Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 764
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Aging (Albany NY) ; 15(24): 15267-15286, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38127054

RESUMEN

BACKGROUND: Oleanolic acid has important hepatoprotective effects and inhibits liver tissue carcinogenesis. The aim of this study was to investigate the mechanism of action of oleanolic acid in inhibiting liver injury and liver cancer. METHOD: In this study, we applied differential gene analysis and gene enrichment analysis to identify the targets of oleanolic acid for the treatment of liver injury. And this study also applied Cibersort and GSVA methods to investigate the targets of oleanolic acid in liver injury. Based on oleanolic acid targets, we explored the major targets and further explored the role of the major targets in liver cancer. This study used the oncoPredict and the TIDE algorithm to predict the effect of oleanolic acid on drug resistance. Finally, the binding effect of oleanolic acid to relevant targets was explored using molecular docking techniques. RESULT: In this study, oleanolic acid was found to inhibit liver injury and promote liver regeneration mainly by promoting elevated expression of HMOX1. Oleanolic acid can inhibit oxidative stress and promotes Ferroptosis in liver injury. In liver cancer, we identified that the main target of oleanolic acid is HMOX1 and HDAC1. And we determined that HMOX1 promotes Ferroptosis in liver cancer. This reduced the sensitivity of liver cancer to targeted therapies and immunotherapy. Molecular docking showed high binding of oleanolic acid to HDAC1 and HMOX1. CONCLUSIONS: Oleanolic acid is an antioxidant by promoting high expression of HMOX1 and promotes the development of Ferroptosis in liver cancer and liver injury.


Asunto(s)
Neoplasias Hepáticas , Ácido Oleanólico , Humanos , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Ácido Oleanólico/química , Simulación del Acoplamiento Molecular , Transcriptoma , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo
2.
Eur J Pharmacol ; 959: 176073, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742813

RESUMEN

Hederagenin is a pentacyclic triterpenoid that is widely distributed as the main pharmaceutical ingredient in various medicinal plants. Similarly as other pentacyclic triterpenoids, hederagenin has various pharmacological effects such as anti-tumor, anti-inflammatory, anti-depressant, and anti-viral activities. In particular, the anti-tumor activity of hederagenin indicates its potential for development into highly effective chemotherapeutic agents. Studies revealed that hederagenin effectively suppresses the growth of various tumor cell lines in vitro and interacts with several molecular targets that play essential roles in various cellular signaling pathways. The compound suppresses transformation, inhibits proliferation, and induces apoptosis in tumor cells. In this review, we highlight research progress on the source, pharmacokinetics, pharmacological activity, and mechanism of action of hederagenin and the anti-tumor activity of its analogs by integrating and analyzing relevant domestic and international studies and providing a basis for their further development and application.


Asunto(s)
Ácido Oleanólico , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Línea Celular Tumoral , Triterpenos Pentacíclicos , Antiinflamatorios
3.
Br Poult Sci ; 64(6): 697-709, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37697900

RESUMEN

1. Infectious injury caused by lipopolysaccharide (LPS), a metabolite of gram-negative bacteria, can induce stress responses in animals and is a significant cause of morbidity and mortality in young birds. The purpose of this study was to investigate the effects of dietary supplementation with oleanolic acid (OA) on acute liver injury in broiler chickens challenged with LPS.2. In total, 120 broiler chickens were randomly divided into six groups and fed a basal diet containing 0, 50, 100, or 200 mg/kg OA or 100 mg/kg aureomycin. On d 15, broiler chickens were injected with either LPS or an equivalent volume of normal saline. Six hours after LPS injection, two broiler chicks were randomly selected for sampling in each replicate.3. The results indicated that dietary aureomycin was ineffective in alleviating LSP-associated liver injury, but protected broiler chickens from LPS-induced liver damage. This promoted a significant reduction in the levels of malondialdehyde and an increase in the levels of superoxide dismutase in liver. In addition, OA was found to cause significant reductions in the relative expression of IL-1ß, IL-6, and TNF-α in broiler liver tissues, whereas the relative expression of IL-10 was significantly increased.4. In conclusion, oleanolic acid can alleviate oxidative stress and injury in the livers of broiler chickens induced by lipopolysaccharide. Consequently, oleanolic acid has potential utility as a novel anti-inflammatory and antioxidant feed additive.


Asunto(s)
Clortetraciclina , Ácido Oleanólico , Animales , Alimentación Animal/análisis , Antioxidantes/metabolismo , Pollos/fisiología , Clortetraciclina/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Lipopolisacáridos/toxicidad , Hígado/metabolismo , Ácido Oleanólico/farmacología , Ácido Oleanólico/metabolismo
4.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446727

RESUMEN

Lysimachia foenum-graecum Hance (Primulaceae) is a medicinal plant used for cold, pain, ascariasis, etc., in China. Triterpenoid saponins have been found to be the main components of this genus. In this work, a pair of oleanane-type triterpenoid saponins with an unprecedented 4/5/6 fused tricyclic skeleton, foegraecumoside O (1) and foegraecumoside P (2) were isolated from the butanol fraction of the aerial parts of L. foenum-graecum. Their structures were determined using chemical methods and extensive spectroscopic analyses, along with quantum chemical calculations. Compound 2 displayed moderate cytotoxicity against HepG2, MGC-803, T24, NCI-H460, A549, and A549/CDDP (drug-resistant lung-cancer cell line) with IC50 at 12.4-19.2 µM in an MTT assay, comparing with the positive control doxorubicin, which had IC50 at 0.53-4.92 µM, but was inactive for A549/CDDP. Furthermore, a possible biosynthetic pathway for forming compounds 1 and 2 was proposed.


Asunto(s)
Ácido Oleanólico , Saponinas , Triterpenos , Estructura Molecular , Lysimachia , Saponinas/farmacología , Saponinas/química , Ácido Oleanólico/farmacología , Ácido Oleanólico/química , Triterpenos/química
5.
Molecules ; 28(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298806

RESUMEN

In the field of research on medicinal plants from the Armenian flora, the phytochemical study of two Scabiosa L. species, S. caucasica M. Bieb. and S. ochroleuca L. (Caprifoliaceae), has led to the isolation of five previously undescribed oleanolic acid glycosides from an aqueous-ethanolic extract of the roots: 3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-xylopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. For the biological activity of the bidesmosidic saponins and the monodesmosidic saponin, their cytotoxicity on a mouse colon cancer cell line (MC-38) was evaluated.


Asunto(s)
Caprifoliaceae , Dipsacaceae , Ácido Oleanólico , Saponinas , Triterpenos , Animales , Ratones , Glicósidos/farmacología , Glicósidos/química , Ácido Oleanólico/farmacología , Ácido Oleanólico/química , Saponinas/química , Caprifoliaceae/química , Triterpenos/farmacología , Triterpenos/química
6.
Phytomedicine ; 110: 154631, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36621168

RESUMEN

BACKGROUND: Natural products have long been regarded as a source of anticancer compounds with low toxicity. Evidence revealed that maslinic acid (MA), a widely distributed pentacyclic triterpene in common foodstuffs, exhibited pronounced inhibitory effects against various cancer cell lines. Most cancer cells thrive by acquiring cancer hallmarks, as coined by Hanahan and Weinberg in 2000 and 2011. PURPOSE: This represents the first systematic review concerning the anticancer properties of MA as these cancer hallmarks are targeted. It aims to summarize the antineoplastic activities of MA, discuss the diverse mechanisms of action based on the effects of MA exerted on each hallmark. METHODS: A comprehensive literature search was conducted using the search terms "maslinic," "cancer," "tumor," and "neoplasm," to retrieve articles from the databases MEDLINE, EMBASE, Web of Science, and Scopus published up to September 2022. Study selection was conducted by three reviewers independently from title and abstract screening until full-text evaluation. Data extraction was done by one reviewer and counterchecked by the second reviewer. RESULTS: Of the 330 articles assessed, 40 papers met the inclusion criteria and revealed that MA inhibited 16 different cancer cell types. MA impacted every cancer hallmark by targeting multiple pathways. CONCLUSION: This review provides insights regarding the inhibitory effects of MA against various cancers and its remarkable biological properties as a pleiotropic bioactive compound, which encourage further investigations.


Asunto(s)
Antineoplásicos , Neoplasias , Ácido Oleanólico , Triterpenos , Humanos , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Ácido Oleanólico/farmacología , Triterpenos/farmacología
7.
Fitoterapia ; 165: 105432, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36638847

RESUMEN

Six undescribed monoterpenoids, together with twelve known compounds were isolated and identified from Hyssopus cuspidatus Boriss. Their structures were established by spectroscopic analysis, and the absolute configurations were established by ECD calculations and single-crystal X-ray diffraction crystallography. The isolated compounds were tested for their anti-inflammatory, antibacterial and antitumor activities. Most of the compounds showed potent anti-inflammatory activities. Among them, 3ß-hydroxy-7,8-dihydro-ß-ionone (8), oleanolic acid (17) and acetylpleamolic acid (18) showed strong anti-inflammatory activity against IL-6 and TNF-α in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Several compounds showed moderate inhibitory activities against Staphylococcus aureus, Candida albicans, and Escherichia coli. And (4S)-p-menth-l-ene-7,8-diol 8-O-ß-D-glucopyranoside (16) showed antitumor activities against MCF-8 and HT-29 cell lines with IC50 values of 93.39 ± 3.69 and 71.89 ± 2.94 µM, respectively. Oleanolic acid (17) showed moderate antitumor activity against HT-29 cell lines with an IC50 value of 52.62 ± 1.63 µM. In this study, the discovery of anti-inflammatory, antibacterial and antitumor components from H. cuspidatus could benefit further development and utilization of this plant.


Asunto(s)
Hyssopus , Monoterpenos , Ácido Oleanólico , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Estructura Molecular , Monoterpenos/farmacología , Ácido Oleanólico/farmacología , Hyssopus/química , Células RAW 264.7 , Animales , Ratones , Antineoplásicos Fitogénicos/farmacología , Humanos , Línea Celular Tumoral
8.
Biosci Rep ; 43(1)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36714956

RESUMEN

Diabetic retinopathy (DR) is the leading cause of blindness in the working population worldwide, with few effective drugs available for its treatment in the early stages. The Zhujing pill (ZJP) is well-established to enhance the early symptoms of DR, but the mechanism underlying its therapeutic effect remains unclear. In the present study, we used systems biology and multidirectional pharmacology to screen the main active ingredients of ZJP and retrieved DrugBank and Genecards databases to obtain 'drug-disease' common targets. Using bioinformatics analysis, we obtained the core targets, and potential mechanisms of action of ZJP and its main components for the treatment of DR. Molecular docking was used to predict the binding sites and the binding affinity of the main active ingredients to the core targets. The predicted mechanism was verified in animal experiments. We found that the main active ingredient of ZJP was oleanolic acid, and 63 common 'drug-disease' targets were identified. Topological analysis and cluster analysis based on the protein-protein interaction network of the Metascape database screened the core targets as PRKCA, etc. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these core targets were significantly enriched in the pro-angiogenic pathway of the VEGF signaling pathway. Molecular docking and surface plasmon resonance revealed that ZJP and its main active component, oleanolic acid had the highest binding affinity with PKC-α, the core target of the VEGF signaling pathway. Animal experiments validated that ZJP and oleanolic acid could improve DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Medicamentos Herbarios Chinos , Ácido Oleanólico , Animales , Farmacología en Red , Retinopatía Diabética/tratamiento farmacológico , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Simulación del Acoplamiento Molecular , Factor A de Crecimiento Endotelial Vascular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
9.
J Pharm Pharmacol ; 75(1): 117-128, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36332078

RESUMEN

OBJECTIVES: Fraxinus excelsior L. (FE) is traditionally used to treat inflammatory and pain disorders. This study aimed to identify the constituents of FE leaves and evaluate the effects of its n-hexane (FEH), ethyl acetate (FEE), methanol (FEM) extracts and constituents on the viability of THP-1 cells and their ability to release pro-inflammatory cytokines. METHODS: THP-1 cell viability was assessed using an MTT assay. The immunomodulatory activity was evaluated by measuring tumour necrosis factor-alpha (TNF-α) and interleukin 12 (IL-12) released by lipopolysaccharide-stimulated THP-1 cells using enzyme-linked immunosorbent assays. KEY FINDINGS: Triterpenes, tyrosol esters, alkanes, phytyl and steryl esters, pinocembrin and bis(2-ethylhexyl)phthalate were isolated from FE. The tyrosol esters showed no significant effect on THP-1 cell viability. FEH, FEE, FEM, and pinocembrin, ursolic acid, oleanolic acid had IC50 values of 56.9, 39.9, 124.7 µg/ml and 178.6, 61.5 and 199.8 µM, respectively. FE extracts, ursolic acid, oleanolic acid and pinocembrin significantly reduced TNF-α/IL-12 levels. The tyrosol esters did not significantly affect TNF-α/IL-12 production. CONCLUSIONS: FE was able to reduce pro-inflammatory cytokine production indicating a mechanistic focus in its use for inflammation and pain. Further investigations are warranted to unravel the mode of action of the tested constituents and discover other potentially active compounds in FE extracts.


Asunto(s)
Fraxinus , Ácido Oleanólico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fraxinus/química , Factor de Necrosis Tumoral alfa , Ácido Oleanólico/farmacología , Interleucina-12 , Fitoquímicos/farmacología , Lipopolisacáridos/farmacología , Ácido Ursólico
10.
Phytomedicine ; 108: 154529, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36343550

RESUMEN

BACKGROUND: Previous studies have shown that the anti-cholestatic effect of oleanolic acid (OA) is associated with FXR and NRF2. However, how the two signaling pathways cooperate to regulate the anti-cholestatic effect of OA remains unclear. PURPOSE: This study aimed to further demonstrate the effect of OA on alpha-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury and the interaction mechanism between NRF2 and FXR signaling pathways in maintaining bile acid homeostasis. METHODS: Gene knockout animals and cell models, metabolomics analysis, and co-immunoprecipitation were used to investigate the mechanism of OA against cholestatic liver injury. RESULTS: The effect of OA against ANIT-induced liver injury in rats was dramatically reduced after Nrf2 gene knockdown. With the silencing of Fxr, the hepatoprotective effect of OA was weakened, but it still effectively alleviated cholestatic liver injury in rats. In L02 cells, OA can up-regulate the levels of NRF2, FXR, BSEP and UGT1A1, and reduce the expression of CYP7A1. Silencing of NRF2 or FXR significantly attenuated the protective effect of OA on ANIT-induced L02 cell injury and its regulation on downstream target genes, and the influence of NRF2 gene silencing on OA appeared to be greater. The NRF2 activator sulforaphane, and the FXR activator GW4064 both remarkably promoted NRF2 binding to P300 and FXR to RXRα, but reduced ß-catenin binding to P300 and ß-catenin binding to FXR. CONCLUSION: The effect of OA on cholestatic liver injury is closely related to the simultaneous activation of NRF2 and FXR dual signaling pathways, in which NRF2 signaling pathway plays a more important role. The dual signaling pathways of NRF2 and FXR cooperatively regulate bile acid metabolic homeostasis through the interaction mechanism with ß-catenin/P300.


Asunto(s)
Colestasis , Ácido Oleanólico , Animales , Ratas , beta Catenina/metabolismo , Ácidos y Sales Biliares/metabolismo , Colestasis/tratamiento farmacológico , Colestasis/inducido químicamente , Hígado , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/farmacología , Ácido Oleanólico/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
11.
J Biomol Struct Dyn ; 41(11): 5328-5344, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35694813

RESUMEN

Hepatitis C virus has a major role in spreading chronic liver disease and hepatocellular carcinoma. Factors such as high costs, pharmacological side effects, and the development of drug resistance strains require the development of new and potentially effective antiviral to treat the various stages of Hepatitis C. Bioactive chemicals have been extracted from medicinal plants and are utilized by humans for the goal of maintaining a healthy lifestyle. The goal of this work is to recognize phytochemicals from Eclipta alba and assess their potentiality activity against the hepatitis C virus envelope glycoprotein using in silico approaches. Phytochemicals from Eclipta alba were virtually screened by Auto dock raccoon and 12 compounds were selected for molecular docking to probe the active binding site. The top two compounds based on the binding score like ecliptalbine and oleanolic acid with HCV E2 glycoprotein exhibit binding energy -8.88 and -8.02 kcal/mol, respectively. The chemicals' usefulness was reinforced by positive pharmacokinetic data. The phytocompounds were identified as potent HCV inhibitors based on the drug likeness and ADMET properties. Both ecliptalbine and oleanolic acid underwent molecular dynamics simulations to determine features such as RMSD, RMSF, SASA, hydrogen-bond number, and MM-PBSA-based binding free energy. From the molecular docking and molecular dynamics simulation study revealed that oleanolic acid obtained from Eclipta alba can be used as inhibitors against Hepatitis C. The identified inhibitor from our study will be study in vitro and in vivo studies to check their efficacy against Hepatitis C.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Eclipta , Hepatitis C , Ácido Oleanólico , Humanos , Simulación de Dinámica Molecular , Hepacivirus , Simulación del Acoplamiento Molecular , Ácido Oleanólico/farmacología , Fitoquímicos/farmacología , Glicoproteínas
12.
Fitoterapia ; 162: 105291, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36064154

RESUMEN

Oleanolic acid and its derivatives have been widely reported for their antitumor activities. Recently, the introduction of a triphenylphosphonium cation moiety has been described to improve the selectivity and cytotoxicity of pentacyclic triterpenoids by targeting the mitochondria of human cancer cells. In this work, a series of novel mitochondria-targeting oleanolic acid derivatives were synthesized and their antitumor activities assessed. The majority of the compounds are more cytotoxicity to cancer cells than normal cells, especially for 6c with IC50 of 0.81 µM in A549 cells, which showed a slight increase compared to doxorubicin (0.97 µM). Mechanism studies demonstrated that 6c induced apoptosis of A549 cells in a dose-dependent manner, and reactive oxygen species production, mitochondrial membrane potential depolarization, and particularly pro-apoptotic proteins upregulated by western blotting experiment may be responsible for the results. Moreover, 6c arrested the cell cycle at G2/M phase and cell migration in A549 cells. Compound 6c had a comparable or somewhat improved activity to the positive control LY294002 in molecular docking studies and in vitro testing, demonstrating that the apoptosis mechanism may involve inhibition of the PI3K-Akt pathway. These results augur well for the use of 6c as a novel triphenylphosphonium-conjugated anticancer agent.


Asunto(s)
Antineoplásicos , Ácido Oleanólico , Antineoplásicos/farmacología , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proliferación Celular , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mitocondrias , Simulación del Acoplamiento Molecular , Estructura Molecular , Ácido Oleanólico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Curr Cancer Drug Targets ; 23(1): 2-14, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35946101

RESUMEN

Since their discovery, saikosaponins (SSs) have been found to play an important role in treating a variety of cancers via diverse mechanisms of action. This review summarizes the current research status and prospects of the anti-cancer activities of SSs, providing novel insights into the limitations of current studies. In addition, it discusses whether SSs can be applied in immunotherapy and the possible mechanisms by which SSs may facilitate immunotherapy. The research is significant to understanding the anti-cancer potents of SSs in the development of SSs-based therapeutic strategies and clinical practice.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias , Ácido Oleanólico , Saponinas , Humanos , Saponinas/farmacología , Saponinas/uso terapéutico , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Neoplasias/tratamiento farmacológico
14.
J Biochem Mol Toxicol ; 36(11): e23192, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35929395

RESUMEN

To investigate the potential antitumor activity of synthetic triterpenoid, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) in pancreatic ductal adenocarcinoma (PDAC), MTT cytotoxicity assay, and xenograft nude mice assay were performed to evaluate tumor growth in vitro and in vivo. Seahorse XFe96 bioenergetics analyzer was applied to determine aerobic glycolysis and mitochondrial respiration. Western blot and quantitative reverse transcription-polymerase chain reactions are used to detect protein and messenger RNA transcripts of SLC1A5 and metabolic enzymes. We confirmed the strong antitumor activity of CDDO-Me in suppressing PDAC growth. Mechanistically, we demonstrated CDDO-Me induced mitochondrial respiration and aerobic glycolysis dysfunction. We also verified CDDO-Me downregulated glutamine transporter SLC1A5, resulting in excessive reactive oxygen species (ROS) levels that suppressed tumor growth. Moreover, we confirmed that SLC1A5 depletion reduced the ratio of glutathione/oxidized glutathione. We also found CDDO-Me could inhibit N-linked glycosylation of SLC1A5, which promotes protease-mediated degradation. Finally, we confirmed SLC1A5 was significantly overexpressed in PDAC and closely correlated with the poor prognosis of PDAC patients. Our work uncovers CDDO-Me is effective at suppressing PDAC cell growth in vitro and in vivo and illuminates CDDO-Me caused excessive ROS and cellular bioenergetics disruption which contributed to CDDO-Me inhibited PDAC growth. Our data highlights CDDO-Me could be considered a potential compound for PDAC therapy, and SLC1A5 could be a novel biomarker for PDAC patients.


Asunto(s)
Adenocarcinoma , Ácido Oleanólico , Neoplasias Pancreáticas , Triterpenos , Ratones , Animales , Humanos , Triterpenos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Apoptosis , Ácido Oleanólico/farmacología , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Metabolismo Energético , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/farmacología , Sistema de Transporte de Aminoácidos ASC/metabolismo , Neoplasias Pancreáticas
15.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35887090

RESUMEN

Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.


Asunto(s)
Ácido Oleanólico , Triterpenos , Antiinflamatorios , Ácido Oleanólico/farmacología , Fosfatidilinositol 3-Quinasas , Extractos Vegetales/farmacología , Triterpenos/farmacología , Triterpenos/uso terapéutico
16.
Molecules ; 27(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889451

RESUMEN

The emergence of drug resistance and the limited number of approved antitubercular drugs prompted identification and development of new antitubercular compounds to cure Tuberculosis (TB). In this work, an attempt was made to identify potential natural compounds that target mycobacterial proteins. Three plant extracts (A. aspera, C. gigantea and C. procera) were investigated. The ethyl acetate fraction of the aerial part of A. aspera and the flower ash of C. gigantea were found to be effective against M. tuberculosis H37Rv. Furthermore, the GC-MS analysis of the plant fractions confirmed the presence of active compounds in the extracts. The Mycobacterium target proteins, i.e., available PDB dataset proteins and proteins classified in virulence, detoxification, and adaptation, were investigated. A total of ten target proteins were shortlisted for further study, identified as follows: BpoC, RipA, MazF4, RipD, TB15.3, VapC15, VapC20, VapC21, TB31.7, and MazF9. Molecular docking studies showed that ß-amyrin interacted with most of these proteins and its highest binding affinity was observed with Mycobacterium Rv1636 (TB15.3) protein. The stability of the protein-ligand complex was assessed by molecular dynamic simulation, which confirmed that ß-amyrin most firmly interacted with Rv1636 protein. Rv1636 is a universal stress protein, which regulates Mycobacterium growth in different stress conditions and, thus, targeting Rv1636 makes M. tuberculosis vulnerable to host-derived stress conditions.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Ácido Oleanólico , Antituberculosos/química , Antituberculosos/farmacología , Proteínas de Choque Térmico , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología
17.
Braz J Biol ; 82: e258442, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35766779

RESUMEN

Apples are rich sources of ursolic acid (UA) and oleanolic acid (OA) which are the major and most prominent triterpenes in the peel of an apple. Pentacyclic triterpenes are ideal nutraceuticals due to their ability to reduce the risk of many life-threatening diseases such as cancer, cardiovascular and diabetes. This study was to determine the content of UA and OA in the apple peel extract from different cultivars grown in South Africa as well as the correlation of their content level with antioxidant capacity. Quantitative analysis of UA and OA in apple peels from three cultivars; red delicious (RD), royal gala (RG) and granny smith (GS) apples was carried out using HPLC and their antioxidant capacity was analyzed using the DPPH assay. The RD showed the highest content of UA and OA (248.02 ± 0.08 µg/ml and 110.00 ± 0.08 µg/ml respectively) in the apple peel extract and also displayed a significantly high level of antioxidant capacity (97.3 ± 0.40%; p < 0.0001) compared to the RG and GS cultivars. A strong positive correlation was noted between the UA, OA and antioxidant capacities of all the cultivars. Only the RD cultivar showed a significant correlation though; UA (r = 0.9570; p = 0.0027) and OA (r = 0.8503; p = 0.0319). This study demonstrated that the RD and RG apple peels possess the highest UA and OA content which invariably increases their antioxidant activities compared to GS apple. Thus, both apple cultivars would be useful and recommended for food consumption and nutraceuticals values to improve human health.


Asunto(s)
Malus , Ácido Oleanólico , Antioxidantes/análisis , Antioxidantes/farmacología , Frutas/química , Humanos , Ácido Oleanólico/análisis , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Extractos Vegetales/química
18.
Chin J Nat Med ; 20(6): 432-442, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35750383

RESUMEN

Although anti-thrombotic therapy has been successful for prevention of deaths from acute myocardial infarction (MI), by far, there are few preventive and therapeutic options for ischemic heart failure (IHF) after MI. Qi-Tai-Suan (QTS) is an oleanolic acid (OA) derivative which once underwent a clinical trial for treating hepatitis. In this study, we investigated the potential cardioprotective effect of QTS on IHF. IHF mouse model was constructed by coronary artery ligation in male C57BL/6J mice, and the protective effects of QTS on IHF were examined by echocardiography measurement, histological and TUNEL analysis, etc. We found that QTS exhibited promising cardioprotective effect on IHF. QTS treatment significantly improved cardiac function of IHF mice and the symptoms of heart failure. Notably, QTS had much better oral bioavailability (F = 41.91%) in mice than its parent drug OA, and took effects mainly as its original form. Mechanistically, QTS ameliorated ischemic heart failure likely through suppression of cardiac apoptosis, inflammation and fibrosis. Taken together, QTS holds great promise as a preventive and therapeutic agent for ischemic heart failure and related diseases.


Asunto(s)
Insuficiencia Cardíaca , Isquemia Miocárdica , Ácido Oleanólico , Animales , Apoptosis , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/patología , Ácido Oleanólico/farmacología
19.
Carbohydr Res ; 517: 108575, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35552063

RESUMEN

Oleanolic acid 3-O-ß-d-glucopyranosyl-(1 â†’ 3)-ß-d-glucopyranoside (1) and oleanolic acid 3-O-ß-d-glucopyranosyl-(1 â†’ 3)-[α-l-arabinofuranosyl-(1 â†’ 4)]-ß-d-glucopyranoside (2), novel Panax stipulcanatus saponin analogues, were synthesized for the first time starting from commercially available oleanolic acid, d-glucose, and L-(+)-arabinose. Glycosyl N-phenyltrifluoroacetimidates as donors and two-step consecutive glycosylation reactions are crucial in the synthesis. In vitro antifungal activity results indicated that analogue 2 combined with fluconazole showed synergistic antifungal activity against fluconazole-resistant Candida albicans, with MIC50 values 31.80 µg/mL and FICI values 0.32. We also found that intermediate compounds 16 and 17 revealed synergistic antifungal activity against susceptible Candida albicans when combined with fluconazole, with MIC50 values 1.43 µg/mL and 1.59 µg/mL, FICI values 0.29 and 0.32, respectively.


Asunto(s)
Ácido Oleanólico , Panax , Saponinas , Antifúngicos/farmacología , Candida albicans , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana , Ácido Oleanólico/farmacología , Saponinas/farmacología
20.
Phytomedicine ; 102: 154173, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35605478

RESUMEN

BACKGROUND: Cholestasis is a clinical syndrome with high incidence and few effective treatments. Oleanolic acid (OA) is a triterpenoid compound with anti-cholestatic effects. Studies using bile duct ligation or lithocholic acid modeling have shown that the alleviating effect of OA on cholerosis is related to the regulation of nuclear factor erythroid 2 related factor (Nrf2) or farnesoid X receptor (Fxr). PURPOSE: This study aims to investigate the underlying mechanism of OA against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury based on Nrf2 and Fxr dual signaling pathways. METHODS: The ANIT-induced rats model was used with or without OA treatment. Serum biochemical indexes, liver histopathological changes and glutathione level were examined. Bile acids (BAs) targeted metabolomics based on UHPLC-MS/MS were performed. siRNA, RT-qPCR and western blot analysis were used to prove the role of Fxr and Nrf2 pathway in OA's anti-cholestatic liver injury in vivo and in vitro. RESULTS: OA significantly alleviated ANIT-induced liver injury in rats, reduced primary bile acids, accelerated metabolism of BAs and reduced the intrahepatic accumulation of BAs. The expressions of bile salt export pump (Bsep), Na+-taurocholic cotransport polypeptide (Ntcp), UDP-glucuronyl transferase 1a1 (Ugt1a1) and Fxr in rat liver were markedly up-regulated, the activation of Nrf2 was promoted, and the expression of cholesterol 7α-hydroxylase (Cyp7a1) was decreased after OA treatment. Moreover, Fxr or Nrf2 silencing attenuated the regulation of OA on BAs homeostasis related transporters and enzymes in rat primary hepatocytes. CONCLUSION: OA may regulate BAs-related transporters and metabolic enzymes by activating Fxr and Nrf2 pathways, thus alleviating the cholestatic liver injury induced by ANIT.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Colestasis , Ácido Oleanólico , Animales , Ratas , 1-Naftilisotiocianato/toxicidad , Ácidos y Sales Biliares/metabolismo , Colestasis/inducido químicamente , Colestasis/tratamiento farmacológico , Homeostasis , Hígado , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Espectrometría de Masas en Tándem , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA