Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Chemosphere ; 339: 139773, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567266

RESUMEN

Bacteria degrading large portion of saturated hydrocarbons are important for crude oil bioremediation. This study investigates Novosphingobium sp. S1, Gordonia amicalis S2 and Gordonia terrae S5 capability of degrading wide range of saturated hydrocarbons from Congo Bilondo crude oil and discusses the degradation pathway. A parallel analytical approach combining GC-MS and LC-HRMS enabled characterization of saturated hydrocarbons and comprehensive determination of carboxylic acid metabolites produced during biodegradation, respectively. Results showed that the three strains could efficiently degrade the n-alkanes (C10-C28) as well as methyl-substituted alkanes (C11-C26). The series of mono-, hydroxy- and dicarboxylic acids identified in this study confirmed the active biodegradation of the saturate fraction and suggest their degradation was via the bi-terminal oxidation pathway. This is the first study linking these bacterial species to bi-terminal oxidation of the saturated hydrocarbons. The study highlights the potential application of the bacterial strains in the bioremediation of crude oil contaminated sites. Additionally, while carboxylic acids is indicated as a suitable and valuable metabolic biomarker, its application is considered feasible and cost effective for rapid monitoring and evaluation of hydrocarbon biodegradation.


Asunto(s)
Petróleo , Petróleo/metabolismo , Biodegradación Ambiental , Ácidos Carboxílicos/metabolismo , Hidrocarburos/metabolismo , Alcanos/metabolismo , Bacterias/metabolismo
2.
Biotechnol Appl Biochem ; 69(5): 2081-2090, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34617628

RESUMEN

Nitrilases and nitrile hydratases/amidases hydrolyze nitriles into carboxylic acids and/or amides, which are used in industrial chemical processes. In the present study, 26 microorganisms, including yeasts and filamentous fungi, in a minimum solid mineral medium supplemented with glucose and phenylacetonitrile were screened to evaluate their biocatalytic potential. Of these microorganisms, five fungi of the genus Aspergillus were selected and subjected to colorimetry studies to evaluate the production and distinction of nitrilase and nitrile hydratase/amidase enzymes. Aspergillus parasiticus Speare 7967 and A. niger Tiegh. 8285 produced nitrilases and nitrile hydratase, respectively. Nitrilase optimization was performed using a Box-Behnken design (BBD) and fungus A. parasiticus Speare 7967 with phenylacetonitrile volume (µl), pH, and carbohydrate source (starch:glucose; g/g) as independent variables and nitrilase activity (U ml-1 ) as dependent variable. Maximum activity (2.97 × 10-3  U ml-1 ) was obtained at pH 5.5, 80 µl of phenylacetonitrile, and 15 g of glucose. A. parasiticus Speare 7967 showed promise in the biotransformation of nitriles to carboxylic acids.


Asunto(s)
Aminohidrolasas , Ensayos Analíticos de Alto Rendimiento , Hongos , Nitrilos/metabolismo , Ácidos Carboxílicos/metabolismo , Aspergillus/metabolismo , Glucosa
3.
Pharmacol Res ; 175: 105981, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798264

RESUMEN

Inchinkoto (ICKT) is a popular choleretic and hepatoprotective herbal medicine that is widely used in Japan. Geniposide, a major ingredient of ICKT, is metabolized to genipin by gut microbiota, which exerts a choleretic effect. This study investigates the relationship between stool genipin-producing activity and diversity of the clinical effect of ICKT in patients with malignant obstructive jaundice. Fifty-two patients with malignant obstructive jaundice who underwent external biliary drainage were included. ICKT was administered as three packets per day (7.5 g/day) for three days and 2.5 g on the morning of the fourth day. Stool samples were collected before ICKT administration and bile flow was monitored on a daily basis. The microbiome, genipin-producing activity, and organic acids in stools were analyzed. The Shannon-Wiener (SW) index was calculated to evaluate gut microbiome diversity. The stool genipin-producing activity showed a significant positive correlation with the SW index. Stool genipin-producing activity positively correlated with the order Clostridia (obligate anaerobes), but negatively correlated with the order Lactobacillales (facultative anaerobes). Moreover, stool genipin-producing activity was positively correlated to the concentration valeric acid, but negatively correlated to the concentration of lactic acid and succinic acid. The change of bile flow at 2 and 3 days after ICKT administration showed significant positive correlation with genipin-producing activity (correlation coefficient, 0.40 and 0.29, respectively, P < 0.05). An analysis of stool profile, including stool genipin-producing activity, may predict the efficacy of ICKT. Modification of the microbiome may be a target to enhance the therapeutic effect of ICKT.


Asunto(s)
Colagogos y Coleréticos/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Heces/química , Microbioma Gastrointestinal/efectos de los fármacos , Iridoides/metabolismo , Ictericia Obstructiva/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Bilis/química , Ácidos Carboxílicos/metabolismo , Clostridium/genética , Clostridium/metabolismo , Femenino , Microbioma Gastrointestinal/genética , Humanos , Ictericia Obstructiva/microbiología , Lactobacillales/genética , Lactobacillales/metabolismo , Masculino , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Neoplasias/microbiología , Resultado del Tratamiento
4.
Planta Med ; 88(5): 389-397, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33902128

RESUMEN

Microbial biotransformation of cannabidiol was assessed using 31 different microorganisms. Only Mucor ramannianus (ATCC 9628), Beauveria bassiana (ATCC 7195), and Absidia glauca (ATCC 22 752) were able to metabolize cannabidiol. M. ramannianus (ATCC 9628) yielded five metabolites, namely, 7,4″ß-dihydroxycannabidiol (1: ), 6ß,4″ß-dihydroxycannabidiol (2: ), 6ß,2″ß-dihydroxycannabidiol (3: ), 6ß,3″α-dihydroxycannabidiol (4: ), and 6ß,7,4″ß-trihydroxycannabidiol (5: ). B. bassiana (ATCC 7195) metabolized cannabidiol to afford six metabolites identified as 7,3″-dihydroxycannabidivarin (6: ), 7-hydroxycannabidivarin-3″-carboxylic acid (7: ), 3″-hydroxycannabidivarin (8: ), 4″ß-hydroxycannabidiol (9: ), and cannabidivarin-3″-carboxylic acid (10: ) along with compound 1: . Incubation of cannabidiol with A. glauca (ATCC 22 752) yielded three metabolites, 6α,3″-dihyroxycannabidivarin (11: ), 6ß,3″-dihyroxycannabidivarin (12: ), and compound 6: . All compounds were evaluated for their antimicrobial and antiprotozoal activity.


Asunto(s)
Beauveria , Cannabidiol , Cannabis , Beauveria/metabolismo , Biotransformación , Cannabidiol/metabolismo , Cannabis/metabolismo , Ácidos Carboxílicos/metabolismo
5.
J Sci Food Agric ; 102(2): 540-549, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34146349

RESUMEN

BACKGROUND: Pasture farming in south-western Australia is challenged by nutrient-poor soils. We assessed the impact of microbial consortium inoculant (MI) and rock mineral fertiliser (MF) on growth, nutrient uptake, root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation in three pasture grasses - tall fescue (Festuca arundinacea L.), veldt grass (Ehrharta calycina Sm.) and tall wheatgrass (Thinopyrum ponticum L.) grown in low-phosphorus (P) sandy soil in a glasshouse for 30 and 60 days after sowing (DAS). RESULTS: Veldt grass produced the highest specific root length and smallest average root diameter in both growth periods, and had similar shoot weight, root surface area and fine root length (except at 30 DAS) to tall fescue. Compared with the control, MI alone or combined with MF significantly increased shoot and root biomass (except root biomass at 30 DAS), likely due to the significant increases in root surface area and fine root length. Plants supplied with MI + MF had higher shoot N and P contents than those in the MI and the control treatments at 60 DAS. Malate, citrate and trans-aconitate were the major rhizosphere carboxylates exuded at both 30 and 60 DAS. Malate exudation varied among species and treatments in both growth periods, but citrate exudation was consistently higher in the low-P treatments (control and MI) than the MF and MI + MF treatments. CONCLUSION: Microbial consortium inoculant can positively influence pasture production in low-P soil by increasing root surface area and fine root length, whereas exudation of nutrient-mobilising carboxylates (citrate) is dependent more on soil P supply than microbial consortium inoculant. © 2021 Society of Chemical Industry.


Asunto(s)
Inoculantes Agrícolas/crecimiento & desarrollo , Micorrizas/crecimiento & desarrollo , Fósforo/análisis , Exudados de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Poaceae/microbiología , Ácidos Carboxílicos/análisis , Ácidos Carboxílicos/metabolismo , Fertilizantes/análisis , Consorcios Microbianos , Fósforo/metabolismo , Exudados de Plantas/análisis , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Poaceae/química , Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Rizosfera , Suelo/química
6.
Molecules ; 26(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34885775

RESUMEN

To the best of our knowledge, this is the first study demonstrating the efficiency of Allium sativum hydro-alcoholic extract (ASE) againstFigure growth, biofilm development, and soluble factor production of more than 200 biodeteriogenic microbial strains isolated from cultural heritage objects and buildings. The plant extract composition and antioxidant activities were determined spectrophotometrically and by HPLC-MS. The bioevaluation consisted of the qualitative (adapted diffusion method) and the quantitative evaluation of the inhibitory effect on planktonic growth (microdilution method), biofilm formation (violet crystal microtiter method), and production of microbial enzymes and organic acids. The garlic extract efficiency was correlated with microbial strain taxonomy and isolation source (the fungal strains isolated from paintings and paper and bacteria from wood, paper, and textiles were the most susceptible). The garlic extract contained thiosulfinate (307.66 ± 0.043 µM/g), flavonoids (64.33 ± 7.69 µg QE/g), and polyphenols (0.95 ± 0.011 mg GAE/g) as major compounds and demonstrated the highest efficiency against the Aspergillus versicolor (MIC 3.12-6.25 mg/mL), A. ochraceus (MIC: 3.12 mg/mL), Penicillium expansum (MIC 6.25-12.5 mg/mL), and A. niger (MIC 3.12-50 mg/mL) strains. The extract inhibited the adherence capacity (IIBG% 95.08-44.62%) and the production of cellulase, organic acids, and esterase. This eco-friendly solution shows promising potential for the conservation and safeguarding of tangible cultural heritage, successfully combating the biodeteriogenic microorganisms without undesirable side effects for the natural ecosystems.


Asunto(s)
Bacterias/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Ácidos Carboxílicos/metabolismo , Enzimas/metabolismo , Hongos/crecimiento & desarrollo , Ajo/química , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Hongos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Polifenoles/farmacología , Solubilidad
7.
BMC Plant Biol ; 21(1): 591, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903180

RESUMEN

BACKGROUND: Agarwood is a highly sought-after resinous wood for uses in medicine, incense, and perfume production. To overcome challenges associated with agarwood production in Aquilaria sinensis, several artificial agarwood-induction treatments have been developed. However, the effects of these techniques on the metabolome of the treated wood samples are unknown. Therefore, the present study was conducted to evaluate the effects of four treatments: fire drill treatment (F), fire drill + brine treatment (FS), cold drill treatment (D) and cold drill + brine treatment (DS)) on ethanol-extracted oil content and metabolome profiles of treated wood samples from A. sinensis. RESULTS: The ethanol-extracted oil content obtained from the four treatments differed significantly (F < D < DS < FS). A total of 712 metabolites composed mostly of alkaloids, amino acids and derivatives, flavonoids, lipids, phenolic acids, organic acids, nucleotides and derivatives, and terpenoids were detected. In pairwise comparisons, 302, 155, 271 and 363 differentially accumulated metabolites (DAM) were detected in F_vs_FS, D_vs_DS, F_vs_D and FS_vs_DS, respectively. The DAMs were enriched in flavonoid/flavone and flavonol biosynthesis, sesquiterpenoid and triterpenoid biosynthesis. Generally, addition of brine to either fire or cold drill treatments reduced the abundance of most of the metabolites. CONCLUSION: The results from this study offer valuable insights into synthetically-induced agarwood production in A. sinensis.


Asunto(s)
Metaboloma , Aceites de Plantas/química , Thymelaeaceae/metabolismo , Madera/metabolismo , Alcaloides/metabolismo , Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Frío , Etanol , Incendios , Flavonas/metabolismo , Flavonoides/metabolismo , Hidroxibenzoatos/metabolismo , Metabolismo de los Lípidos , Nucleótidos/metabolismo , Sales (Química)/farmacología , Terpenos/metabolismo , Thymelaeaceae/química , Thymelaeaceae/efectos de los fármacos , Madera/química , Madera/efectos de los fármacos
8.
Artículo en Inglés | MEDLINE | ID: mdl-34130203

RESUMEN

San Miao Wan (SMW), composed of Phellodendri Chinensis Cortex, Atractylodis Lanceae Rhizoma and Achyranthis Bidentatae Radix, is widely used for the treatment of gout, hyperuricemia and other diseases. In the present study, an overall identification strategy based on ultra-high performance liquid chromatography tandem Q-Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap/MS) method was established to characterize the multiple chemical constituents of SMW and its metabolites in rat plasma after oral administration of SMW. A total of 76 constituents including alkaloids, organic acids, lactones, terpenes, saponins, sterones and others types of components were identified in the extract of SMW. After the oral administration of SMW, 47 prototype constituents and 66 metabolites were identified in rat plasma samples. The related metabolic pathways mainly involved reduction, demethylation, hydroxylation, methylation and glucuronide conjunction. The proposed method could be a useful approach to identify the chemical constituents of SMW and its metabolic components. Our study provide a universal strategy for the analysis of the components and metabolites of the traditional Chinese medicine prescription (TCP) extracts and plasma after administration using UPLC-Q-Exactive Orbitrap/MS method. It will assist with clarifying the substance basis of effective components in SMW. It also provides a rapid method for overall analysis of chemical constituents and metabolites of SMW.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem/métodos , Administración Oral , Alcaloides/sangre , Alcaloides/química , Alcaloides/metabolismo , Animales , Ácidos Carboxílicos/sangre , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Lactonas/sangre , Lactonas/química , Lactonas/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
9.
Sci Rep ; 11(1): 11657, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079016

RESUMEN

Soapberry (Sapindus mukorossi Gaertn.) is a multi-functional tree with widespread application in toiletries, biomedicine, biomass energy, and landscaping. The pericarp of soapberry can be used as a medicine or detergent. However, there is currently no systematic study on the chemical constituents of soapberry pericarp during fruit development and ripening, and the dynamic changes in these constituents still unclear. In this study, a non-targeted metabolomics approach using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to comprehensively profile the variations in metabolites in the soapberry pericarp at eight fruit growth stages. The metabolome coverage of UHPLC-HRMS on a HILIC column was higher than that of a C18 column. A total of 111 metabolites were putatively annotated. Principal component analysis and hierarchical clustering analysis of pericarp metabolic composition revealed clear metabolic shifts from early (S1-S2) to late (S3-S5) development stages to fruit ripening stages (S6-S8). Furthermore, pairwise comparison identified 57 differential metabolites that were involved in 18 KEGG pathways. Early fruit development stages (S1-S2) were characterized by high levels of key fatty acids, nucleotides, organic acids, and phosphorylated intermediates, whereas fruit ripening stages (S6-S8) were characterized by high contents of bioactive and valuable metabolites, such as troxipide, vorinostat, furamizole, alpha-tocopherol quinone, luteolin, and sucrose. S8 (fully developed and mature stage) was the most suitable stage for fruit harvesting to utilize the pericarp. To the best of our knowledge, this was the first metabolomics study of the soapberry pericarp during whole fruit growth. The results could offer valuable information for harvesting, processing, and application of soapberry pericarp, as well as highlight the metabolites that could mediate the biological activity or properties of this medicinal plant.


Asunto(s)
Frutas/química , Redes y Vías Metabólicas/fisiología , Metaboloma , Metabolómica/métodos , Sapindus/química , Ácidos Carboxílicos/clasificación , Ácidos Carboxílicos/aislamiento & purificación , Ácidos Carboxílicos/metabolismo , Cromatografía Líquida de Alta Presión , Ácidos Grasos/clasificación , Ácidos Grasos/aislamiento & purificación , Ácidos Grasos/metabolismo , Flavonas/clasificación , Flavonas/aislamiento & purificación , Flavonas/metabolismo , Frutas/metabolismo , Nucleótidos/clasificación , Nucleótidos/aislamiento & purificación , Nucleótidos/metabolismo , Análisis de Componente Principal , Quinonas/clasificación , Quinonas/aislamiento & purificación , Quinonas/metabolismo , Sapindus/metabolismo , Saponinas/clasificación , Saponinas/aislamiento & purificación , Saponinas/metabolismo
10.
Biosci Biotechnol Biochem ; 85(5): 1194-1204, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33704369

RESUMEN

Papaya (Carica papaya L.) is widely cultivated in tropical and subtropical countries. While ripe fruit is a popular food item globally, the unripe fruit is only consumed in some Asian countries. To promote the utilization of unripe papaya based on the compositional changes of biological active metabolites, we performed liquid chromatography-Orbitrap-mass spectrometry-based analysis to reveal the comprehensive metabolite profile of the peel and pulp of unripe and ripe papaya fruits. The number of peaks annotated as phenolics and aminocarboxylic acids increased in the pulp and peel of ripe fruit, respectively. Putative carpaine derivatives, known alkaloids with cardiovascular effects, decreased, while carpamic acid derivatives increased in the peel of ripe fruit. Furthermore, the functionality of unripe fruit, the benzyl glucosinolate content, total polyphenol content, and proteolytic activity were detectable after heating and powder processing treatments, suggesting a potential utilization in powdered form as functional material.


Asunto(s)
Alcaloides/metabolismo , Ácidos Carboxílicos/metabolismo , Carica/metabolismo , Glucosinolatos/metabolismo , Redes y Vías Metabólicas/fisiología , Polifenoles/metabolismo , Alcaloides/química , Alcaloides/clasificación , Alcaloides/aislamiento & purificación , Ácidos Carboxílicos/química , Ácidos Carboxílicos/clasificación , Ácidos Carboxílicos/aislamiento & purificación , Carica/química , Cromatografía Liquida , Culinaria/métodos , Frutas/química , Frutas/metabolismo , Alimentos Funcionales/análisis , Glucosinolatos/química , Glucosinolatos/clasificación , Glucosinolatos/aislamiento & purificación , Humanos , Extractos Vegetales/química , Polifenoles/química , Polifenoles/clasificación , Polifenoles/aislamiento & purificación , Análisis de Componente Principal , Espectrometría de Masas en Tándem
11.
Plant Cell Environ ; 44(2): 598-612, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33099780

RESUMEN

Under phosphorus (P) deficiency, Lupinus albus develops cluster roots that allow efficient P acquisition, while L. angustifolius without cluster roots also grows well. Both species are non-mycorrhizal. We quantitatively examined the carbon budgets to investigate the different strategies of these species. Biomass allocation, respiratory rates, protein amounts and carboxylate exudation rates were examined in hydroponically-grown plants treated with low (1 µM; P1) or high (100 µM; P100) P. At P1, L. albus formed cluster roots, and L. angustifolius increased biomass allocation to the roots. The respiratory rates of the roots were faster in L. albus than in L. angustifolius. The protein amounts of the non-phosphorylating alternative oxidase and uncoupling protein were greater in the cluster roots of L. albus at P1 than in the roots at P100, but similar between the P treatments in L. angustifolius roots. At P1, L. albus exuded carboxylates at a faster rate than L. angustifolius. The carbon budgets at P1 were surprisingly similar between the two species, which is attributed to the contrasting root growth and development strategies. L. albus developed cluster roots with rapid respiratory and carboxylate exudation rates, while L. angustifolius developed a larger root system with slow respiratory and exudation rates.


Asunto(s)
Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Lupinus/fisiología , Fósforo/deficiencia , Transporte Biológico , Biomasa , Lupinus/anatomía & histología , Lupinus/crecimiento & desarrollo , Fósforo/metabolismo , Exudados de Plantas/química , Raíces de Plantas/anatomía & histología , Raíces de Plantas/enzimología , Respiración
12.
Folia Microbiol (Praha) ; 66(1): 69-77, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32939738

RESUMEN

Due to insufficient amount of soluble phosphate and poor persistence of traditional chemical phosphate fertilizers in agricultural soils, the eco-friendly and sustainable phosphorus sources for crops are urgently required. The efficient phosphate-releasing fungal strain designated y2 was isolated and identified by the internal transcribed spacer of rDNA as Penicillium oxalicum y2. When lecithin, Ca3(PO4)2, or ground phosphate rock were separately used as sole phosphorus source, different phosphate-releasing modes were observed. The strain y2 was able to release as high as 2090 mg/L soluble phosphate within 12 days of incubation with Ca3(PO4)2 as sole phosphorus source. In the culture solution, high concentration of oxalic, citric, and malic acids and high phosphatase activity were detected. The organic acids contributed to solubilizing inorganic phosphate sources, while phosphatase was in charge of the mineralization of organic phosphorus lecithin. Afterwards, the fungus culture was applied to the soil with rape growing. During 50 days of incubation, the soil's available phosphate concentration increased by three times compared with the control, the dry weight of rape increased by 78.73%, and the root length increased by 38.79%. The results illustrated that P. oxalicum y2 possessed both abilities of solubilizing inorganic phosphorus and mineralizing organic phosphorus, which have great potential application in providing biofertilizer for modern agriculture.


Asunto(s)
Penicillium/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Microbiología del Suelo , Disponibilidad Biológica , Brassica napus/crecimiento & desarrollo , Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , ADN Espaciador Ribosómico/genética , Nitrógeno/metabolismo , Penicillium/clasificación , Penicillium/genética , Penicillium/aislamiento & purificación , Fosfatos/farmacocinética , Monoéster Fosfórico Hidrolasas/metabolismo , Filogenia , Suelo/química
13.
Curr Protein Pept Sci ; 21(8): 785-798, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32048965

RESUMEN

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


Asunto(s)
Aminoácidos/metabolismo , Proteínas en la Dieta/metabolismo , Microbioma Gastrointestinal/fisiología , Absorción Intestinal/fisiología , Mucosa Intestinal/metabolismo , Probióticos/metabolismo , Amoníaco/metabolismo , Alimentación Animal/análisis , Alimentación Animal/microbiología , Animales , Transporte Biológico/fisiología , Ácidos Carboxílicos/metabolismo , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas en la Dieta/administración & dosificación , Ácidos Grasos Volátiles/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Mucosa Intestinal/citología , Oligopéptidos/metabolismo , Fenoles/metabolismo , Probióticos/análisis , Probióticos/farmacología
14.
Appl Microbiol Biotechnol ; 104(6): 2675-2689, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31993702

RESUMEN

Nowadays, the increase of the unconventional oil deposit exploitation and the amount of oil sands process-affected waters (OSPW) in tailing ponds emerges the importance of developing bio-monitoring strategies for the restoration of these habitats. The major constituents of such deposits are naphthenic acids (NAs), emerging contaminant mixtures with toxic and recalcitrant properties. With the aim of developing bio-monitoring strategies based on culture-independent approach, we identified genes coding for enzymes involved in NA degradation from Rhodococcus opacus R7 genome, after the evaluation of its ability to mineralize model NAs. R. opacus R7 whole-genome analysis unveiled the presence of pobA and chcpca gene clusters putatively involved in NAs degradation. Gene expression analysis demonstrated the specific induction of R7 aliA1 gene, encoding for a long-chain-fatty-acid-CoA ligase, in the presence of cyclohexanecarboxylic acid (CHCA) and hexanoic acid (HA), selected as representative compounds for alicyclic and linear NAs, respectively. Therefore, aliA1 gene was selected as a molecular marker to monitor the biodegradative potential of slurry-phase sand microcosms in different conditions: spiked with CHCA, in the presence of R. opacus R7, the autochthonous microbial community, and combining these factors. Results revealed that the aliA1-targeting culture-independent approach could be a useful method for bio-monitoring of NA degradation in a model laboratory system.


Asunto(s)
Biodegradación Ambiental , Ácidos Carboxílicos/metabolismo , Monitoreo del Ambiente/métodos , Rhodococcus/genética , Microbiología del Suelo , Contaminantes Químicos del Agua/metabolismo , Marcadores Genéticos , Genoma Bacteriano , Rhodococcus/metabolismo
15.
J Cardiovasc Pharmacol Ther ; 25(1): 86-97, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31533469

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is accompanied by microvascular complications that lead to myocardial dysfunction and heart failure. Most conventional therapies cannot ameliorate the microvascular insufficiency in DCM. In this study, we tested the hypothesis that undercarboxylated osteocalcin (ucOC) may be a new adjuvant therapy against the progression of DCM and its underlying microvascular pathology. MATERIALS AND METHODS: Diabetes was induced in Wistar rats with a high-fat diet combined with streptozotocin injections, and ucOC was upregulated after warfarin administration in the treated group. After 8 weeks, cardiac functions were assessed using a Langendorff apparatus. Cardiac tissue samples were also extracted to assess the ucOC receptor and vascular endothelial growth factor (VEGF) for histopathological studies. RESULTS: Both the systolic and the diastolic dysfunction observed in the DCM group were significantly improved after the increase in ucOC blood levels. Significant improvement in VEGF and CD31 expression after warfarin injection was associated with increased capillary density, neovascularization, and decreased myocardial fibrosis together with the reestablishment of myocardial structural and ultrastructural patterns. CONCLUSION: Undercarboxylated osteocalcin may have a promising effect in improving microvascular insufficiency and myocardial dysfunction in DCM.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Circulación Coronaria , Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Microcirculación , Miocardio/metabolismo , Osteocalcina/metabolismo , Animales , Circulación Coronaria/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/fisiopatología , Fibrosis , Preparación de Corazón Aislado , Masculino , Microcirculación/efectos de los fármacos , Miocardio/ultraestructura , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Procesamiento Proteico-Postraduccional , Ratas Wistar , Transducción de Señal , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Ventricular , Warfarina/farmacología
16.
Food Chem ; 310: 125799, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31711809

RESUMEN

In this study we explore the effects of multi-colour LED lighting spectrum on nutritive primary metabolites in green ('Lobjoits green cos') and red ('Red cos') leaf lettuce (Lactuca sativa L.), cultivated in controlled environment. The basal lighting, consisting of blue 455 nm, red 627 and 660 nm and far red 735 nm LEDs, was supplemented with UV-A 380 nm, green 510 nm, yellow 595 nm or orange 622 nm LED wavelengths at total photosynthetic photon flux density of 300 µmol m-2 s-1. Supplemental lighting colours did not affect lettuce growth; however had distinct impact on nitrite, amino acid, organic acid, and soluble sugar contents. Orange, green and UV-A light had differential effects on red and green leaf lettuce metabolism and interplay with nutritional value and safety of lettuce production. The metabolic response was cultivar specific; however green light had reasonable impact on the contents of nutritive primary metabolites in red and green leaf lettuce.


Asunto(s)
Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Lactuca/química , Lactuca/fisiología , Nitratos/metabolismo , Aminoácidos/análisis , Ácidos Carboxílicos/análisis , Ambiente Controlado , Iluminación , Nitratos/análisis , Nitritos/metabolismo , Fotosíntesis , Pigmentación , Azúcares/análisis , Azúcares/metabolismo , Rayos Ultravioleta
17.
Sci Rep ; 9(1): 14878, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619720

RESUMEN

Crops have different strategies to acquire poorly-available soil phosphorus (P) which are dependent on their architectural, morphological, and physiological root traits, but their capacity to enhance P acquisition varies with the type of fertilizer applied. The objective of this study was to examine how P-acquisition strategies of three main crops are affected by the application of sewage sludges, compared with a mineral P fertilizer. We carried out a 3-months greenhouse pot experiment and compared the response of P-acquisition traits among wheat, barley and canola in a soil amended with three sludges or a mineral P fertilizer. Results showed that the P-acquisition strategy differed among crops. Compared with canola, wheat and barley had a higher specific root length and a greater root carboxylate release and they acquired as much P from sludge as from mineral P. By contrast, canola shoot P content was greater with sludge than with mineral P. This was attributed to a higher root-released acid phosphatase activity which promoted the mineralization of sludge-derived P-organic. This study showed that contrasted P-acquisition strategies of crops allows increased use of renewable P resources by optimizing combinations of crop and the type of P fertilizer applied within the cropping system.


Asunto(s)
Brassica rapa/metabolismo , Fertilizantes/análisis , Hordeum/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Aguas del Alcantarillado/química , Triticum/metabolismo , Fosfatasa Ácida/metabolismo , Transporte Biológico , Brassica rapa/crecimiento & desarrollo , Fosfatos de Calcio/metabolismo , Ácidos Carboxílicos/metabolismo , Productos Agrícolas , Hordeum/crecimiento & desarrollo , Humanos , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/metabolismo , Suelo/química , Especificidad de la Especie , Triticum/crecimiento & desarrollo
18.
Talanta ; 199: 303-309, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952262

RESUMEN

Pig feces is an interesting biological sample to be implemented in metabolomics experiments by virtue of the information that can be deduced from the interaction between host and microbiome. However, pig fecal samples have received scant attention, especially in untargeted metabolomic studies. In this research, an analytical strategy was planned to maximize the identification coverage of metabolites found in pig fecal samples. For this purpose, two complementary platforms such as LC-QTOF MS/MS and GC-TOF/MS were used. Concerning sample preparation six extractant solvents with different polarity grade were tested to evaluate the extraction performance and, in the particular case of GC-MS, two derivatization protocols were compared. A total number of 303 compounds by combination of all the extractants and analytical platforms were tentatively identified. The main identified families were amino acids, fatty acids and derivatives, carbohydrates and carboxylic acids. For GC-TOF/MS analysis, the recommended extractant is methanol, while methoxymation was required in the derivatization protocol since this step allows detecting the α-keto acids, which are direct markers of the microbiome status. Concerning LC-QTOF MS/MS analysis, a dual extraction approach with methanol (MeOH) or MeOH/water and ethyl acetate is proposed to enhance the detection of polar and non-polar metabolites.


Asunto(s)
Aminoácidos/análisis , Ácidos Carboxílicos/análisis , Ácidos Grasos/análisis , Heces/química , Aminoácidos/metabolismo , Animales , Ácidos Carboxílicos/metabolismo , Cromatografía Liquida , Ácidos Grasos/metabolismo , Espectrometría de Masas , Porcinos
19.
J Exp Bot ; 70(22): 6597-6609, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30870557

RESUMEN

Crassulacean acid metabolism (CAM) is a carbon-concentrating mechanism that has evolved numerous times across flowering plants and is thought to be an adaptation to water-limited environments. CAM has been investigated from physiological and biochemical perspectives, but little is known about how plants evolve from C3 to CAM at the genetic or metabolic level. Here we take a comparative approach in analyzing time-course data of C3, CAM, and C3+CAM intermediate Yucca (Asparagaceae) species. RNA samples were collected over a 24 h period from both well-watered and drought-stressed plants, and were clustered based on time-dependent expression patterns. Metabolomic data reveal differences in carbohydrate metabolism and antioxidant response between the CAM and C3 species, suggesting that changes to metabolic pathways are important for CAM evolution and function. However, all three species share expression profiles of canonical CAM pathway genes, regardless of photosynthetic pathway. Despite differences in transcript and metabolite profiles between the C3 and CAM species, shared time-structured expression of CAM genes in both CAM and C3Yucca species suggests that ancestral expression patterns required for CAM may have pre-dated its origin in Yucca.


Asunto(s)
Ácidos Carboxílicos/metabolismo , Genes de Plantas , Yucca/genética , Regulación de la Expresión Génica de las Plantas , Metaboloma , Metabolómica , Fenotipo , Fotosíntesis/genética
20.
J Biol Chem ; 294(17): 7057-7067, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30862676

RESUMEN

Cotton (Gossypium spp.) is one of the most important economic crops and exhibits yield-improving heterosis in specific hybrid combinations. The genic male-sterility system is the main strategy used for producing heterosis in cotton. To better understand the mechanisms of male sterility in cotton, we carried out two-dimensional electrophoresis (2-DE) and label-free quantitative proteomics analysis in the anthers of two near-isogenic lines, the male-sterile line 1355A and the male-fertile line 1355B. We identified 39 and 124 proteins that were significantly differentially expressed between these two lines in the anthers at the tetrad stage (stage 7) and uninucleate pollen stage (stage 8), respectively. Gene ontology-based analysis revealed that these differentially expressed proteins were mainly associated with pyruvate, carbohydrate, and fatty acid metabolism. Biochemical analysis revealed that in the anthers of line 1355A, glycolysis was activated, which was caused by a reduction in fructose, glucose, and other soluble sugars, and that accumulation of acetyl-CoA was increased along with a significant increase in C14:0 and C18:1 free fatty acids. However, the activities of pyruvate dehydrogenase and fatty acid biosynthesis were inhibited and fatty acid ß-oxidation was activated at the translational level in 1355A. We speculate that in the 1355A anther, high rates of glucose metabolism may promote fatty acid synthesis to enable anther growth. These results provide new insights into the molecular mechanism of genic male sterility in upland cotton.


Asunto(s)
Ácidos Grasos/metabolismo , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Polen , Proteómica , Acetilcoenzima A/metabolismo , Ácidos Carboxílicos/metabolismo , Glucólisis , Oxidación-Reducción , Ácido Pirúvico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA