Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003299

RESUMEN

Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by BnaC01T0014600WE is a predominant isoform and promotes seed oil accumulation and eukaryotic galactolipid synthesis in Brassica napus. BnaGPAT9 is highly expressed in developing seeds and is localized in the endoplasmic reticulum (ER). Ectopic expression of BnaGPAT9 in E. coli and siliques of Brassica napus enhanced phosphatidic acid (PA) production. Overexpression of BnaGPAT9 enhanced seed oil accumulation resulting from increased 18:2-fatty acid. Lipid profiling in developing seeds showed that overexpression of BnaGPAT9 led to decreased phosphatidylcholine (PC) and a corresponding increase in phosphatidylethanolamine (PE), implying that BnaGPAT9 promotes PC flux to storage triacylglycerol (TAG). Furthermore, overexpression of BnaGPAT9 also enhanced eukaryotic galactolipids including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), with increased 36:6-MGDG and 36:6-DGDG, and decreased 34:6-MGDG in developing seeds. Collectively, these results suggest that ER-localized BnaGPAT9 promotes PA production, thereby enhancing seed oil accumulation and eukaryotic galactolipid biosynthesis in Brassica napus.


Asunto(s)
Arabidopsis , Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Galactolípidos/metabolismo , Glicerol/metabolismo , Escherichia coli/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Semillas/genética , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Fosfatidicos/metabolismo , Aceites de Plantas/metabolismo , Fosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Agric Food Chem ; 71(23): 8846-8858, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37262364

RESUMEN

Soil salinity is a major conlinet limiting sustainable agricultural development in peach tree industry. In this study, lipid metabolomic pathway analysis indicated that phosphatidic acid is essential for root resistance to salt stress in peach seedlings. Through functional annotation analysis of differentially expressed genes in transcriptomics, we found that MAPK signaling pathway is closely related to peach tree resistance to salt stress, wherein PpMPK6 expression is significantly upregulated. Under salt conditions, the OE-PpMPK6 Arabidopsis thaliana (L.) Heynh. line showed higher resistance to salt stress than WT and KO-AtMPK6 lines. Furthermore, we found that the Na+ content in OE-PpMPK6 roots was significantly lower than that in WT and KO-AtMPK6 roots, indicating that phosphatidic acid combined with PpMPK6 activated the SOS1 (salt-overly-sensitive 1) protein to enhance Na+ efflux, thus alleviating the damage caused by NaCl in roots; these findings provide insight into the salt stress-associated transcriptional regulation.


Asunto(s)
Arabidopsis , Plantones , Plantones/genética , Transcriptoma , Tolerancia a la Sal/genética , Ácidos Fosfatidicos , Estrés Salino , Arabidopsis/metabolismo , Lecitinas , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
3.
Biochemistry (Mosc) ; 88(3): 337-352, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076281

RESUMEN

Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.


Asunto(s)
Comunicación Celular , Lípidos , Neuroglía , Neuronas , Ácido Araquidónico/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Colesterol/metabolismo , Microglía/citología , Microglía/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Plasticidad Neuronal , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Ácidos Fosfatidicos/metabolismo , Transducción de Señal , Humanos , Animales
4.
BMC Plant Biol ; 23(1): 50, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36683035

RESUMEN

BACKGROUND: Hemerocallis citrina Baroni (daylily) is a horticultural ornamental plant and vegetable with various applications as a raw material in traditional Chinese medicine and as a flavouring agent. Daylily contains many functional substances and is rich in lecithin, which is mostly composed of glycerophospholipids. To study the comprehensive dynamic changes in glycerophospholipid during daylily flowering and the underlying signalling mechanisms, we performed comprehensive, time-resolved lipidomic and transcriptomic analyses of 'Datong Huanghua 6' daylily. RESULTS: Labelling with PKH67 fluorescent antibodies clearly and effectively helped visualise lipid changes in daylily, while relative conductivity and malonaldehyde content detection revealed that the early stages of flowering were controllable processes; however, differences became non-significant after 18 h, indicating cellular damage. In addition, phospholipase D (PLD) and lipoxygenase (LOX) activities increased throughout the flowering process, suggesting that lipid hydrolysis and oxidation had intensified. Lipidomics identified 558 lipids that changed during flowering, with the most different lipids found 12 h before and 12 h after flowering. Transcriptome analysis identified 13 key functional genes and enzymes in the glycerophospholipid metabolic pathway. The two-way orthogonal partial least squares analysis showed that diacylglycerol diphosphate phosphatase correlated strongly and positively with phosphatidic acid (PA)(22:0/18:2), PA(34:2), PA(34:4), and diacylglycerol(18:2/21:0) but negatively with phospholipase C. In addition, ethanolamine phosphotransferase gene and phospholipid-N-methyltransferase gene correlated positively with phosphatidylethanolamine (PE)(16:0/18:2), PE(16:0/18:3), PE(33:2), and lysophosphatidylcholine (16:0) but negatively with PE(34:1). CONCLUSIONS: Overall, this study elucidated changes in the glycerophospholipid metabolism pathway during the daylily flowering process, as well as characteristic genes, thus providing a basis for future studies of glycerophospholipids and signal transduction in daylilies.


Asunto(s)
Hemerocallis , Hemerocallis/fisiología , Diglicéridos , Lipidómica , Transcriptoma , Ácidos Fosfatidicos , Glicerofosfolípidos
5.
Biomolecules ; 12(11)2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421720

RESUMEN

Phosphatidic acid (PA) is a signaling lipid that is produced enzymatically from phosphatidylcholine (PC), lysophosphatidic acid, or diacylglycerol. Compared to PC, PA lacks a choline moiety on the headgroup, making the headgroup smaller than that of PC and PA, and PA has a net negative charge. Unlike the cylindrical geometry of PC, PA, with its small headgroup relative to the two fatty acid tails, is proposed to support negatively curved membranes. Thus, PA is thought to play a role in a variety of biological processes that involve bending membranes, such as the formation of intraluminal vesicles in multivesicular bodies and membrane fusion. Using supported tubulated lipid bilayers (STuBs), the extent to which PA localizes to curved membranes was determined. STuBs were created via liposome deposition with varying concentrations of NaCl (500 mM to 1 M) on glass to form supported bilayers with connected tubules. The location of fluorescently labeled lipids relative to tubules was determined by imaging with total internal reflection or confocal fluorescence microscopy. The accumulation of various forms of PA (with acyl chains of 16:0-6:0, 16:0-12:0, 18:1-12:0) were compared to PC and the headgroup labeled phosphatidylethanolamine (PE), a lipid that has been shown to accumulate at regions of curvature. PA and PE accumulated more at tubules and led to the formation of more tubules than PC. Using large unilamellar liposomes in a dye-quenching assay, the location of the headgroup labeled PE was determined to be mostly on the outer, positively curved leaflet, whereas the tail labeled PA was located more on the inner, negatively curved leaflet. This study demonstrates that PA localizes to regions of negative curvature in liposomes and supports the formation of curved, tubulated membranes. This is one way that PA could be involved with curvature formation during a variety of cell processes.


Asunto(s)
Membrana Dobles de Lípidos , Ácidos Fosfatidicos , Lecitinas , Liposomas Unilamelares , Fusión de Membrana
6.
Acc Chem Res ; 55(21): 3088-3098, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36278840

RESUMEN

Membranes are multifunctional supramolecular assemblies that encapsulate our cells and the organelles within them. Glycerophospholipids are the most abundant component of membranes. They make up the majority of the lipid bilayer and play both structural and functional roles. Each organelle has a different phospholipid composition critical for its function that results from dynamic interplay and regulation of numerous lipid-metabolizing enzymes and lipid transporters. Because lipid structures and localizations are not directly genetically encoded, chemistry has much to offer to the world of lipid biology in the form of precision tools for visualizing lipid localization and abundance, manipulating lipid composition, and in general decoding the functions of lipids in cells.In this Account, we provide an overview of our recent efforts in this space focused on two overarching and complementary goals: imaging and editing the phospholipidome. On the imaging front, we have harnessed the power of bioorthogonal chemistry to develop fluorescent reporters of specific lipid pathways. Substantial efforts have centered on phospholipase D (PLD) signaling, which generates the humble lipid phosphatidic acid (PA) that acts variably as a biosynthetic intermediate and signaling agent. Though PLD is a hydrolase that generates PA from abundant phosphatidylcholine (PC) lipids, we have exploited its transphosphatidylation activity with exogenous clickable alcohols followed by bioorthogonal tagging to generate fluorescent lipid reporters of PLD signaling in a set of methods termed IMPACT.IMPACT and its variants have facilitated many biological discoveries. Using the rapid and fluorogenic tetrazine ligation, it has revealed the spatiotemporal dynamics of disease-relevant G protein-coupled receptor signaling and interorganelle lipid transport. IMPACT using diazirine photo-cross-linkers has enabled identification of lipid-protein interactions relevant to alcohol-related diseases. Varying the alcohol reporter can allow for organelle-selective labeling, and varying the bioorthogonal detection reagent can afford super-resolution lipid imaging via expansion microscopy. Combination of IMPACT with genome-wide CRISPR screening has revealed genes that regulate physiological PLD signaling.PLD enzymes themselves can also act as tools for precision editing of the phospholipid content of membranes. An optogenetic PLD for conditional blue-light-stimulated synthesis of PA on defined organelle compartments led to the discovery of the role of organelle-specific pools of PA in regulating oncogenic Hippo signaling. Directed enzyme evolution of PLD, enabled by IMPACT, has yielded highly active superPLDs with broad substrate tolerance and an ability to edit membrane phospholipid content and synthesize designer phospholipids in vitro. Finally, azobenzene-containing PA analogues represent an alternative, all-chemical strategy for light-mediated control of PA signaling.Collectively, the strategies described here summarize our progress to date in tackling the challenge of assigning precise functions to defined pools of phospholipids in cells. They also point to new challenges and directions for future study, including extension of imaging and membrane editing tools to other classes of lipids. We envision that continued application of bioorthogonal chemistry, optogenetics, and directed evolution will yield new tools and discoveries to interrogate the phospholipidome and reveal new mechanisms regulating phospholipid homeostasis and roles for phospholipids in cell signaling.


Asunto(s)
Ácidos Fosfatidicos , Fosfolipasa D , Optogenética , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Transducción de Señal
7.
J Biol Chem ; 298(9): 102363, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35963434

RESUMEN

Inositol is an essential metabolite that serves as a precursor for structural and signaling molecules. Although perturbation of inositol homeostasis has been implicated in numerous human disorders, surprisingly little is known about how inositol levels are regulated in mammalian cells. A recent study in mouse embryonic fibroblasts demonstrated that nuclear translocation of inositol hexakisphosphate kinase 1 (IP6K1) mediates repression of myo-inositol-3-P synthase (MIPS), the rate-limiting inositol biosynthetic enzyme. Binding of IP6K1 to phosphatidic acid (PA) is required for this repression. Here, we elucidate the role of PA in IP6K1 repression. Our results indicate that increasing PA levels through pharmacological stimulation of phospholipase D (PLD) or direct supplementation of 18:1 PA induces nuclear translocation of IP6K1 and represses expression of the MIPS protein. We found that this effect was specific to PA synthesized in the plasma membrane, as endoplasmic reticulum-derived PA did not induce IP6K1 translocation. Furthermore, we determined that PLD-mediated PA synthesis can be stimulated by the master metabolic regulator 5' AMP-activated protein kinase (AMPK). We show that activation of AMPK by glucose deprivation or by treatment with the mood-stabilizing drugs valproate or lithium recapitulated IP6K1 nuclear translocation and decreased MIPS expression. This study demonstrates for the first time that modulation of PA levels through the AMPK-PLD pathway regulates IP6K1-mediated repression of MIPS.


Asunto(s)
Ácidos Fosfatidicos , Fosfolipasa D , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Fibroblastos/metabolismo , Glucosa , Humanos , Inositol/metabolismo , Inositol/farmacología , Litio , Mamíferos/metabolismo , Ratones , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato) , Ácido Valproico
8.
J Sports Sci ; 40(3): 364-369, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34706625

RESUMEN

Phosphatidic acid (PA) is a lipid mediator proposed to increase muscle protein synthesis via direct stimulation of the mammalian target of rapamycin (mTOR) and may act as an anabolic supplemental aid. Evidence on the effectiveness of PA as an anabolic supplement is equivocal. We aimed to systematically assess the effect of PA on performance and body composition. Due to the small number of studies, this is a scoping review. A comprehensive search was performed in Pubmed, SPORTDiscus and Web of Science, from the 1 January 2010 to the 31 August 2020. Our search retrieved 2009 articles, which when filtered, resulted in six studies, published between 2012 and 2019, which were analysed further. Five studies were performed in adult male populations and one in an elderly male population. From these, three studies suggested no effect of PA on lean body mass , while the remaining showed a possible positive effect (body composition and performance improvements). In one of these, the supplement included other potentially anabolic substances, precluding an isolated effect of PA. After a thorough analysis of the studies included, the evidence does not support the supplementation with PA to increase performance or improve body composition in young or elderly men.


Asunto(s)
Composición Corporal , Ácidos Fosfatidicos , Adulto , Anciano , Suplementos Dietéticos , Humanos , Masculino , Proteínas Musculares/metabolismo , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/farmacología
9.
Sci Rep ; 11(1): 1906, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479270

RESUMEN

Duchenne muscular dystrophy (DMD) is a common and severe X-linked myopathy, characterized by muscle degeneration due to altered or absent dystrophin. DMD has no effective cure, and the underlying molecular mechanisms remain incompletely understood. The aim of this study is to investigate the metabolic changes in DMD using mass spectrometry-based imaging. Nine human muscle biopsies from DMD patients and nine muscle biopsies from control individuals were subjected to untargeted MSI using matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry. Both univariate and pattern recognition techniques have been used for data analysis. This study revealed significant changes in 34 keys metabolites. Seven metabolites were decreased in the Duchenne biopsies compared to control biopsies including adenosine triphosphate, and glycerophosphocholine. The other 27 metabolites were increased in the Duchenne biopsies, including sphingomyelin, phosphatidylcholines, phosphatidic acids and phosphatidylserines. Most of these dysregulated metabolites are tightly related to energy and phospholipid metabolism. This study revealed a deep metabolic remodelling in phospholipids and energy metabolism in DMD. This systems-based approach enabled exploring the metabolism in DMD in an unprecedented holistic and unbiased manner with hypothesis-free strategies.


Asunto(s)
Metabolómica , Músculo Esquelético/diagnóstico por imagen , Distrofia Muscular de Duchenne/metabolismo , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Animales , Biopsia , Niño , Preescolar , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/patología , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Esfingomielinas/metabolismo
10.
New Phytol ; 226(1): 142-155, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31745997

RESUMEN

Root hair development is crucial for phosphate absorption, but how phosphorus deficiency affects root hair initiation and elongation remains unclear. We demonstrated the roles of auxin efflux carrier PIN-FORMED2 (PIN2) and phospholipase D (PLD)-derived phosphatidic acid (PA), a key signaling molecule, in promoting root hair development in Arabidopsis thaliana under a low phosphate (LP) condition. Root hair elongation under LP conditions was greatly suppressed in pin2 mutant or under treatment with a PLDζ2-specific inhibitor, revealing that PIN2 and polar auxin transport and PLDζ2-PA are crucial in LP responses. PIN2 was accumulated and degraded in the vacuole under a normal phosphate (NP) condition, whereas its vacuolar accumulation was suppressed under the LP or NP plus PA conditions. Vacuolar accumulation of PIN2 was increased in pldζ2 mutants under LP conditions. Increased or decreased PIN2 vacuolar accumulation is not observed in sorting nexin1 (snx1) mutant, indicating that vacuolar accumulation of PIN2 is mediated by SNX1 and the relevant trafficking process. PA binds to SNX1 and promotes its accumulation at the plasma membrane, especially under LP conditions, and hence promotes root hair development by suppressing the vacuolar degradation of PIN2. We uncovered a link between PLD-derived PA and SNX1-dependent vacuolar degradation of PIN2 in regulating root hair development under phosphorus deficiency.


Asunto(s)
Proteínas de Arabidopsis , Fosfolipasa D , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos , Ácidos Fosfatidicos , Fosfolipasa D/genética , Fósforo , Raíces de Plantas/fisiología , Vacuolas
11.
Food Funct ; 10(10): 6438-6446, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31524213

RESUMEN

Morusin is a prenylated flavonoid found in mulberry that shows antimicrobial activity against foodborne pathogens. The MIC values of morusin toward S. aureus ATCC 6538 and S. aureus ATCC 25923 were both 14.9 µmol L-1. This study further investigated the antimicrobial mechanism of morusin in inhibiting the growth of Staphylococcus aureus ATCC 6538. Scanning electron microscopy and transmission electron microscopy revealed that morusin disrupted the integrity of the bacterial cell membrane. Morusin may also affect the phospholipid-repair system of bacteria, which repairs membrane structures. To test this hypothesis, quantitative real-time PCR was used to examine the effect of morusin treatment of S. aureus on the regulation of genes associated with the cell phosphatidic acid biosynthesis pathway. Gas chromatography-mass spectrometry was used to investigate the fatty acid components, which are used to synthesize bacterial phosphatidic acids. In summary, the results revealed that morusin showed a potent antibacterial effect by disrupting the cell membrane architecture and inhibiting the phosphatidic acid biosynthesis pathway of S. aureus.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Flavonoides/farmacología , Ácidos Fosfatidicos/biosíntesis , Extractos Vegetales/farmacología , Staphylococcus aureus/efectos de los fármacos , Membrana Celular/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Pruebas de Sensibilidad Microbiana , Morus/química , Ácidos Fosfatidicos/química , Staphylococcus aureus/metabolismo
12.
Plant J ; 100(4): 661-676, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31350933

RESUMEN

Craterostigma plantagineum belongs to the desiccation-tolerant angiosperm plants. Upon dehydration, leaves fold and the cells shrink which is reversed during rehydration. To understand this process changes in cell wall pectin composition, and the role of the apoplastic glycine-rich protein 1 (CpGRP1) were analysed. Cellular microstructural changes in hydrated, desiccated and rehydrated leaf sections were analysed using scanning electron microscopy. Pectin composition in different cell wall fractions was analysed with monoclonal antibodies against homogalacturonan, rhamnogalacturonan I, rhamnogalacturonan II and hemicellulose epitopes. Our data demonstrate changes in pectin composition during dehydration/rehydration which is suggested to affect cell wall properties. Homogalacturonan was less methylesterified upon desiccation and changes were also demonstrated in the detection of rhamnogalacturonan I, rhamnogalacturonan II and hemicelluloses. CpGRP1 seems to have a central role in cell adaptations to water deficit, as it interacts with pectin through a cluster of arginine residues and de-methylesterified pectin presents more binding sites for the protein-pectin interaction than to pectin from hydrated leaves. CpGRP1 can also bind phosphatidic acid (PA) and cardiolipin. The binding of CpGRP1 to pectin appears to be dependent on the pectin methylesterification status and it has a higher affinity to pectin than its binding partner CpWAK1. It is hypothesised that changes in pectin composition are sensed by the CpGRP1-CpWAK1 complex therefore leading to the activation of dehydration-related responses and leaf folding. PA might participate in the modulation of CpGRP1 activity.


Asunto(s)
Pared Celular/química , Craterostigma/fisiología , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Arginina/metabolismo , Pared Celular/metabolismo , Craterostigma/citología , Deshidratación , Ácidos Fosfatidicos/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética
13.
Mol Cell ; 72(2): 328-340.e8, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30293781

RESUMEN

The Hippo pathway plays a crucial role in organ size control and tumor suppression, but its precise regulation is not fully understood. In this study, we discovered that phosphatidic acid (PA)-related lipid signaling is a key regulator of the Hippo pathway. Supplementing PA in various Hippo-activating conditions activates YAP. This PA-related lipid signaling is involved in Rho-mediated YAP activation. Mechanistically, PA directly interacts with Hippo components LATS and NF2 to disrupt LATS-MOB1 complex formation and NF2-mediated LATS membrane translocation and activation, respectively. Inhibition of phospholipase D (PLD)-dependent PA production suppresses YAP oncogenic activities. PLD1 is highly expressed in breast cancer and positively correlates with YAP activation, suggesting their pathological relevance in breast cancer development. Taken together, our study not only reveals a role of PLD-PA lipid signaling in regulating the Hippo pathway but also indicates that the PLD-PA-YAP axis is a potential therapeutic target for cancer treatment.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Ácidos Fosfatidicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Células HEK293 , Vía de Señalización Hippo , Humanos , Estimulante Tiroideo de Acción Prolongada/metabolismo , Ratones , Ratones Desnudos , Neurofibromina 2/metabolismo , Proteínas Nucleares/metabolismo , Fosfolipasa D/metabolismo , Fosfoproteínas/metabolismo
14.
Cell Physiol Biochem ; 49(3): 1127-1142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30196307

RESUMEN

BACKGROUND/AIMS: Low-level laser therapy (LLLT) leads to complex photochemical responses during the healing process of spinal cord injury (SCI). Confocal Raman Microspectral Imaging (in combination with multivariate analysis) was adopted to illustrate the underlying biochemical mechanisms of LLLT treatment on a SCI rat model. METHODS: Using transversal tissue sections, the Raman spectra can identify areas neighboring the injury site, glial scar, cavity, and unharmed white matter, as well as their correlated cellular alterations, such as demyelination and up-regulation of chondroitin sulfate proteoglycans (CSPGs). Multivariate data analysis methods are used to depict the underlying therapeutic effects by highlighting the detailed content and distribution variations of the biochemical constituents. RESULTS: It is confirmed that photon-tissue interactions might lead to a decay of the inhibitory response to remyelination by suppressing CSPG expression, as also morphologically demonstrated by reduced glial scar and cavity areas. An inter-group comparison semi-quantitatively confirms changes in lipids, phosphatidic acid, CSPGs, and cholesterol during SCI and its LLLT treatment, paving the way for in vitro and in vivo understanding of the biochemical changes accompanying pathobiological SCI events. CONCLUSION: The achieved results in this work not only have once again proved the well-known cellular mechanisms of SCI, but further illustrate the underlying biochemical variability during LLLT treatment, which provide a sound basis for developing real-time Raman methodologies to monitor the efficacy of the SCI LLLT treatment.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad , Traumatismos de la Médula Espinal/radioterapia , Animales , Colesterol/metabolismo , Análisis por Conglomerados , Modelos Animales de Enfermedad , Femenino , Metabolismo de los Lípidos , Microscopía Confocal , Ácidos Fosfatidicos/metabolismo , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley , Espectrometría Raman , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
16.
Clin Nutr ESPEN ; 24: 22-30, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29576358

RESUMEN

BACKGROUND & AIMS: Many women experience emotional and physical symptoms around the time of ovulation and more so before menstruation interfering with their daily normal life also known as premenstrual syndrome (PMS). Recent observational data suggest that supplementation with Lipogen's phosphatidylserine (PS) and phosphatidic acid (PA) complex (PAS) alleviates these PMS symptoms. The aim of this study was to confirm these observations on the effects of PAS on PMS symptom severity within a controlled clinical trial setting. METHODS: Forty women aged 18-45 years with a diagnosis of PMS were assigned to either take PAS (containing 400 mg PS & 400 mg PA per day) or a matching placebo. The study comprised 5 on-site visits including 1 baseline menstrual cycle followed by 3 treatment cycles. Treatment intake was controlled for by using an electronic device, the Medication Event Monitoring System (MEMS®). Primary outcome of the study was the PMS symptoms severity as assessed by using the Daily Record of Severity of Problems (DRSP). Further, SIPS questionnaire (a German version of the Premenstrual Symptoms Screening Tool (PSST)), salivary hormone levels (cortisol awakening response (CAR) and evening cortisol levels) as well as serum levels (cortisol, estradiol, progesterone and corticosteroid binding globulin (CBG)) were assessed. RESULTS: PMS symptoms as assessed by the DRSP Total score showed a significantly better improvement (p = 0.001) over a 3 cycles PAS intake as compared to placebo. In addition, PAS treated women reported a greater improvement in physical (p = 0.002) and depressive symptoms (p = 0.068). They also reported a lower reduction of productivity (p = 0.052) and a stronger decrease in interference with relationships with others (p = 0.099) compared to the placebo group. No other DRSP scale or item showed significant results. Likewise, the reduction in the number of subjects fulfilling PMS or premenstrual dysphoric disorder (PMDD) criteria as classified by the SIPS did not differ between the PAS and the placebo group. For the biomarkers, the salivary cortisol percentage increase of the CAR was significantly less pronounced in the follicular phase of cycle 4 than in the follicular phase of cycle 1 for subjects taking PAS when compared to subjects taking placebo (p = 0.018). Furthermore, the change of serum cortisol levels between visit 1 and visit 5 differed significantly between groups (p = 0.043). While serum cortisol levels of PAS treated females slightly decreased between visit 1 and visit 5, cortisol levels of females treated with placebo increased. For all other biomarkers, no treatment effects were observed over the 4 cycles study period. Overall, this study confirms that a daily intake of PAS, containing 400 mg PS and 400 mg PA, can be considered as safe. CONCLUSIONS: Results substantiate the efficacy of PAS in reducing symptoms of PMS. In view of the recent inclusion of severe PMS symptoms (PMDD) in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), the positive results of this clinical study merits consideration of developing the PAS complex as a botanical drug for treatment of PMDD. CLINICAL TRIAL REGISTRATION: The study is registered at Deutsches Register Klinischer Studien with the registration number DRKS00009005.


Asunto(s)
Lecitinas/uso terapéutico , Ácidos Fosfatidicos/uso terapéutico , Fosfatidilserinas/uso terapéutico , Síndrome Premenstrual/tratamiento farmacológico , Adulto , Método Doble Ciego , Femenino , Humanos , Lecitinas/farmacología , Ácidos Fosfatidicos/farmacología , Fosfatidilserinas/farmacología , Síndrome Premenstrual/fisiopatología , Síndrome Premenstrual/psicología , Encuestas y Cuestionarios , Resultado del Tratamiento , Adulto Joven
17.
Plant Cell Environ ; 41(8): 1749-1761, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29377219

RESUMEN

Understanding the adaptive changes in wheat pollen lipidome under high temperature (HT) stress is critical to improving seed set and developing HT tolerant wheat varieties. We measured 89 pollen lipid species under optimum and high day and/or night temperatures using electrospray ionization-tandem mass spectrometry in wheat plants. The pollen lipidome had a distinct composition compared with that of leaves. Unlike in leaves, 34:3 and 36:6 species dominated the composition of extraplastidic phospholipids in pollen under optimum and HT conditions. The most HT-responsive lipids were extraplastidic phospholipids, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol, phosphatidic acid, and phosphatidylserine. The unsaturation levels of the extraplastidic phospholipids decreased through the decreases in the levels of 18:3 and increases in the levels of 16:0, 18:0, 18:1, and 18:2 acyl chains. PC and PE were negatively correlated. Higher PC:PE at HT indicated possible PE-to-PC conversion, lower PE formation, or increased PE degradation, relative to PC. Correlation analysis revealed lipids experiencing coordinated metabolism under HT and confirmed the HT responsiveness of extraplastidic phospholipids. Comparison of the present results on wheat pollen with results of our previous research on wheat leaves suggests that similar lipid changes contribute to HT adaptation in both leaves and pollen, though the lipidomes have inherently distinct compositions.


Asunto(s)
Metabolismo de los Lípidos , Polen/metabolismo , Triticum/metabolismo , Respuesta al Choque Térmico , Calor , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/metabolismo , Fosfolípidos/metabolismo , Espectrometría de Masa por Ionización de Electrospray
18.
J Biol Chem ; 292(45): 18713-18728, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28924045

RESUMEN

In the yeast Saccharomyces cerevisiae, the Opi1p repressor controls the expression of INO1 via the Opi1p/Ino2p-Ino4p regulatory circuit. Inositol depletion favors Opi1p interaction with both Scs2p and phosphatidic acid at the endoplasmic reticulum (ER) membrane. Inositol supplementation, however, favors the translocation of Opi1p from the ER into the nucleus, where it interacts with the Ino2p-Ino4p complex, attenuating transcription of INO1 A strain devoid of Scs2p (scs2Δ) and a mutant, OPI1FFAT, lacking the ability to interact with Scs2p were utilized to examine the specific role(s) of the Opi1p-Scs2p interaction in the regulation of INO1 expression and overall lipid metabolism. Loss of the Opi1p-Scs2p interaction reduced INO1 expression and conferred inositol auxotrophy. Moreover, inositol depletion in strains lacking this interaction resulted in Opi1p being localized to sites of lipid droplet formation, coincident with increased synthesis of triacylglycerol. Supplementation of choline to inositol-depleted growth medium led to decreased TAG synthesis in all three strains. However, in strains lacking the Opi1p-Scs2p interaction, Opi1p remained in the nucleus, preventing expression of INO1 These data support the conclusion that a specific pool of phosphatidic acid, associated with lipid droplet formation in the perinuclear ER, is responsible for the initial rapid exit of Opi1p from the nucleus to the ER and is required for INO1 expression in the presence of choline. Moreover, the mitochondria-specific phospholipid, cardiolipin, was significantly reduced in both strains compromised for Opi1p-Scs2p interaction, indicating that this interaction is required for the transfer of phosphatidic acid from the ER to the mitochondria for cardiolipin synthesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Ácidos Fosfatidicos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Cardiolipinas/metabolismo , Núcleo Celular/metabolismo , Colina/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Gotas Lipídicas , Metabolismo de los Lípidos , Proteínas de la Membrana/genética , Mutación , Mio-Inositol-1-Fosfato Sintasa/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
19.
Chem Res Toxicol ; 30(4): 1060-1075, 2017 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-28238261

RESUMEN

The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces hepatic steatosis mediated by the aryl hydrocarbon receptor. To further characterize TCDD-elicited hepatic lipid accumulation, mice were gavaged with TCDD every 4 days for 28 days. Liver samples were examined using untargeted lipidomics with structural confirmation of lipid species by targeted high-resolution MS/MS, and data were integrated with complementary RNA-Seq analyses. Approximately 936 unique spectral features were detected, of which 379 were confirmed as unique lipid species. Both male and female samples exhibited similar qualitative changes (lipid species) but differed in quantitative changes. A shift to higher mass lipid species was observed, indicative of increased free fatty acid (FFA) packaging. For example, of the 13 lipid classes examined, triglycerides increased from 46 to 48% of total lipids to 68-83% in TCDD treated animals. Hepatic cholesterol esters increased 11.3-fold in male mice with moieties consisting largely of dietary fatty acids (FAs) (i.e., linolenate, palmitate, and oleate). Phosphatidylserines, phosphatidylethanolamines, phosphatidic acids, and cardiolipins decreased 4.1-, 5.0-, 5.4- and 7.4-fold, respectively, while ceramides increased 6.6-fold. Accordingly, the integration of lipidomic data with differential gene expression associated with lipid metabolism suggests that in addition to the repression of de novo fatty acid synthesis and ß-oxidation, TCDD also increased hepatic uptake and packaging of lipids, while inhibiting VLDL secretion, consistent with hepatic fat accumulation and the progression to steatohepatitis with fibrosis.


Asunto(s)
Dibenzodioxinas Policloradas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Cardiolipinas/metabolismo , Ceramidas/metabolismo , Colesterol/biosíntesis , Ácidos Grasos/análisis , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Expresión Génica/efectos de los fármacos , Lipoproteínas VLDL/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ácidos Fosfatidicos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Dibenzodioxinas Policloradas/química , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética , Espectrometría de Masas en Tándem , Triglicéridos/análisis , Triglicéridos/metabolismo
20.
Appl Physiol Nutr Metab ; 42(4): 443-448, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28177725

RESUMEN

The purpose of this study was to investigate the effects of phosphatidic acid (PA) supplementation on muscle thickness and strength following an 8 week supervised resistance-training program. Fifteen resistance trained men (22.8 ± 3.5 years; 80.6 ± 8.7 kg; 178.1 ± 5.6 cm; 14.6% ± 8.8% body fat) were randomly assigned to a group that either consumed 750 mg of PA or a placebo (PL). Testing was carried out before (PRE) and after (POST) training/supplementation for muscle thickness and strength. Muscle thickness of the rectus femoris (RF), vastus lateralis (VL), biceps brachii (BB), and triceps brachii (TB) muscles were measured via ultrasonography, along with 1 repetition maximum (1RM) of squat, deadlift, and bench press. Analysis of covariance (ANCOVA), using PRE values as the covariate, did not reveal any group differences for measures of muscle thickness in the RF (PA: 3.6% ± 5.2%; PL: 3.2% ± 4.2%, p = 0.97), VL (PA: 23.4% ± 18.1%, PL: 12.5% ± 15.4%, p = 0.37), BB (PA: 3.7% ± 6.4%, PL: 9.6% ± 12.4%, p = 0.86), or TB (PA: 15.1% ± 17.9%, PL: 10.7% ± 19.3%, p = 0.79). Likewise, no group differences were observed in changes in squat (PA: 8.4% ± 4.1%, PL: 8.1% ± 4.2%, p = 0.79), deadlift (PA: 10.1% ± 10.1%, PL: 8.9% ± 9.5%, p = 0.66), or bench press (PA: 5.7% ± 5.5%, PL: 5.1% ± 3.0%, p = 0.76) exercises. Collectively, however, all participants experienced significant (p < 0.05) improvements in each measure of muscle thickness and strength. Results of this study suggest that PA supplementation, in combination with a 3 days·week-1 resistance-training program for 8 weeks, did not have a differential effect compared with PL on changes in muscle thickness or 1RM strength.


Asunto(s)
Rendimiento Atlético , Suplementos Dietéticos , Desarrollo de Músculos , Fuerza Muscular , Sustancias para Mejorar el Rendimiento/administración & dosificación , Ácidos Fosfatidicos/administración & dosificación , Entrenamiento de Fuerza , Adulto , Atletas , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/efectos adversos , Suplementos Dietéticos/efectos adversos , Método Doble Ciego , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/crecimiento & desarrollo , Cooperación del Paciente , Sustancias para Mejorar el Rendimiento/efectos adversos , Ácidos Fosfatidicos/efectos adversos , Reproducibilidad de los Resultados , Ultrasonografía , Levantamiento de Peso , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA