Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Lipids ; 50(12): 1185-93, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26498829

RESUMEN

In response to carbohydrate deprivation or prolonged fasting the ketone bodies, ß-hydroxybutyrate (ßHB) and acetoacetate (AcAc), are produced from the incomplete ß-oxidation of fatty acids in the liver. Neither ßHB nor AcAc are well utilized for synthesis of sterols or fatty acids in human or rat liver. To study the effects of ketones on cholesterol homeostasis a novel ßHB ester (KE) ((R)-3-hydroxybutyl (R)-3-hydroxybutyrate) was synthesized and given orally to rats and humans as a partial dietary carbohydrate replacement. Rats maintained on a diet containing 30-energy % as KE with a concomitant reduction in carbohydrate had lower plasma cholesterol and mevalonate (-40 and -27 %, respectively) and in the liver had lower levels of the mevalonate precursors acetoacetyl-CoA and HMG-CoA (-33 and -54 %) compared to controls. Whole liver and membrane LDL-R as well as SREBP-2 protein levels were higher (+24, +67, and +91 %, respectively). When formulated into a beverage for human consumption subjects consuming a KE drink (30-energy %) had elevated plasma ßHB which correlated with decreased mevalonate, a liver cholesterol synthesis biomarker. Partial replacement of dietary carbohydrate with KE induced ketosis and altered cholesterol homeostasis in rats. In healthy individuals an elevated plasma ßHB correlated with lower plasma mevalonate.


Asunto(s)
Ácido 3-Hidroxibutírico/agonistas , Anticolesterolemiantes/administración & dosificación , Colesterol/sangre , Suplementos Dietéticos , Hidroxibutiratos/administración & dosificación , Ácido Mevalónico/antagonistas & inhibidores , Ácido 3-Hidroxibutírico/sangre , Ácido 3-Hidroxibutírico/metabolismo , Acilcoenzima A/antagonistas & inhibidores , Acilcoenzima A/metabolismo , Adulto , Animales , Anticolesterolemiantes/metabolismo , Bebidas , Biomarcadores/sangre , Biomarcadores/química , Biomarcadores/metabolismo , Desayuno , Membrana Celular/metabolismo , Colesterol/metabolismo , Femenino , Humanos , Hidroxibutiratos/metabolismo , Hígado/metabolismo , Masculino , Ácido Mevalónico/sangre , Ácido Mevalónico/metabolismo , Ratas Sprague-Dawley , Receptores de LDL/agonistas , Receptores de LDL/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/agonistas , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Adulto Joven
2.
J Nutr Biochem ; 23(12): 1543-51, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22981371

RESUMEN

Osteoclastogenesis and osteoblastogenesis, the balancing acts for optimal bone health, are under the regulation of small guanosine triphosphate-binding proteins (GTPases) including Ras, Rac, Rho and Rab. The activities of GTPases require post-translational modification with mevalonate-derived prenyl pyrophosphates. Mevalonate deprivation induced by competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (e.g., statins) prevents the activation of GTPases, suppresses the expression of the receptor for activation of nuclear factor kappa B (NFκB) ligand (RANKL) and activation of NFκB and, consequently, inhibits osteoclast differentiation and induces osteoclast apoptosis. In contrast, statin-mediated inactivation of GTPases enhances alkaline phosphatase activity and the expression of bone morphogenetic protein-2, vascular epithelial growth factor, and osteocalcin in osteoblasts and induces osteoblast proliferation and differentiation. Animal studies show that statins inhibit bone resorption and increase bone formation. The anabolic effect of statins and other mevalonate pathway-suppressive pharmaceuticals resembles the anti-osteoclastogenic and bone-protective activities conferred by dietary isoprenoids, secondary products of plant mevalonate metabolism. The tocotrienols, vitamin E molecules with HMG CoA reductase-suppressive activity, induce mevalonate deprivation and concomitantly suppress the expression of RANKL and cyclooxygenase-2, the production of prostaglandin E2 and the activation of NFκB. Accordingly, tocotrienols inhibit osteoclast differentiation and induce osteoclast apoptosis, impacts reminiscent of those of statins. In vivo studies confirm the bone protective activity of tocotrienols at nontoxic doses. Blends of tocotrienols, statins and isoprenoids widely found in fruits, vegetables, grains, herbs, spices, and essential oils may synergistically suppress osteoclastogenesis while promoting osteoblastogenesis, offering a novel approach to bone health that warrants clinical studies.


Asunto(s)
Ácido Mevalónico/metabolismo , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteogénesis/fisiología , Terpenos/farmacología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Suplementos Dietéticos , Dimetilaliltranstransferasa/antagonistas & inhibidores , Difosfonatos/farmacología , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Ácido Mevalónico/antagonistas & inhibidores , Osteoblastos/citología , Osteogénesis/efectos de los fármacos , Ligando RANK/metabolismo , Tocoferoles/farmacología , Tocotrienoles , Vitamina K 2/análogos & derivados , Vitamina K 2/farmacología
3.
Lipids ; 44(10): 925-34, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19777282

RESUMEN

Statins directly inhibit 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) activity, while gamma-tocotrienol, an isoform of vitamin E, enhances the degradation and reduces cellular levels of HMGR in various tumor cell lines. Since treatment with statins or gamma-tocotrienol alone induced a dose-responsive inhibition, whereas combined treatment with subeffective doses of these agents resulted in a synergistic inhibition in +SA mammary tumor cell growth, studies were conducted to investigate the role of the HMGR pathway in mediating the antiproliferative effects of combined low dose statin and gamma-tocotrienol. Treatment with 8 microM simvastatin inhibited cell growth and isoprenylation of Rap1A and Rab6, and supplementation with 2 microM mevalonate reversed these effects. However, the growth inhibitory effects of 4 microM gamma-tocotrienol were not dependent upon suppression in mevalonate synthesis. Treatment with subeffective doses of simvastatin (0.25 microM), lovastatin (0.25 microM), mevastatin (0.25 microM), pravastatin (10 microM), or gamma-tocotrienol (2 muM) alone had no effect on protein prenylation or mitogenic signaling, whereas combined treatment with these agents resulted in a significant inhibition in +SA cell growth, and a corresponding decrease in total HMGR, Rap1A and Rab6 prenylation, and MAPK signaling, and mevalonate supplementation reversed these effects. These findings demonstrate that the synergistic antiproliferative effects of combined low dose statin and gamma-tocotrienol treatment are directly related to an inhibition in HMGR activity and subsequent suppression in mevalonate synthesis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Cromanos/administración & dosificación , Ácido Mevalónico/antagonistas & inhibidores , Ácido Mevalónico/metabolismo , Vitamina E/análogos & derivados , Animales , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Vitamina E/administración & dosificación
4.
Cardiol Rev ; 13(2): 76-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15705257

RESUMEN

The most concerning adverse reaction with HMG-CoA reductase inhibitors (statins) is myotoxicity. Statins inhibit the production of mevalonate, a precursor of both cholesterol and coenzyme Q10, a compound believed to be crucial for mitochondrial function and the provision of energy for cellular processes. There is speculation that a reduction in coenzyme Q10 concentrations may promote the myopathies that have been associated with statin treatment as a result of mitochondrial damage. Although studies have repeatedly demonstrated a reduction in circulating coenzyme Q10 concentrations with statin therapy, it is unclear as to whether tissue levels of coenzyme Q10 are significantly affected. Coenzyme Q10 supplementation has been shown to reverse statin-induced decreases in circulating coenzyme Q10 concentrations, although the effect of supplementation on tissue coenzyme Q10 concentrations and any resulting clinical benefit has not been adequately assessed. Although there is not much of a safety concern with coenzyme Q10 supplementation, there is also not enough evidence to support its routine use for preventing the adverse effects of statin therapy, and it is therefore not recommended for this purpose at this time.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Ubiquinona/análogos & derivados , Ubiquinona/uso terapéutico , Coenzimas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipercolesterolemia/tratamiento farmacológico , Ácido Mevalónico/antagonistas & inhibidores , Rabdomiólisis/inducido químicamente , Rabdomiólisis/enzimología , Ubiquinona/antagonistas & inhibidores
5.
Mol Nutr Food Res ; 49(2): 93-100, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15617098

RESUMEN

A role for mevalonate in cancer development has long been suggested by findings that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity is elevated in malignant cells. Increased synthesis mevalonate and mevalonate-derived nonsterol isoprenoids supports increased cell proliferation through the activation of growth-regulatory proteins and oncoproteins, and by promoting DNA synthesis. We have recently shown that mevalonate promotes the growth of human breast cancer cells both in culture and as tumors grown in nude mice. Inhibition mevalonate synthesis, therefore, may be an effective strategy to impair the growth of malignant breast cells. Several dietary compounds with known anti-cancer effects are also reported to inhibit HMG-CoA reductase activity. Here, we review evidence suggesting that inhibition of mevalonate synthesis may mediate the protective effects of cholesterol, plant isoprenoids, genistein, and long-chain n-3 polyunsaturated fatty acids (PUFAs) on experimental breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Dieta , Homeostasis , Hidroximetilglutaril-CoA Reductasas/metabolismo , Animales , Neoplasias de la Mama/patología , División Celular/efectos de los fármacos , Colesterol/sangre , Ácidos Grasos Omega-3 , Genisteína , Humanos , Ácido Mevalónico/antagonistas & inhibidores , Ácido Mevalónico/metabolismo , Ácido Mevalónico/farmacología , Plantas/química , Terpenos
6.
Exp Biol Med (Maywood) ; 229(7): 567-85, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15229351

RESUMEN

Pools of farnesyl diphosphate and other phosphorylated products of the mevalonate pathway are essential to the post-translational processing and physiological function of small G proteins, nuclear lamins, and growth factor receptors. Inhibitors of enzyme activities providing those pools, namely, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase and mevalonic acid-pyrophosphate decarboxylase, and of activities requiring substrates from the pools, the prenyl protein transferases, have potential for development as novel chemotherapeutic agents. Their potentials as suggested by the clinical responses recorded in Phase I and II investigations of inhibitors of HMG CoA reductase (the statins), of mevalonic acid-pyrophosphate decarboxylase (sodium phenylacetate and sodium phenylbutyrate), and of farnesyl protein transferase (R115777, SCH66336, BMS-214662, Tipifarnib, L-778,123, and, prematurely, perillyl alcohol) are dimmed by dose-limiting toxicities. These nondiscriminant growth-suppressive agents induce G1 arrest and initiate apoptosis and differentiation, effects attributed to modulation of cell signaling pathways either by modulating gene expression, suppressing the post-translational processing of signaling proteins and growth factor receptors, or altering diacylglycerol signaling. Diverse isoprenoids and the HMG CoA reductase inhibitor, lovastatin, modulate cell growth, induce cell cycle arrest, initiate apoptosis, and suppress cellular signaling activities. Perillyl alcohol, the isoprenoid of greatest clinical interest, initially was considered to inhibit farnesyl protein transferase; follow-up studies revealed that perillyl alcohol suppresses the synthesis of small G proteins and HMG CoA reductase. In sterologenic tissues, sterol feedback control, mediated by sterol regulatory element binding proteins (SREBPs) 1a and 2, exerts the primary regulation on HMG CoA reductase activity at the transcriptional level. Secondary regulation, a nonsterol isoprenoid-mediated fine-tuning of reductase activity, occurs at the levels of reductase translation and degradation. HMG CoA reductase activity in tumors is elevated and resistant to sterol feedback regulation, possibly as a consequence of aberrant SREBP activities. Nonetheless, tumor reductase remains sensitive to isoprenoid-mediated post-transcriptional downregulation. Farnesol, an acyclic sesquiterpene, and farnesyl homologs, gamma-tocotrienol and various farnesyl derivatives, inhibit reductase synthesis and accelerate reductase degradation. Cyclic monoterpenes, d-limonene, menthol and perillyl alcohol and beta-ionone, a carotenoid fragment, lower reductase mass; perillyl alcohol and d-limonene lower reductase mass by modulating translational efficiency. The elevated reductase expression and greater demand for nonsterol products to maintain growth amplify the susceptibility of tumor reductase to isoprenoids, therein rendering tumor cells more responsive than normal cells to isoprenoid-mediated growth suppression. Blends of lovastatin, a potent nondiscriminant inhibitor of HMG CoA reductase, and gamma-tocotrienol, a potent isoprenoid shown to post-transcription-ally attenuate reductase activity with specificity for tumors, synergistically affect the growth of human DU145 and LNCaP prostate carcinoma cells and pending extensive preclinical evaluation, potentially offer a novel chemotherapeutic strategy free of the dose-limiting toxicity associated with high-dose lovastatin and other nondiscriminant mevalonate pathway inhibitors.


Asunto(s)
Anticarcinógenos/uso terapéutico , Antineoplásicos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Ácido Mevalónico/metabolismo , Neoplasias/tratamiento farmacológico , Terpenos/uso terapéutico , Animales , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Ensayos Clínicos como Asunto , Humanos , Lovastatina/uso terapéutico , Ácido Mevalónico/antagonistas & inhibidores , Neoplasias/prevención & control , Procesamiento Proteico-Postraduccional
7.
Med Hypotheses ; 56(2): 137-54, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11425277

RESUMEN

In animal or cell culture studies, the growth and spread of cancer can be slowed by many nutrients, food factors, herbal extracts, and well-tolerated, available drugs that are still rarely used in the clinical management of cancer, in part because they seem unlikely to constitute definitive therapies in themselves. However, it is reasonable to expect that mechanistically complementary combinations of these measures could have a worthwhile impact on survival times and, when used as adjuvants, could improve the cure rates achievable with standard therapies. The therapeutic options available in this regard include measures that: down-regulate serum free IGF-I; suppress the synthesis of mevalonic acid and/or certain derivatives thereof; modulate arachidonate metabolism by inhibiting 5-lipoxygenase, 12-lipoxygenase, or COX-2; antagonize the activation of AP-1 transcription factors; promote the activation of PPAR-gamma transcription factors; and that suppress angiogenesis by additional mechanisms. Many of these measures appear suitable for use in cancer prevention.


Asunto(s)
Factores Biológicos/uso terapéutico , Flavonoides , Neoplasias/terapia , Fitoterapia , Plantas/química , Animales , Ácido Araquidónico/antagonistas & inhibidores , División Celular , Regulación hacia Abajo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ácido Linoleico/uso terapéutico , Ácido Mevalónico/antagonistas & inhibidores , Ácido Mevalónico/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica , Fenoles/uso terapéutico , Polímeros/uso terapéutico , Polifenoles , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Selenio/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA