glycyrrhizinate (MAG) in perinatal cows. Glycyrrhizic acid has been shown to have strong antioxidant activity and we hypothesised that the aglycone of glycyrrhizin and MAG, could reduce damage from oxidative stress in perinatal cows by enhancing antioxidant capacity. Blood and milk samples were collected from three groups of healthy perinatal cows that were similar in body weight, parity, milk yield in the last milk cycle, etc., receiving dietary MAG supplementation ([Day 0 = parturition]: 0 g/day, [n = 13)] 3 g/day [n = 13] or 6 g/day [n = 11]) from -28 to 56 day (0 day = parturition). Compared with 0 g/day controls (CON), milk fat was significantly decreased in cows fed with MAG, and 3 g/day had the greatest effect. A diet containing 3 g/day MAG decreased the serum alanine aminotransferase (ALT) level compared with CON at -7 day post-partum. ALT was also lower at 5 day post-partum in cows fed with 3 g/day MAG compared to 6 g/day. The administration of 3 g/day and 6 g/day MAG decreased serum aspartate transaminase (AST) at 3 day post-partum. Supplementation of MAG in cows increased total antioxidant capacity (T-AOC) in serum, and cows given 3 g MAG per day had higher T-AOC than controls on post-partum 7 day. At the end of the experiment, we isolated and cultured primary hepatocytes to determine the effect of MAG on oxidative stress caused by incubation with the sodium oleate (SO). SO increased lipid synthesis, but pre-treatment with MAG prevented the fatty buildup. SO treatment increased AST and ALT levels and malondialdehyde concentration, but decreased T-AOC and superoxide dismutase (SOD). Incubation with MAG increased antioxidant capacity and inhibited oxidant damage in bovine hepatocytes. SO stimulated expression of the antioxidant genes, NAD(P)H quinone dehydrogenase 1 (NQO1) and SOD1, in the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, and catalase 1 (CAT1); this increase was accentuated by MAG pre-treatment. The results suggest that MAG can alleviate the damage caused by oxidative stress in perinatal cows by enhancing antioxidant activity.


Asunto(s)
Antioxidantes , Ácido Glicirretínico , Embarazo , Femenino , Bovinos , Animales , Antioxidantes/metabolismo , Ácido Glicirrínico/metabolismo , Ácido Glicirrínico/farmacología , Estrés Oxidativo , Parto , Dieta/veterinaria , Leche/metabolismo , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacología , Suplementos Dietéticos , Lactancia
6.
Life Sci ; 310: 121110, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36272466

RESUMEN

AIMS: Glycyrrhizic acid is a natural anti-non-alcoholic fatty liver disease (NAFLD) compound isolated from licorice, while its action mechanism deserves to be fully elucidated. MATERIALS AND METHODS: Enlightened by the widely discovered associations between the NAFLD and gut microbiota, this study aimed to explore whether glycyrrhizic acid, licorice flavonoids, and licorice extract can regulate the gut microbiota of rats fed a high-fat diet. KEY FINDINGS: It was found that glycyrrhizic acid, licorice flavonoids, and licorice extract could significantly reduce the level of triglycerides in the liver of NAFLD model rats, and the effect of glycyrrhizic acid was stronger than licorice flavonoids and licorice extract. Moreover, they caused significant changes in the structural composition of the gut microbiota. Correlation analysis showed that the regulation of hepatic total cholesterol and triglyceride levels by glycyrrhizic acid treatment was closely related to the decrease of the relative abundances of Lachnospiraceae, Coriobacteriaceae, Blautia, and Collinsella and the increase of the relative abundances of Romboutsia and Turicibacter on the gut microbiota. Meanwhile, the functional predictive analysis of the gut microbiota indicated that the function of carbohydrate transport and metabolism was significantly decreased by drugs treatment, which might contribute to the decrease of fat accumulation in the liver of rats. SIGNIFICANCE: In conclusion, this study revealed the ameliorating effects of glycyrrhizic acid, licorice flavonoids, and licorice extract on NAFLD, and suggested that the effect of glycyrrhizic acid on NAFLD may be related to the improvement of the dysbiosis of gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Ácido Glicirrínico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Extractos Vegetales/uso terapéutico , Flavonoides/uso terapéutico , Ratones Endogámicos C57BL
7.
Artículo en Inglés | MEDLINE | ID: mdl-36142045

RESUMEN

Along with pharmacological applications due to bioactive elements such as flavonoids and glycyrrhizin, licorice has positive influences on the rehabilitation, rejuvenation, and management of salt-affected degraded lands in arid regions. These features made this plant widely appreciated worldwide when climate change is showing detrimental impacts for crop production and food security. However, a growing demand followed by irrational harvesting of wild licorice plants has led to substantial dwindling of its natural habitat. There is an increasing need to protect the plant biodiversity since sustainability can be a problem with wild harvesting. Therefore, it is important to investigate cultivation technologies of licorice under harsh environments, while this plant can adapt to a wide range of climates. Thus, in this review, we studied, analyzed and summarized the literature on licorice cultivation methods counteracting the most common environmental stresses in the Aral Sea region. Particularly, the current knowledge was rationalized regarding on cultivation technologies for alleviating salt stress thereby improving crop production. We also highlighted that future research directions on licorice breeding and genomics that might facilitate to produce more resilient and sustainable licorice genotypes to renovate agricultural productivity under disastrous ecology and climate change of the arid regions. Whereas this area possesses all prerequisite conditions needed for successful cultivation of the alternative cash crop.


Asunto(s)
Glycyrrhiza , Triterpenos , Flavonoides , Glycyrrhiza/metabolismo , Ácido Glicirrínico/metabolismo , Fitomejoramiento , Extractos Vegetales/metabolismo
8.
Plant Biotechnol J ; 20(10): 1874-1887, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35668676

RESUMEN

Glycyrrhiza uralensis Fisch is a medicinal plant widely used to treat multiple diseases in Europe and Asia, and its efficacy largely depends on liquiritin and glycyrrhizic acid. The regulatory pattern responsible for the difference in efficacy between wild and cultivated G. uralensis remains largely undetermined. Here, we collected roots and rhizosphere soils from wild (WT) G. uralensis as well as those farmed for 1 year (C1) and 3 years (C3), generated metabolite and transcript data for roots, microbiota data for rhizospheres and conducted comprehensive multi-omics analyses. We updated gene structures for all 40 091 genes in G. uralensis, and based on 52 differentially expressed genes, we charted the route-map of both liquiritin and glycyrrhizic acid biosynthesis, with genes BAS, CYP72A154 and CYP88D6 critical for glycyrrhizic acid biosynthesis being significantly expressed higher in wild G. uralensis than in cultivated G. uralensis. Additionally, multi-omics network analysis identified that Lysobacter was strongly associated with CYP72A154, which was required for glycyrrhizic acid biosynthesis. Finally, we developed a holistic multi-omics regulation model that confirmed the importance of rhizosphere microbial community structure in liquiritin accumulation. This study thoroughly decoded the key regulatory mechanisms of liquiritin and glycyrrhizic acid, and provided new insights into the interactions of the plant's key metabolites with its transcriptome, rhizosphere microbes and environment, which would guide future cultivation of G. uralensis.


Asunto(s)
Glycyrrhiza uralensis , Plantas Medicinales , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrínico/análisis , Ácido Glicirrínico/metabolismo , Raíces de Plantas/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Suelo
9.
Eur J Nutr ; 61(7): 3437-3447, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35578042

RESUMEN

PURPOSE: Glycyrrhizin (GL) and its metabolites 18α-glycyrrhetinic acid (18α-GA) and 18ß-glycyrrhetinic acid (18ß-GA) are used as traditional medicine and food sweeteners. As the major rout of their administration is oral way, therefore their impact on intestinal epithelial cells are investigated. METHODS: The effects of GL and its metabolites on cell viability using MTT assay, on cytotoxicity using LDH release, on integrity of intestinal epithelial cells by measuring the transepithelial electrical resistance (TEER) and Luciferase permeability tests, on the expression of tight junction proteins at mRNA and protein level by qPCR and western blot techniques, and ultimately on the rate of test compounds absorption via Caco-2 cells monolayer were investigated. RESULTS: MTT assay showed a concentration- and time-dependent decrease in metabolic activity of Caco-2 cells induced by GL, 18α-GA, and 18ß-GA, while only 18ß-GA increased the LDH leakage. The monolayer integrity of Caco-2 cells in TEER assay only was affected by 18ß-GA. The permeability of paracellular transport marker was increased by 18α-GA and 18ß-GA and not GL. In transport studies, only metabolites were able to cross from Caco-2 cells monolayer. qPCR analyses revealed that 18ß-GA upregulated the expression of claudin-1 and -4, occludin, junctional adhesion molecules and zonula occludens-1, while 18α-GA upregulated only claudin-4. The expression of claudin-4 at protein level was downregulated non-significantly at 50 µM concentration of 18ß-GA. CONCLUSION: Our results suggest that 18ß-GA may cause cellular damages at higher concentrations on gastrointestinal cells and requires a remarkable attention of the nutraceutical and pharmaceutical industries.


Asunto(s)
Ácido Glicirretínico , Células CACO-2 , Claudina-4/metabolismo , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacología , Ácido Glicirrínico/metabolismo , Ácido Glicirrínico/farmacología , Humanos , Mucosa Intestinal/metabolismo , Permeabilidad
10.
Plant Cell Rep ; 40(7): 1285-1296, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34002270

RESUMEN

KEY MESSAGE: ARPI, ß-AS, and UGE were cloned from G. uralensis and their regulatory effects on glycyrrhizin biosynthesis were investigated. ß-AS and UGE but not ARPI positively regulate the biosynthesis of glycyrrhizin. Glycyrrhiza uralensis Fisch. has been used to treat respiratory, gastric, and liver diseases since ancient China. The most important and widely studied active component in G. uralensis is glycyrrhizin (GC). Our pervious RNA-Seq study shows that GC biosynthesis is regulated by multiple biosynthetic pathways. In this study, three target genes, ARPI, ß-AS, and UGE from different pathways were selected and their regulatory effects on GC biosynthesis were investigated using G. uralensis hairy roots. Our data show that hairy roots knocking out ARPI or UGE died soon after induction, indicating that the genes are essential for the growth of G. uralensis hairy roots. Hairy roots with ß-AS knocked out grew healthily. However, they failed to produce GC, suggesting that ß-AS is required for triterpenoid skeleton formation. Conversely, overexpression of UGE or ß-AS significantly increased the GC content, whereas overexpression of ARPI had no obvious effects on GC accumulation in G. uralensis hairy roots. Our findings demonstrate that ß-AS and UGE positively regulate the biosynthesis of GC.


Asunto(s)
Glycyrrhiza uralensis/metabolismo , Ácido Glicirrínico/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Edición Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Vectores Genéticos , Glycyrrhiza uralensis/genética , Ácido Glicirrínico/análisis , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Plantas Medicinales , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo
11.
Fitoterapia ; 151: 104860, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33582265

RESUMEN

Glycyrrhizic acid, the main active ingredient of licorice, has good antibacterial, anti-tumor, anti-viral, anti-inflammatory, and immunostimulatory activities. However, the content of glycyrrhizic acid fluctuates greatly in different licorice cultivars, and production depends on plant sources, which greatly limits its development and applications. Therefore, increasing glycyrrhizic acid content has become a research priority. In recent years, regulation of the glycyrrhizic acid biosynthesis pathway has been analyzed, the downstream synthesis pathway in licorice has been fully investigated, some key genes have been cloned, polymorphisms have been studied, and the content of glycyrrhizic acid was shown to be regulated by environmental stimuli. This work has provided a basis for studying the regulation mechanism of the glycyrrhizic acid synthesis pathway. This review summarizes and discusses relevant research to provide a current understanding of the glycyrrhizic acid synthesis pathway and its regulation in licorice.


Asunto(s)
Glycyrrhiza/metabolismo , Ácido Glicirrínico/metabolismo , Vías Biosintéticas , Ambiente
12.
Xenobiotica ; 51(2): 239-248, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28745128

RESUMEN

1. Si-Ni-San (SNS) possesses extensive therapeutic effects, however, the extent to which main components are absorbed and the mechanisms involved are controversial. 2. In this study, MDCK cell model was used to determine the permeability characteristics and interaction between the major components of Si-Ni-San, including saikosaponin a, paeoniflorin, naringin and glycyrrhizic acid. 3. The transport of the major components was concentration-dependent in both directions. Moreover, the transport of paeoniflorin, naringin and glycyrrhizic acid was significantly reduced at 4 °C or in the presence of NaN3. Additionally, the efflux of paeoniflorin and naringin were apparently reduced in the presence of P-gp inhibitor verapamil. The transport of glycyrrhizic acid was clearly inhibited by the inhibitors of MRP2, indicating that MRP2 may be involved in the transport of glycyrrhizic acid. However, the results indicated that saikosaponin a was absorbed mainly by passive diffusion. Furthermore, the combined incubation of four major components had a powerful sorbefacient effect than a single drug used alone which may be regulated by tight junctions. 4. Taken together, our study provides useful information for pharmacological applications of Si-Ni-San and offers new insights into this ancient decoction for further researches, especially in drug synergism.


Asunto(s)
Medicamentos Herbarios Chinos/metabolismo , Animales , Transporte Biológico , Perros , Flavanonas/metabolismo , Glucósidos/metabolismo , Ácido Glicirrínico/metabolismo , Humanos , Células de Riñón Canino Madin Darby , Modelos Biológicos , Monoterpenos/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Permeabilidad , Saponinas/metabolismo , Verapamilo/metabolismo
13.
BMC Microbiol ; 20(1): 291, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32957914

RESUMEN

BACKGROUND: The dried roots and rhizomes of medicinal licorices are widely used worldwide as a traditional medicinal herb, which are mainly attributed to a variety of bioactive compounds that can be extracted from licorice root. Endophytes and plants form a symbiotic relationship, which is an important source of host secondary metabolites. RESULTS: In this study, we used high-throughput sequencing technology and high-performance liquid chromatography to explore the composition and structure of the endophytic bacterial community and the content of bioactive compounds (glycyrrhizic acid, liquiritin and total flavonoids) in different species of medicinal licorices (Glycyrrhiza uralensis, Glycyrrhiza glabra, and Glycyrrhiza inflata) and in different planting years (1-3 years). Our results showed that the contents of the bioactive compounds in the roots of medicinal licorices were not affected by the species, but were significantly affected by the main effect growing year (1-3) (P < 0.05), and with a trend of stable increase in the contents observed with each growing year. In 27 samples, a total of 1,979,531 effective sequences were obtained after quality control, and 2432 effective operational taxonomic units (OTUs) were obtained at 97% identity. The phylum Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes, and the genera unified-Rhizobiaceae, Pseudomonas, Novosphingobium, and Pantoea were significantly dominant in the 27 samples. Distance-based redundancy analysis (db-RDA) showed that the content of total flavonoids explained the differences in composition and distribution of endophytic bacterial communities in roots of cultivated medicinal liquorices to the greatest extent. Total soil salt was the most important factor that significantly affected the endophytic bacterial community in soil factors, followed by ammonium nitrogen and nitrate nitrogen. Among the leaf nutrition factors, leaf water content had the most significant effect on the endophytic bacterial community, followed by total phosphorus and total potassium. CONCLUSIONS: This study not only provides information on the composition and distribution of endophytic bacteria in the roots of medicinal licorices, but also reveals the influence of abiotic factors on the community of endophytic bacteria and bioactive compounds, which provides a reference for improving the quality of licorice.


Asunto(s)
Flavonoides/biosíntesis , Glycyrrhiza uralensis/microbiología , Glycyrrhiza/microbiología , Raíces de Plantas/microbiología , Rizoma/microbiología , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Amoníaco/farmacología , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Código de Barras del ADN Taxonómico , ADN Bacteriano/genética , Endófitos/fisiología , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Flavanonas/biosíntesis , Flavanonas/aislamiento & purificación , Flavonoides/clasificación , Flavonoides/aislamiento & purificación , Glucósidos/biosíntesis , Glucósidos/aislamiento & purificación , Glycyrrhiza/efectos de los fármacos , Glycyrrhiza/metabolismo , Glycyrrhiza uralensis/efectos de los fármacos , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrínico/aislamiento & purificación , Ácido Glicirrínico/metabolismo , Consorcios Microbianos/efectos de los fármacos , Consorcios Microbianos/genética , Nitratos/farmacología , Filogenia , Raíces de Plantas/metabolismo , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Rhizobiaceae/clasificación , Rhizobiaceae/genética , Rhizobiaceae/aislamiento & purificación , Rizoma/metabolismo , Estaciones del Año , Metabolismo Secundario , Suelo/química , Microbiología del Suelo , Simbiosis
14.
Curr Drug Metab ; 21(12): 979-993, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32735517

RESUMEN

OBJECTIVE: To study the compatibility regularity of Simiao Yong'an decoction by determining the plasma protein binding rate with the constituents in Simiao Yong'an decoction and to preliminarily clarify the effects of the compatibility on the plasma protein binding rate of different components. METHODS: Based on the equilibrium dialysis method, high-performance liquid chromatography was used to determine the contents of six constituents, which were divided into a single group and combination groups, in Simiao Yong'an decoction in the internal and external dialysis solutions. The obtained plasma protein binding rate through calculations was an index to evaluate the binding of the above components to plasma protein in different conditions. RESULTS: Harpagide, harpagoside, sweroside and loganin showed low plasma protein binding rates, ferulic acid exhibited a moderate plasma protein binding rate, and glycyrrhizic acid showed a high plasma protein binding rate. The compatibility study showed that glycyrrhizic acid promoted the binding of ferulic acid to plasma protein. Glycyrrhizic acid and ferulic acid were the key compounds to promote the binding of harpagide to plasma protein. Glycyrrhizic acid, harpagide, harpagoside and loganin had a significant inhibitory effects on the binding of sweroside to plasma protein. The plasma protein binding capacities of harpagoside and loganin were reduced by the other five constituents. Glycyrrhizic acid had the strongest plasma protein binding effect, and the binding effect was not affected by other components. CONCLUSION: This study explores the effects of compound compatibility on effective components from the perspective of plasma protein binding by high-performance liquid chromatography combined with the equilibrium dialysis method, and lays a foundation for clarifying the compatibility rule of Simiao Yong'an decoction and also provides a new idea for the study of the compatibility of traditional Chinese medicine formulas.


Asunto(s)
Ácidos Cumáricos/metabolismo , Glicósidos/metabolismo , Ácido Glicirrínico/metabolismo , Iridoides/metabolismo , Piranos/metabolismo , Albúmina Sérica Bovina/metabolismo , Cromatografía Líquida de Alta Presión , Fitoquímicos/metabolismo , Unión Proteica
15.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32353999

RESUMEN

Licorice (Glycyrrhiza) is a staple Chinese herbal medicine in which the primary bioactive compound is glycyrrhizic acid (GA), which has important pharmacological functions. To date, the structural genes involved in GA biosynthesis have been identified. However, the regulation of these genes in G. uralensis has not been elucidated. In this study, we performed a comprehensive analysis based on the transcriptome and small RNAome by high-throughput sequencing. In total, we identified 18 structural GA genes and 3924 transporter genes. We identified genes encoding 2374 transporters, 1040 transcription factors (TFs), 262 transcriptional regulators (TRs) and 689 protein kinases (PKs), which were coexpressed with at least one structural gene. We also identified 50,970 alternative splicing (AS) events, in which 17 structural genes exhibited AS. Finally, we also determined that miRNAs potentially targeted 4 structural genes, and 318, 8, and 218 miRNAs potentially regulated 150 TFs, 34 TRs, and 88 PKs, respectively, related to GA. Overall, the results of this study helped to elucidate the gene expression and regulation of GA biosynthesis in G. uralensis, provided a theoretical basis for the synthesis of GA via synthetic biology, and laid a foundation for the cultivation of new varieties of licorice with high GA content.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrínico/metabolismo , MicroARNs/genética , ARN Mensajero/genética , Empalme Alternativo , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Glycyrrhiza uralensis/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN de Planta/genética , Análisis de Secuencia de ARN
16.
Bioorg Med Chem Lett ; 30(10): 127102, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32220349

RESUMEN

Licorice is a frequently-used medicinal plant worldwide. Two triterpenoids, 18α-glycyrrhizic acid (18α-GC) and 18ß-glycyrrhizic acid (18ß-GC), are the key medicinal components accumulated in licorice. Biosynthesis of triterpenoids is a complex process that involves many secondary metabolic pathways. In this study, we tried to identify the key enzymes and pathways for the triterpenoid biosynthesis in licorice by analyzing the gene expression patterns in samples containing different GC levels. Glycyrrhizia glabra (one of the original species used as licorice in Chinese Pharmacopoeia) seeds were irradiated by X-ray and cultivated for one year, and samples with different GC contents were selected by HPLC analysis. RNA-Seq was performed to determine the gene expression in three X-ray irradiated G. glabra samples (H1, H2, and H3) with the highest GC content and one control G. glabra sample (L1) with the lowest GC content. 28.44 Gb raw data was generated and 47.7 million, 45.4 million, 43.3 million, and 45.9 million clean reads were obtained in samples H1, H2, H3, and L1, respectively. Approximately 48.53% of genes were annotated searching against GO and KEGG databases. A total of 1376 core differentially expressed genes (DEGs) were identified, which mainly enriched in phenylpropanoid metabolism, glycometabolism, plant circadian rhythm, and terpenoid biosynthetic pathway. 15 core DEGs selected from the 1376 DEGs were further verified by qRT-PCR, which confirmed that the RNA-Seq results were accurate and reliable. This study provides a basis for future functional genes mining and molecular regulatory mechanism elucidation of triterpenoid biosynthesis in licorice.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Glycyrrhiza/genética , ARN de Planta/metabolismo , Triterpenos/metabolismo , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Glycyrrhiza/química , Glycyrrhiza/metabolismo , Ácido Glicirrínico/química , Ácido Glicirrínico/metabolismo , ARN de Planta/química , RNA-Seq , Semillas/química , Semillas/metabolismo , Triterpenos/química
17.
J Agric Food Chem ; 68(5): 1480-1493, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31899641

RESUMEN

Licorice (Glycyrrhiza uralensis Fisch) possesses a substantial share of the global markets for its unique sweet flavor and diverse pharmacological compounds. Cultivated licorice is widely distributed in northwest regions of China, covered with land with a broad range of salinities. A preliminary study indicated that suitable salt stress significantly increased the content of bioactive constituents in licorice. However, the molecular mechanisms underlying the influence of salinity on the accumulation of these constituents remain unclear, which hinders quality breeding of cultivated licorice. In our study, flavonoid-related structural genes were obtained, and most of them, such as phenylalanine ammonia-lyases, cinnamate 4-hydroxylases, 4-coumarate: CoA ligases, chalcone synthases, chalcone-flavanone isomerase, and flavonol synthase, showed high levels after salt treatment. In the biosynthesis of glycyrrhizin, three key enzymes (bAS, CYP88D6, and CYP72A154) were identified as differentially expressed proteins and remarkably upregulated in the salt-stressed group. Combining these results with the contents of 14 bioactive constituents, we also found that the expression patterns of those structural proteins were logically consistent with changes in bioactive constituent profiles. Thus, we believe that suitable salt stress increased the accumulation of bioactive constituents in licorice by upregulating proteins involved in the related biosynthesis pathways. This work provided valuable proteomic information for unraveling the molecular mechanism of flavonoid and glycyrrhizin metabolism and offered fundamental resources for quality breeding in licorice.


Asunto(s)
Glycyrrhiza uralensis/química , Extractos Vegetales/metabolismo , Proteínas de Plantas/metabolismo , Cloruro de Sodio/metabolismo , Flavonoides/metabolismo , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrínico/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteómica , Estrés Salino
18.
Phytochemistry ; 171: 112236, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923723

RESUMEN

Glycyrrhiza glabra (licorice) is a medicinal plant with valuable specialised metabolites such as triterpene sweetener glycyrrhizin. Salinity stress is the main environmental stress limiting plant growth and development. The effects of six levels of NaCl (0, 100, 200, 400, 600, and 800 mM) on growth, osmolyte content, oxidative stress markers, antioxidant enzyme activities, K+/Na+ ratio, glycyrrhizin content, and gene expression of glycyrrhizin biosynthesis (bAS, CYP88D6, and CYP72A154) were investigated in licorice rhizomes of two populations. The results showed that the salt stress progressively reduced the growth parameters and increased the proline concentrations in the rhizomes. K+/Na+ ratio showed a significant decrease under salinity as compared to the controls. Salt stress resulted in oxidative stress on the rhizomes, as indicated by increased lipid peroxidation and hydrogen peroxide concentrations and elevated the activities of antioxidant enzymes (i.e., ascorbate peroxidase and superoxide dismutase). The glycyrrhizin content increased only under 100 and 200 mM NaCl treatments. The same trend was observed in the expression of bAS, CYP88D6, and CYP72A154 genes in Fars population. Fars population was found to have more glycyrrhizin content than Khorasan population. But, growth, glycyrrhizin content, and biosynthesis genes of glycyrrhizin showed more reduction in Khorasan population as compared to those of Fars population. The results indicate that the application of 100 mM NaCl up-regulated the expression of key genes involved in the biosynthesis of triterpenoid saponins and directly enhanced the production of glycyrrhizin. Accordingly, G. glabra can be introduced as a halophyte plant.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glycyrrhiza/efectos de los fármacos , Ácido Glicirrínico/metabolismo , Fitoquímicos/biosíntesis , Cloruro de Sodio/farmacología , Química Física , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas/genética , Glycyrrhiza/química , Glycyrrhiza/genética , Ácido Glicirrínico/química , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fitoquímicos/química , Salinidad , Cloruro de Sodio/química
19.
Molecules ; 24(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614687

RESUMEN

The demand for licorice and its natural product derivatives in domestic and foreign market is considerably huge. The core production areas of licorice are covered with salinity and drought land in northwestern China. Studies have shown that suitable environmental stress can promote the accumulation of glycyrrhizin and liquiritin to improve its quality as medicinal materials. However, there are few reports on other bioactive constituents of licorice, not to mention their dynamic accumulation under stressed conditions. To explore the quality formation of licorice from the perspective of salt influence, a reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-MS/MS) was established for simultaneous determination of sixteen bioactive constituents, including triterpenoids, flavonoids, chalcones and their glycosides. Physiological experiments were performed to investigate salt tolerance of licorice under different salinity treatments. The expressions of crucial genes (bAS and CHS), key enzymes of triterpenoid and flavonoid synthesis, were also tested by qRT-PCR. Our study found that 50 mM NaCl treatment (low stress) was the most favorable to promote the accumulation of bioactive constituents in the long term, without harming the plants. Flavonoid accumulation of non-stressed and low-stressed groups became different in the initial synthesis stage, and glycosyltransferases may have great influence on their downstream synthesis. Furthermore, bAS and CHS also showed higher levels in low-stressed licorice at harvest time. This work provides valuable information on dynamic variations in multiple bioactive constituents in licorice treated by salt and insight into its quality formation under stressed conditions.


Asunto(s)
Medicamentos Herbarios Chinos/química , Flavonoides/química , Glycyrrhiza/química , Extractos Vegetales/química , Chalconas/química , Chalconas/metabolismo , Cromatografía Liquida , Medicamentos Herbarios Chinos/metabolismo , Flavanonas/química , Flavanonas/metabolismo , Flavonoides/metabolismo , Glucósidos/química , Glucósidos/metabolismo , Ácido Glicirrínico/química , Ácido Glicirrínico/metabolismo , Humanos , Extractos Vegetales/metabolismo , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Estrés Salino , Espectrometría de Masas en Tándem , Triterpenos/química , Triterpenos/metabolismo
20.
Arch Toxicol ; 93(11): 3111-3119, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31605160

RESUMEN

Liquorice [main ingredient, glycyrrhizin (GL)] is widely used as a food sweetener and herbal medicine. Occasionally, liquorice consumption causes pseudoaldosteronism as a side effect which causes oedema, hypokalaemia, and hypertension due to hyperactivity of mineral corticoid receptor. We aimed to detect GL metabolites in human blood and urine samples and to determine the pathological relationship between GL metabolites and pseudoaldosteronism. For this multi-centre, retrospective, cross-sectional study, we recruited patients who had visited Center for Kampo Medicine in Keio University Hospital, Department of Japanese Oriental (Kampo) Medicine in Chiba University Hospital, Clinic of Japanese Oriental (Kampo) Medicine in Kanazawa University Hospital, and Department of Oriental Medicine in Kameda Medical Center from November 2011 to July 2018. We collected laboratory data including concentration of serum potassium, plasma activity of renin and aldosterone, and residual blood and/or urine samples of participants who had experienced symptoms/signs of pseudoaldosteronism in the form of increase in blood pressure and occurrence or aggregation of oedema while taking liquorice-containing herbal preparations, and measured GL metabolites using a highly selective liquid chromatography tandem mass spectrometer system. We registered 97 participants (mean age 60 ± 15 years; male:female 14:83). 18ß-glycyrrhetinic acid (GA) was detected in 67 serum samples (median 122 nM, range 5 nM-1.8 µM) and 18ß-glycyrrhetyl-3-O-sulfate (compound 3) in 68 samples (median 239 nM, range 2 nM-4.2 µM). 3-Monoglucuronyl 18ß-glycyrrhetinic acid, 22α-hydroxy-18ß-glycyrrhetyl-3-O-sulfate-30-glucuronide, 22α-hydroxy-18ß-glycyrrhetyl-3-O-sulfate, and GL itself were not or rarely detected. We could not find any correlation between blood pressure or peripheral oedema and serum concentration of GL metabolites. Sulfotransferase 2A1 catalysed the metabolic reaction of GA to compound 3, a major GL metabolite in human blood. High serum concentration of compound 3 was related to lower renin, aldosterone, and potassium levels, suggesting a pathological relationship between compound 3 and liquorice-induced pseudoaldosteronism. This is the first study to identify the association between a novel metabolite, compound 3, and the incidence of pseudoaldosteronism, highlighting it as a promising biomarker.


Asunto(s)
Glycyrrhiza/toxicidad , Ácido Glicirrínico/sangre , Síndrome de Liddle/inducido químicamente , Edulcorantes/toxicidad , Aldosterona/sangre , Biomarcadores/sangre , Estudios Transversales , Relación Dosis-Respuesta a Droga , Femenino , Glycyrrhiza/metabolismo , Ácido Glicirrínico/metabolismo , Humanos , Síndrome de Liddle/sangre , Síndrome de Liddle/metabolismo , Masculino , Persona de Mediana Edad , Potasio/sangre , Renina/sangre , Estudios Retrospectivos , Edulcorantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA