Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32978128

RESUMEN

Lipoic acid is a sulfur-containing cofactor and a component of the glycine cleavage system (GCS) involved in C1 compound metabolism and the 2-oxoacid dehydrogenases that catalyze the oxidative decarboxylation of 2-oxoacids. Lipoic acid is found in all domains of life and is generally synthesized as a lipoyl group on the H-protein of the GCS or the E2 subunit of 2-oxoacid dehydrogenases. Lipoyl synthase catalyzes the insertion of two sulfur atoms to the C-6 and C-8 carbon atoms of the octanoyl moiety on the octanoyl-H-protein or octanoyl-E2 subunit. Although the hyperthermophilic archaeon Thermococcus kodakarensis seemed able to synthesize lipoic acid, a classical lipoyl synthase (LipA) gene homolog cannot be found on the genome. In this study, we aimed to identify the lipoyl synthase in this organism. Genome information analysis suggested that the TK2109 and TK2248 genes, which had been annotated as biotin synthase (BioB), are both involved in lipoic acid metabolism. Based on the chemical reaction catalyzed by BioB, we predicted that the genes encode proteins that catalyze the lipoyl synthase reaction. Genetic analysis of TK2109 and TK2248 provided evidence that these genes are involved in lipoic acid biosynthesis. The purified TK2109 and TK2248 recombinant proteins exhibited lipoyl synthase activity toward a chemically synthesized octanoyl-octapeptide. These in vivo and in vitro analyses indicated that the TK2109 and TK2248 genes encode a structurally novel lipoyl synthase. TK2109 and TK2248 homologs are widely distributed among the archaeal genomes, suggesting that in addition to the LipA homologs, the two proteins represent a new group of lipoyl synthases in archaea.IMPORTANCE Lipoic acid is an essential cofactor for GCS and 2-oxoacid dehydrogenases, and α-lipoic acid has been utilized as a medicine and attracted attention as a supplement due to its antioxidant activity. The biosynthesis pathways of lipoic acid have been established in Bacteria and Eucarya but not in Archaea Although some archaeal species, including Sulfolobus, possess a classical lipoyl synthase (LipA) gene homolog, many archaeal species, including T. kodakarensis, do not. In addition, the biosynthesis mechanism of the octanoyl moiety, a precursor for lipoyl group biosynthesis, is also unknown for many archaea. As the enzyme identified in T. kodakarensis most likely represents a new group of lipoyl synthases in Archaea, the results obtained in this study provide an important step in understanding how lipoic acid is synthesized in this domain and how the two structurally distinct lipoyl synthases evolved in nature.


Asunto(s)
Proteínas Arqueales/genética , Sulfurtransferasas/genética , Thermococcus/genética , Ácido Tióctico/biosíntesis , Aminoácido Oxidorreductasas , Proteínas Arqueales/metabolismo , Complejos Multienzimáticos , Proteínas Recombinantes , Sulfurtransferasas/metabolismo , Thermococcus/enzimología , Transferasas
2.
Mol Microbiol ; 80(2): 335-49, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21338420

RESUMEN

The Bacillus subtilis genome encodes three apparent lipoyl ligase homologues: yhfJ, yqhM and ywfL, which we have renamed lplJ, lipM and lipL respectively. We show that LplJ encodes the sole lipoyl ligase of this bacterium. Physiological and biochemical characterization of a ΔlipM strain showed that LipM is absolutely required for the endogenous lipoylation of all lipoate-dependent proteins, confirming its role as the B. subtilis octanoyltransferase. However, we also report that in contrast to Escherichia coli, B. subtilis requires a third protein for lipoic acid assembly, LipL. B. subtilis ΔlipL strains are unable to synthesize lipoic acid despite the presence of LipM and the sulphur insertion enzyme, LipA, which should suffice for lipoic acid biosynthesis based on the E. coli model. LipM is only required for the endogenous lipoylation pathway, whereas LipL also plays a role in lipoic acid scavenging. Expression of E. coli lipB allows growth of B. subtilisΔlipL or ΔlipM strains in the absence of supplements. In contrast, growth of an E. coliΔlipB strain can be complemented with lipM, but not lipL. These data together with those of the companion article provide evidence that LipM and LipL catalyse sequential reactions in a novel pathway for lipoic acid biosynthesis.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , Vías Biosintéticas/genética , Genes Bacterianos , Ácido Tióctico/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Eliminación de Gen , Prueba de Complementación Genética , Modelos Biológicos
3.
J Cardiovasc Pharmacol ; 54(5): 391-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19998523

RESUMEN

In the past few years, a growing interest has been given to the possible antioxidant functions of a natural acid, synthesized in human tissues: alpha-lipoic acid (ALA). Both the oxidized (disulfide) and reduced (dithiol: dihydrolipoic acid, DHLA) forms of ALA show antioxidant properties. ALA administered in the diet accumulates in tissues, and a substantial part is converted to DHLA via a lipoamide dehydrogenase. Commercial ALA is usually a racemic mixture of the R and S forms. Chemical studies have indicated that ALA scavenges hydroxyl radicals, hypochlorous acid, and singlet oxygen. ALA exerts antioxidant effects in biological systems not only through direct ROS quenching but also via transition metal chelation. ALA has been shown to possess a number of beneficial effects both in the prevention and treatment of diabetes in experimental conditions. ALA presents beneficial effects in the management of symptomatic diabetic neuropathy and has been used in this context in Germany for more than 30 years. In cardiovascular disease, dietary supplementation with ALA has been successfully employed in a variety of in vivo models: ischemia-reperfusion, heart failure, and hypertension. More mechanistic and human in vivo studies are needed to determine whether optimizing the dietary intake of ALA can help to decrease cardiovascular diseases. A more complete understanding of cellular biochemical events that influence oxidative damage is required to guide future therapeutic advances.


Asunto(s)
Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/prevención & control , Ácido Tióctico/uso terapéutico , Animales , Antioxidantes/administración & dosificación , Antioxidantes/metabolismo , Antioxidantes/farmacocinética , Enfermedades Cardiovasculares/metabolismo , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/prevención & control , Suplementos Dietéticos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Lisina/administración & dosificación , Lisina/análogos & derivados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Ácido Tióctico/administración & dosificación , Ácido Tióctico/análogos & derivados , Ácido Tióctico/biosíntesis , Ácido Tióctico/farmacocinética
4.
Mol Cell Biol ; 25(18): 8387-92, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16135825

RESUMEN

alpha-Lipoic acid (LA) is a cofactor for mitochondrial alpha-ketoacid dehydrogenase complexes and is one of the most potent, natural antioxidants. Reduction of oxidative stress by LA supplementation has been demonstrated in patients with diabetic neuropathy and in animal models. To determine how normal development or pathological conditions are affected by genetic alterations in the ability of mammalian cells to synthesize LA and whether dietary LA can circumvent its endogenous absence, we have generated mice deficient in lipoic acid synthase (Lias). Mice heterozygous for disruption of the Lias gene develop normally, and their plasma levels of thiobarbituric acid-reactive substances do not differ from those of wild-type mice. However, the heterozygotes have significantly reduced erythrocyte glutathione levels, indicating that their endogenous antioxidant capacity is lower than those of wild-type mice. Homozygous embryos lacking Lias appear healthy at the blastocyst stage, but their development is retarded globally by 7.5 days postcoitum (dpc), and all the null embryos die before 9.5 dpc. Supplementing the diet of heterozygous mothers with LA (1.65 g/kg of body weight) during pregnancy fails to prevent the prenatal deaths of homozygous embryos. Thus, endogenous LA synthesis is essential for developmental survival and cannot be replaced by LA in maternal tissues and blood.


Asunto(s)
Desarrollo Embrionario , Sulfurtransferasas/genética , Ácido Tióctico/biosíntesis , Animales , Dieta , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Ratones , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Ácido Tióctico/deficiencia , Ácido Tióctico/farmacología
5.
Chem Biol ; 10(12): 1293-302, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14700636

RESUMEN

Lipoic acid is synthesized from octanoic acid by insertion of sulfur atoms at carbons 6 and 8 and is covalently attached to a pyruvate dehydrogenase (PDH) subunit. We show that sulfur atoms can be inserted into octanoyl moieties attached to a PDH subunit or a derived domain. Escherichia coli lipB mutants grew well when supplemented with octanoate in place of lipoate. Octanoate growth required both lipoate protein ligase (LplA) and LipA, the sulfur insertion protein, suggesting that LplA attached octanoate to the dehydrogenase and LipA then converted the octanoate to lipoate. This pathway was tested by labeling a PDH domain with deuterated octanoate in an E. coli strain devoid of LipA activity. The labeled octanoyl domain was converted to lipoylated domain upon restoration of LipA. Moreover, octanoyl domain and octanoyl-PDH were substrates for sulfur insertion in vitro.


Asunto(s)
Proteínas Bacterianas , Escherichia coli/enzimología , Ligasas , Piruvato Deshidrogenasa (Lipoamida)/química , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Ácido Tióctico/química , Ácido Tióctico/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Caprilatos/metabolismo , Caprilatos/farmacología , Cromatografía Líquida de Alta Presión , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación/genética , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Azufre/metabolismo , Ácido Tióctico/biosíntesis
6.
FEBS Lett ; 517(1-3): 110-4, 2002 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-12062419

RESUMEN

In eukaryotes, the biosynthetic pathway for lipoic acid is present in mitochondria. However, it has been hypothesized that, in plants, the biosynthetic pathway is present in plastids in addition to mitochondria. In this study, Arabidopsis thaliana LIP1p cDNA for a plastidial form of lipoic acid synthase has been identified. We show that it encodes a lipoic acid synthase by demonstrating its ability to complement an Escherichia coli mutant lacking lipoic acid synthase activity. We also show that LIP1p is targeted to chloroplasts. These findings suggest that the biosynthetic pathway for lipoic acid is present not only in mitochondria but also in plastids.


Asunto(s)
Arabidopsis/metabolismo , Mitocondrias/metabolismo , Plastidios/metabolismo , Ácido Tióctico/biosíntesis , Secuencia de Aminoácidos , Arabidopsis/genética , ADN Complementario , Escherichia coli/genética , Mitocondrias/enzimología , Datos de Secuencia Molecular , Plastidios/enzimología , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/enzimología , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo , Ácido Tióctico/metabolismo
7.
FEBS Lett ; 498(1): 16-21, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11389890

RESUMEN

Lipoic acid is a coenzyme essential to the activity of enzymes such as pyruvate dehydrogenase, which play important roles in central metabolism. However, neither the enzymes responsible for biosynthesis nor the biosynthetic event of lipoic acid has been reported in mammalian cells. In this study, a mouse mLIP1 cDNA for lipoic acid synthase has been identified. We have shown that the cDNA encodes a lipoic acid synthase by its ability to complement a mutant of Escherichia coli defective in lipoic acid synthase and that mLIP1 is targeted into the mitochondria. These findings suggest that mammalian cells are able to synthesize lipoic acid in mitochondria.


Asunto(s)
Mitocondrias/genética , Sulfurtransferasas/genética , Ácido Tióctico/biosíntesis , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Células CHO , Cricetinae , ADN Complementario/aislamiento & purificación , Escherichia coli/genética , Prueba de Complementación Genética , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/enzimología , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Sulfurtransferasas/metabolismo
8.
J Biol Chem ; 275(7): 5016-25, 2000 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-10671542

RESUMEN

Fatty acid and lipoic acid biosynthesis were investigated in plant mitochondria. Although the mitochondria lack acetyl-CoA carboxylase, our experiments reveal that they contain the enzymatic equipment necessary to transform malonate into the two main building units for fatty acid synthesis: malonyl- and acetyl-acyl carrier protein (ACP). We demonstrated, by a new method based on a complementary use of high performance liquid chromatography and mass spectrometry, that the soluble mitochondrial fatty-acid synthase produces mainly three predominant acyl-ACPs as follows: octanoyl(C8)-, hexadecanoyl(C16)-, and octadecanoyl(C18)-ACP. Octanoate production is of primary interest since it has been postulated long ago to be a precursor of lipoic acid. By using a recombinant H apoprotein mutant as a potential acceptor for newly synthesized lipoic acid, we were able to detect limited amounts of lipoylated H protein in the presence of malonate, several sulfur donors, and cofactors. Finally, we present a scheme outlining the new biochemical pathway of fatty acid and lipoic acid synthesis in plant mitochondria.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Bacterianas , Ácidos Grasos/biosíntesis , Mitocondrias/metabolismo , Pisum sativum/metabolismo , Ácido Tióctico/biosíntesis , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo , Radioisótopos de Carbono , Cromatografía Líquida de Alta Presión , Coenzima A Ligasas/metabolismo , Malonatos/metabolismo , Mitocondrias/enzimología , Pisum sativum/enzimología , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Plant Physiol ; 118(3): 935-43, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9808738

RESUMEN

Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide.


Asunto(s)
Arabidopsis/metabolismo , Sulfurtransferasas/genética , Ácido Tióctico/biosíntesis , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , ADN Complementario , Escherichia coli/genética , Mutación , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/enzimología , Sulfurtransferasas/química , Sulfurtransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA