Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Pharm Bull (Tokyo) ; 72(2): 173-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296560

RESUMEN

Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 µM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Evaluación Preclínica de Medicamentos , Histona Desacetilasas/metabolismo , Antineoplásicos/farmacología , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Aprendizaje Automático , Proteínas Represoras
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902164

RESUMEN

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Ácidos Hidroxámicos , Oxadiazoles , Humanos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Procesamiento Proteico-Postraduccional , Acetilación , Oxadiazoles/química , Oxadiazoles/farmacología , Línea Celular Tumoral
3.
J Enzyme Inhib Med Chem ; 37(1): 1315-1319, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35514164

RESUMEN

Histone deacetylases (HDACs) are a family of enzymes responsible for regulating DNA transcription by modulating its binding to histone proteins. HDACs are overexpressed in several types of cancers and are recognised as drug targets. Vorinostat, or suberanilohydroxamic acid (SAHA), is an histone deacetylase (HDAC) inhibitor with a hydroxamic acid as a zinc-binding group (ZBG), and it has been FDA approved for the treatment of T-cell lymphoma. In this work, phosphorus-based SAHA analogues were synthesised to assess their zinc-binding effectiveness compared to the hydroxamic acid of SAHA. Specifically, we examined phosphate, phosphoramidate and phosphorothiolate groups as isosteres of the canonical hydroxamic acid motif of conventional HDAC inhibitors. The compounds were screened for binding to HDAC enzymes from HeLa cell lysate. The most potent derivatives were then screened against HDAC3 and HDAC8 isoforms. HDAC inhibition assays demonstrated that these phosphorus-based SAHA analogs exhibited slow binding to HDACs but with greater potency than phosphonate SAHA analogs examined previously. All compounds inhibited HDACs, the most potent having an IC50 of 50 µM.


Asunto(s)
Histona Desacetilasas , Fósforo , Células HeLa , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Proteínas Represoras/metabolismo , Vorinostat/farmacología , Zinc
4.
ACS Appl Mater Interfaces ; 14(5): 6370-6386, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35090345

RESUMEN

Drug-resistant capacity in a small population of tumor-initiating cancer stem cells (tiCSCs) can be due to aberrant epigenetic changes. However, currently available conventional detection methods are inappropriate and cannot be applied to investigate the scarce population (tiCSCs). In addition, selective inhibitor drugs are shown to reverse epigenetic changes; however, each cancer type is discrete. Hence, it is essential to probe the resultant changes in tiCSCs even after therapy. Therefore, we have developed a multimode nanoplatform to investigate tiCSCs, detect epigenetic changes, and subsequently explore their transformation signals following drug therapy. We performed this by developing a surface-enhanced Raman scattering (SERS)-active nanoplatform integrated with n-dopant using an ultrafast laser ionization technique. The dopant functionalization enhances Raman scattering ability and permits label-free analysis of biomarkers in tiCSCs with the resolution down to the cellular level. Here, we investigated epigenetic biomarkers of tiCSCs in pancreatic and lung cancers. An extended study using inhibitor drugs demonstrates an unexpected increase of tiCSCs from lung cancer; this difference can be attributed to transformation changes in lung tiCSC. Thus, our work brings new insight into the differentiation abilities of CSCs upon epigenetic reversal, emphasizing unique perceptions in cancer treatment.


Asunto(s)
Nanoestructuras/química , Células Madre Neoplásicas/metabolismo , Biomarcadores de Tumor/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Decitabina/química , Decitabina/farmacología , Epigénesis Genética , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Rayos Láser , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Nanoestructuras/toxicidad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fósforo/química , Silicio/química , Espectrometría Raman
5.
Int J Antimicrob Agents ; 58(6): 106449, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34644603

RESUMEN

Antimicrobial resistance is a major global threat to human health due to the rise, spread and persistence of multi-drug-resistant bacteria or 'superbugs'. There is an urgent need to develop novel chemotherapeutics to overcome this overarching challenge. The authors derivatized a clinically used fluoroquinolone antibiotic ciprofloxacin (Cip), and complexed it to a copper phenanthrene framework. This resulted in the development of two novel metallo-antibiotics of general formula [Cu(N,N)(CipHA)]NO3 where N,N represents a phenanthrene ligand and CipHA represents a hydroxamic acid of Cip derivative. Comprehensive studies, including a detailed proteomic study in which Staphylococcus aureus cells were exposed to the complexes, were undertaken to gain an insight into their mode of action. These new complexes possess potent antibacterial activity against S. aureus and methicillin-resistant S. aureus. In addition, they were found to be well tolerated in vivo in Galleria mellonella larvae, which has both functional and structural similarities to the innate immune system of mammals. These findings suggest that proteins involved in virulence, pathogenesis, and the synthesis of nucleotides and DNA repair mechanisms are most affected. In addition, both complexes affected similar cell pathways when compared with clinically used Cip, including cationic antimicrobial peptide resistance. The Cu-DPPZ-CipHA (DPPZ = dipyrido[3,2-a:2',3'-c]phenazine) analogue also induces cell leakage, which leads to an altered proteome indicative of reduced virulence and increased stress.


Asunto(s)
Antibacterianos/farmacología , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacología , Cobre/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Cobre/química , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Ácidos Hidroxámicos/química , Staphylococcus aureus Resistente a Meticilina/genética , Mariposas Nocturnas/efectos de los fármacos , Fenantrenos/química , Fenantrenos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico
6.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809032

RESUMEN

Iron is essential for multiple bacterial processes and is thus required for host colonization and infection. The antimicrobial activity of multiple iron chelators and gallium-based therapies against different bacterial species has been characterized in preclinical studies. In this review, we provide a synthesis of studies characterizing the antimicrobial activity of the major classes of iron chelators (hydroxamates, aminocarboxylates and hydroxypyridinones) and gallium compounds. Special emphasis is placed on recent in-vitro and in-vivo studies with the novel iron chelator DIBI. Limitations associated with iron chelation and gallium-based therapies are presented, with emphasis on limitations of preclinical models, lack of understanding regarding mechanisms of action, and potential host toxicity. Collectively, these studies demonstrate potential for iron chelators and gallium to be used as antimicrobial agents, particularly in combination with existing antibiotics. Additional studies are needed in order to characterize the activity of these compounds under physiologic conditions and address potential limitations associated with their clinical use as antimicrobial agents.


Asunto(s)
Infecciones Bacterianas/tratamiento farmacológico , Galio/uso terapéutico , Quelantes del Hierro/uso terapéutico , Hierro/metabolismo , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Farmacorresistencia Bacteriana , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/uso terapéutico , Hierro/química , Quelantes del Hierro/química , Pruebas de Sensibilidad Microbiana
7.
Chin J Nat Med ; 18(4): 243-249, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32402399

RESUMEN

Mycosphazine A (1), a new iron(III) chelator of coprogen-type siderophore, and mycosphamide A (2), a new cyclic amide benzoate, together with six known aryl amides (3-8), were isolated from the fermentation broth of the deep-sea-derived fungus Mycosphaerella sp. SCSIO z059. Alkaline hydrolysis of 1 afforded a new epimer of dimerum acid, mycosphazine B (1a), and a new bi-fusarinine-type siderophore, mycosphazine C (1b). The planar structures of the new compounds were elucidated by extensive spectroscopic data analysis. The absolute configurations of amino acid residues in 1a and 1b were determined by acid hydrolysis. And the absolute configuration of 2 was established by quantum chemical calculations of the electronic circular dichroism (ECD) spectra. Compound 1 is the first siderophore-Fe(III) chelator incorporating both L-ornithine and D-ornithine unites. Compounds 3-8 were reported as natural products for the first time, and the 1H and 13C NMR data of 6 and 8 were assigned for the first time. Compounds 1 and 1a could greatly promote the biofilm formation of bacterium Bacillus amyloliquefaciens with the rate of about 249% and 524% at concentration of 100 µg·mL-1, respectively.


Asunto(s)
Ácidos Hidroxámicos/metabolismo , Hierro/metabolismo , Mycosphaerella/metabolismo , Sideróforos/metabolismo , Organismos Acuáticos , Ácidos Hidroxámicos/química , Hierro/química , Estructura Molecular , Mycosphaerella/química , Sideróforos/química
8.
Biometals ; 32(4): 707-715, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31152280

RESUMEN

The hydroxamate class of compounds is well known for its pharmacological applications, especially in the context of chelation therapy. In this work we investigate the performance of the fungal hydroxamates pyridoxatin (PYR), desferriastechrome (DAC) and desferricoprogen (DCO) as mitigators of stress caused by iron overload (IO) both in buffered medium and in cells. Desferrioxamine (DFO), the gold standard for IO treatment, was used as comparison. It was observed that all the fungal chelators (in aqueous medium) or PYR and DAC (in cells) are powerful iron scavengers. However only PYR and DCO (in aqueous medium) or PYR (in cells) were also antioxidant against two forms of iron-dependent oxidative stress (ascorbate or peroxide oxidation). These findings reveal that PYR is an interesting alternative to DFO for iron chelation therapy, since it has the advantage of being cell permeable and thus potentially orally active.


Asunto(s)
Antioxidantes/química , Dicetopiperazinas/química , Ácidos Hidroxámicos/química , Ciclohexanos/química , Quelantes del Hierro/química , Sobrecarga de Hierro/metabolismo
9.
J Med Chem ; 62(9): 4426-4443, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30964290

RESUMEN

The discovery of isozyme-selective histone deacetylase (HDAC) inhibitors is critical for understanding the biological functions of individual HDACs and for validating HDACs as drug targets. The isozyme HDAC10 contributes to chemotherapy resistance and has recently been described to be a polyamine deacetylase, but no studies toward selective HDAC10 inhibitors have been published. Using two complementary assays, we found Tubastatin A, an HDAC6 inhibitor, to potently bind HDAC10. We synthesized Tubastatin A derivatives and found that a basic amine in the cap group was required for strong HDAC10 binding. HDAC10 inhibitors mimicked knockdown by causing dose-dependent accumulation of acidic vesicles in a neuroblastoma cell line. Furthermore, docking into human HDAC10 homology models indicated that a hydrogen bond between a cap group nitrogen and the gatekeeper residue Glu272 was responsible for potent HDAC10 binding. Taken together, our data provide an optimal platform for the development of HDAC10-selective inhibitors, as exemplified with the Tubastatin A scaffold.


Asunto(s)
Benzamidas/metabolismo , Ácido Glutámico/química , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/metabolismo , Animales , Benzamidas/síntesis química , Benzamidas/química , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Histona Desacetilasa 6/química , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Pez Cebra
10.
J Bioinform Comput Biol ; 16(3): 1840015, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29945500

RESUMEN

Proteins deacetylation by Histone deacetylase 6 (HDAC6) has been shown in various human chronic diseases like neurodegenerative diseases and cancer, and hence is an important therapeutic target. Since, the existing inhibitors have hydroxamate group, and are not HDAC6-selective, therefore, this study has designed to investigate non-hydroxamate HDAC6 inhibitors. Ligand-based pharmacophore was generated from 26 training set compounds of HDAC6 inhibitors. The statistical parameters of pharmacophore (Hypo1) included lowest total cost of 115.63, highest cost difference of 135.00, lowest RMSD of 0.70 and the highest correlation of 0.98. The pharmacophore was validated by Fischer's Randomization and Test Set validation, and used as screening tool for chemical databases. The screened compounds were filtered by fit value ([Formula: see text]), estimated Inhibitory Concentration (IC[Formula: see text]) ([Formula: see text]), Lipinski's Rule of Five and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Descriptors to identify drug-like compounds. Furthermore, the drug-like compounds were docked into the active site of HDAC6. The best docked compounds were selected having goldfitness score [Formula: see text] and [Formula: see text], and hydrogen bond interaction with catalytic active residues. Finally, three inhibitors having sulfamoyl group were selected by Molecular Dynamic (MD) simulation, which showed stable root mean square deviation (RMSD) (1.6-1.9[Formula: see text]Å), lowest potential energy ([Formula: see text][Formula: see text]kJ/mol), and hydrogen bonding with catalytic active residues of HDAC6.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Relación Estructura-Actividad Cuantitativa , Sitios de Unión , Dominio Catalítico , Simulación por Computador , Bases de Datos de Compuestos Químicos , Diseño de Fármacos , Histona Desacetilasa 6/química , Histona Desacetilasa 6/metabolismo , Humanos , Enlace de Hidrógeno , Ácidos Hidroxámicos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Reproducibilidad de los Resultados
11.
Dalton Trans ; 47(20): 6954-6964, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29721567

RESUMEN

Many microbes acquire environmental Fe by secreting organic chelators, siderophores, which possess the characteristics of a high and specific binding affinity for iron(iii) that results in the formation of thermodynamically stable, and kinetically inert iron(iii) complexes. Mechanisms to overcome the kinetic inertness include the labilization of iron(iii) by means of ternary complex formation with small chelators. This study describes a kinetic investigation of the labilization of iron(iii) between two stable binding sites, the prototypical siderophore ferrioxamine B and EDTA, by the bidentate siderophore mimic, 1,2-dimethyl-3-hydroxy-4-pyridinone (L1, H(DMHP)). The proposed mechanism is substantiated by investigating the iron(iii) exchange reaction between ferrioxamine B and H(DMHP) to form Fe(DMHP)3, as well as the iron(iii) exchange from Fe(DMHP)3 to EDTA. It is also shown that H(DMHP) is a more effective catalyst for the iron(iii) exchange reaction than bidentate hydroxamate chelators reported previously, supporting the hypothesis that chelator structure and iron(iii) affinity influence low denticity ligand facilitated catalysis of iron(iii) exchange reactions. The results are also discussed in the context of the design and use of combination chelator therapies in the treatment of Fe overload in humans.


Asunto(s)
Terapia por Quelación/métodos , Compuestos Férricos/química , Quelantes del Hierro/química , Hierro/metabolismo , Piridonas/química , Bacterias/metabolismo , Catálisis , Deferiprona , Deferoxamina/química , Ácido Edético/química , Compuestos Férricos/uso terapéutico , Humanos , Ácidos Hidroxámicos/química , Transporte Iónico , Quelantes del Hierro/uso terapéutico , Sobrecarga de Hierro/terapia , Cinética , Ligandos
12.
J Biomol Struct Dyn ; 36(8): 1966-1978, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28632421

RESUMEN

Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds' binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of -8.2 to -10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of -F, -Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.


Asunto(s)
Catecoles/química , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Represoras/química , Biocatálisis/efectos de los fármacos , Catecoles/metabolismo , Catecoles/farmacología , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ácidos Hidroxámicos/química , Estructura Molecular , Unión Proteica , Conformación Proteica , Proteínas Represoras/metabolismo , Electricidad Estática
13.
Bioorg Med Chem Lett ; 27(22): 5006-5009, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29037947

RESUMEN

The Keap1-Nrf2 system is an attractive target for drug discovery regarding various unmet medical needs. Only covalent inhibitors for protein-protein interaction (PPI) between Keap1 and Nrf2 to activate Nrf2 have been approved or are under clinical trials, but such electrophilic compounds lack selectivity. Therefore, specific non-covalent Keap1-Nrf2 PPI inhibitors are expected to be safer Nrf2 activators. We found a novel class of non-covalent Keap1-Nrf2 PPI inhibitor that has a benzo[g]indole skeleton and an indole-3-hydroxamic acid moiety and that exhibits significant PPI inhibitory activity. Additionally, the benzo[g]indole-3-carbohydrazide derivatives were newly prepared. The benzo[g]indole derivatives showed a stronger Keap1-Nrf2 PPI inhibitory activity than Cpd16, a previously reported non-covalent PPI inhibitor. Moreover, most of the PPI inhibitors showed a high metabolic stability in a human microsome system with a low cytotoxicity against HepG2 cell lines, which suggests that novel benzo[g]indole-type Keap1-Nrf2 PPI inhibitors are expected to be biological tools or lead compounds for Nrf2 activators.


Asunto(s)
Indoles/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Células Hep G2 , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/toxicidad , Indoles/síntesis química , Indoles/toxicidad , Concentración 50 Inhibidora , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Microsomas Hepáticos/metabolismo , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Dominios y Motivos de Interacción de Proteínas
14.
Int J Nanomedicine ; 12: 6503-6520, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919751

RESUMEN

BACKGROUND: Breast cancer is the most common malignant disease that occurs in women. Histone deacetylase (HDAC) inhibition has recently emerged as an effective and attractive target for the treatment of cancer. The aim of this study was to investigate the efficacy of a combined treatment of tubastatin A (TUB-A) and palladium nanoparticles (PdNPs) against MDA-MB-231 human breast cancer cells using two different cytotoxic agents that work by two different mechanisms, thereby decreasing the probability of chemoresistance in cancer cells and increasing the efficacy of toxicity, to provide efficient therapy for advanced stage of cancer without any undesired side effects. METHODS: PdNPs were synthesized using a novel biomolecule called R-phycoerythrin and characterized using various analytical techniques. The combinatorial effect of TUB-A and PdNPs was assessed by various cellular and biochemical assays and also by gene expression analysis. RESULTS: The biologically synthesized PdNPs had an average size of 25 nm and were spherical in shape. Treatment of MDA-MB-231 human breast cancer cells with TUB-A or PdNPs showed a dose-dependent effect on cell viability. The combination of 4 µM TUB-A and 4 µM PdNPs had a significant inhibitory effect on cell viability compared with either TUB-A or PdNPs alone. The combinatorial treatment also had a more pronounced effect on the inhibition of HDAC activity and enhanced apoptosis by regulating various cellular and biochemical changes. CONCLUSION: Our results suggest that there was a strong synergistic interaction between TUB-A and PdNPs in increasing apoptosis in human breast cancer cells. These data provide an important preclinical basis for future clinical trials on this drug combination. This combinatorial treatment increased therapeutic potentials, thereby demonstrating a relevant targeted therapy for breast cancer. Furthermore, we have provided the first evidence for the combinatorial effect and mechanism of toxicity of TUB-A and PdNPs in human breast cancer cells. The novelties of the study were identification of a combination therapy that consists of suitable therapeutic molecules that kill cancer cells and also exploration of two different possible mechanisms involved to reduce chemoresistance in cancer cells.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Nanopartículas del Metal/administración & dosificación , Paladio/química , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/química , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos/métodos , Femenino , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/administración & dosificación , Ácidos Hidroxámicos/química , Indoles/administración & dosificación , Indoles/química , Nanopartículas del Metal/química , Paladio/farmacología , Ficoeritrina/química , Extractos Vegetales/química
15.
Eur J Pharm Sci ; 110: 77-86, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28167234

RESUMEN

In our previous study, Rhizoma Coptidis extract was found to exert more potent inhibitory effect than its major component berberine towards urease from Helicobacter pylori (HPU) and jack bean (JBU). In continuation of our work, the present study was designed to further comparatively investigate the urease inhibitory activities of five major protoberberine alkaloids in Rhizoma Coptidis, namely berberine, palmatine, coptisine, epiberberine, jateorhizine to identify the bioactive constituent, and illuminate the potential mechanism of action. Results indicated that the five protoberberine alkaloids acted as concentration-dependent inactivators of urease with IC50 values ranging between 3.0 and 5087µM for HPU and 2.3->10,000µM for JBU, respectively. Notably, epiberberine (EB) was found to be the most potent inhibitor against both ureases with IC50 values of 3.0±0.01µM for HPU and 2.3±0.01µM for JBU, which was more effective than the standard urease inhibitor, acetohydroxamic acid (83±0.01µM for HPU and 22±0.01µM for JBU, respectively). Further kinetic analysis revealed that the type of EB inhibition against HPU was slow-binding and uncompetitive, with Ki of 10.6±0.01µM, while slow-binding and competitive against JBU with Ki of 4.6±0.01µM. Addition of thiol reagents, such as l-cysteine, glutathione and dithiothreitol, significantly abolished the inhibition, while Ni2+ competitive inhibitors, boric acid and sodium fluoride, synergetically inhibited urease with EB, indicating the obligatory role of the active site sulfhydryl group for the inhibition. In addition, binding of EB with the urease proved to be reversible, as about 65% and 90% enzymatic activity of HPU and JBU, respectively, could be restored by dithiothreitol application. These findings highlighted the potential role of Rhizoma Coptidis protoberberine alkaloids, especially EB, as a lead urease inhibitor in the treatment of diseases associated with ureolytic bacteria. Thus, EB had good potential for further development into a promising therapeutic approach for the treatment of urease-related diseases.


Asunto(s)
Berberina/análogos & derivados , Proteínas de Plantas/antagonistas & inhibidores , Ureasa/antagonistas & inhibidores , Berberina/química , Canavalia/enzimología , Coptis chinensis , Cisteína/química , Ditiotreitol/química , Medicamentos Herbarios Chinos/química , Glutatión/química , Helicobacter pylori/enzimología , Ácidos Hidroxámicos/química , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Ureasa/química
16.
Cancer Genomics Proteomics ; 14(1): 17-33, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-28031235

RESUMEN

BACKGROUND/AIM: Aggressive tumor malignancies are a consequence of delayed diagnosis, epigenetic/phenotype changes and chemo-radiation resistance. Histone deacetylases (HDACs) are a major epigenetic regulator of transcriptional repression, which are highly overexpressed in advanced malignancy. While original chemotherapy drugs were modeled after phytochemicals elucidated by botanical screenings, HDAC inhibitors (HDACi) such as apicidin, trichostatin A (TSA) and butyrate were discovered as products of fungus and microbes, in particular, gut microbiota. Therefore, a persistent question remains as to the inherent existence of HDACis in raw undigested dietary plant material. In this study, we conduct a high-throughput (HTP) screening of ~1,600 non-fermented commonly used nutraceuticals (spices, herbs, teas, vegetables, fruits, seeds, rinds etc.) at (<600 µg/ml) and food-based polyphenolics (<240 µg/ml) for evidence of HDAC activity inhibition in nuclear HeLa cell lysates. MATERIALS AND METHODS: Human HDAC kinetic validation was performed using a standard fluorometric activity assay, followed by an enzymatic-linked immuno-captured ELISA. Both methods were verified using HDACi panel drugs: TSA, apicidin, suberohydroxamic acid, M344, CL-994, valproic acid and sodium phenylbutyrate. The HTP screening was then conducted, followed by a study comparing biological effects of HDACis in HeLa cells, including analysis of whole-transcriptome non-coding RNAs using Affymetrix miRNA 4.1-panel arrays. RESULTS: The HTP screening results confirmed 44/1600 as potential HDACis to which 31 were further eliminated as false-positives. Methodological challenges/concerns are addressed regarding plant product false-positives that arise from the signal reduction of commercial lysine development reagents. Only 13 HDACis were found having an IC50 under <200 µg/ml: Grapeseed extract (Vitis vinifera), Great burnet root (Sanguisorba Officinalis), Babul (Acacia arabica), Chinese gallnut (Melaphis chinensis), Konaberry extract (Coffea arabica), Uva Ursi (Arctostaphylos uva ursi), Green tea (Camellia sinensis), Meadowsweet (Filipendula ulmaria), Sassafras (Sassafras officinale), Turkey rhubarb (Rheum palmatum), epigallocatechin gallate (EGCG), gossypol and gallic acid. Next, we investigate the biological consequence of HDACi panel drugs in HeLa cells, where the data suggest predominant effects are anti-mitotic rather than cytotoxic. Lastly, differential effects of TSA vs. GSE at sub-lethal concentrations tested on HeLa cells show 6,631 miRNAs expressed in resting cells, 35 significantly up-regulated (TSA) and 81 up-regulated (GSE), with several miRNAs overlapping in the upward direction by both GSE and TSA (e.g. hsa-miR-23b-5p, hsa-miR-27b-5p, hsa-miR-1180-3p, hsa-miR-6880-5p and hsa-mir-943). Using DIANA miRNA online tools, it was determined that GSE and TSA simultaneously cause overexpression of similar miRNAs predicted to destroy the following influential oncogenes: NFkB, NRAS, KRAS, HRAS, MYC, TGFBR1, E2F1, E2F2, BCL21, CDKN1A, CDK6, HIF1a, and VEGFA. CONCLUSION: The data from this study show that plant- based HDACis are relatively rare, and can elicit a similar pattern to TSA in up-regulating miRNAs involved with tumor suppression of HeLa cervical carcinoma.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , MicroARNs/genética , Extractos Vegetales/farmacología , Semillas/química , Vitis/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Activación Enzimática/efectos de los fármacos , Perfilación de la Expresión Génica , Células HeLa , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/química , Modelos Moleculares , Conformación Molecular , Extractos Vegetales/química
17.
Talanta ; 144: 875-82, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26452903

RESUMEN

Actinides determination in urine samples is part of the analyses performed to monitor internal contamination in case of an accident or a terrorist attack involving nuclear matter. Mineralisation is the first step of any of these analyses. It aims at reducing the sample volume and at destroying all organic compounds present. The mineralisation protocol is usually based on a wet ashing step, followed by actinides co-precipitation and a furnace ashing step, before redissolution and the quantification of the actinides by the appropriate techniques. Amongst the existing methods to perform the actinides co-precipitation, alkali-earth (typically calcium) precipitation is widely used. In the present work, the extraction of uranium(VI), plutonium(IV) and americium(III) from the redissolution solutions (called "mineralised urines") on calix[6]arene columns bearing hydroxamic groups was investigated as such an extraction is a necessary step before their determination by ICP-MS or alpha spectrometry. Difficulties were encountered in the transfer of uranium(VI) from raw to mineralised urines, with yield of transfer ranging between 0% and 85%, compared to about 90% for Pu and Am, depending on the starting raw urines. To understand the origin of such a difficulty, the speciation of uranium (VI) in mineralised urines was investigated by computer simulation using the MEDUSA software and the associated HYDRA database, compiled with recently published data. These calculations showed that the presence of phosphates in the "mineralised urines" leads to the formation of strong uranyl-phosphate complexes (such as UO2HPO4) which compete with the uranium (VI) extraction by the calix[6]arene bearing hydroxamic groups. The extraction constant of uranium (VI) by calix[6]arene bearing hydroxamic groups was determined in a 0.04 mol L(-1) sodium nitrate solution (logK=4.86±0.03) and implemented in an extraction model taking into account the speciation in the aqueous phase. This model allowed to simulate satisfactorily the experimental uranium extraction data and to support the preliminary conclusions about the role of the phosphates present in mineralised urines. These calculations also showed that the phosphate/calcium ratio is a key parameter as far as the efficiency of the uranium (VI) extraction by the calix[6]arene columns is concerned. It predicted that the addition of CaCl2 in mineralised urines would release uranium (VI) from phosphates by forming calcium (II)-phosphate complexes and thus facilitate the uranium (VI) extraction on calix[6]arene columns. These predictions were confirmed experimentally as the addition of 0.1 mol L(-1) CaCl2 to a mineralised urine containing naturally a high concentration of phosphate (typically 0.04 mol L(-1)) significantly increased the percentage of uranium (VI) extraction on the calix[6]arene columns.


Asunto(s)
Calixarenos/química , Fraccionamiento Químico/métodos , Cromatografía/métodos , Minerales/química , Fenoles/química , Uranio/aislamiento & purificación , Uranio/orina , Urinálisis/métodos , Cloruro de Calcio/química , Precipitación Química , Ácidos Hidroxámicos/química , Resinas Sintéticas/química , Uranio/química
18.
Zhongguo Zhong Yao Za Zhi ; 40(9): 1751-4, 2015 May.
Artículo en Chino | MEDLINE | ID: mdl-26323142

RESUMEN

By using a cell-based high throughput screening model for the CLA-1 up-regulator, Streptomyces 203909 was found to produce up-regulator of CLA-1. A novel trichostatin analogue was isolated from the rice fermentation of Streptomyces sp. CPCC 203909by a combination of various chromatographic techniques including column chromatography (CC) over silica gel, flash C18 CC, and reversed-phase HPLC. Its structure was identified as (-)-(R,2E,4Z)-7-[(4'-dimethylamino) phenyl]-4,6-dimethyl-7-oxohepta-2,4-dienoyl-L-glutamine (1) by the spectroscopic and chemical methods, and combination with the CD spectroscopy and Marfey's method. In the prelimi- nary assays, Compound 1 showed cytotoxicity against human embryonic kidney 293 cell line with IC50 value 35.3 [µmol · L(-1).


Asunto(s)
Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/metabolismo , Streptomyces/metabolismo , Supervivencia Celular/efectos de los fármacos , Fermentación , Células Hep G2 , Humanos , Ácidos Hidroxámicos/aislamiento & purificación , Ácidos Hidroxámicos/farmacología , Estructura Molecular , Streptomyces/química
19.
J Inorg Biochem ; 151: 164-75, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26116424

RESUMEN

The thermodynamics and kinetics of the cis/trans isomerism of N-methylacetohydroxamic acid (NMAH) and its conjugated base (NMA(-)) have been reinvestigated in aqueous media by (1)H NMR spectroscopy. Hindered rotation around the central C-N bond due to electronic delocalization becomes slow enough on the NMR time scale to observe both rotamers in equilibrium in D2O at room temperature. By properly assigning the methyl group resonances, evidence for the prevalence of the E over the Z form is unambiguously provided [K300=[E]/[Z]=2.86(2) and 9.63(5) for NMAH and NMA(-), respectively], closing thereby a long-lasting dispute about the most stable conformer. To that end, calculations of the chemical shifts by density functional theory (DFT), which accurately reproduced the experimental data, turned out to be a much more reliable method than the direct computation of the relative energy for each conformer. The Z ⇌ E interconversion dynamics was probed at 300 K in D2O by 2D exchange-correlated spectroscopy (EXSY), affording the associated rate constants [kZE=9.0(2) s(-1) and kEZ=3.14(5) s(-1) for NMAH, kZE=0.96(3) s(-1) and kEZ=0.10(2) s(-1) for NMA(-)] and activation barriers at 300 K [ΔG(≠)ZE=68.0 kJ mol(-1) and ΔG(≠)EZ=70.6 kJ mol(-1) for NMAH, ΔG(≠)ZE=73.6 kJ mol(-1) and ΔG(≠)EZ=79.2 kJ mol(-1) for NMA(-)]. For the first time, mono- and bis-chelated uranium(VI) complexes of NMA(-) have been isolated. Crystals of [UO2(NMA)(NO3)(H2O)2] and [UO2(NMA)2(H2O)] have been characterized by X-ray diffractometry, infrared and Raman spectroscopies.


Asunto(s)
Quelantes/química , Complejos de Coordinación/química , Ácidos Hidroxámicos/química , Modelos Moleculares , Teoría Cuántica , Uranio/química , Cristalografía por Rayos X , Conformación Molecular , Espectrometría Raman , Agua/química
20.
ChemMedChem ; 10(6): 971-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25882299

RESUMEN

A novel series of hybrids was designed and synthesized by combining key elements from farnesylthiosalicylic acid (FTS) and hydroxamic acid. Several 3,7,11-trimethyldodeca-2,6,10-trien-1-yl) thio)benzamide derivatives, particularly those with branched and linear aliphatic linkers between the hydroxamic zinc binding group (ZBG) and the benzamide core, not only displayed significant antitumor activities against six human cancer cells but also exhibited histone deacetylase (HDAC) inhibitory effects in vitro. Among them, N-(4-(hydroxyamino)-4-oxobutyl)-2-(((2E,6E)-3,7,11-trimethyldodeca-2,6, 10-trien-1-yl)thio)benzamide (8 d) was the most potent, with IC50 values of 4.9-7.6 µM; these activities are eight- to sixteen-fold more potent than FTS and comparable to that of suberoylanilide hydroxamic acid (SAHA). Derivative 8 d induced cell cycle arrest in the G0/G1 phase, inhibited the acetylation of histone H3 and α-tubulin, and blocked Ras-related signaling pathways in a dose-dependent manner. The improved tumor growth inhibition and cell-cycle arrest in vitro might result from the dual inhibition. These findings suggest dual inhibitors of Ras-related signaling pathway and HDAC hold promise as therapeutic agents for the treatment of cancer.


Asunto(s)
Farnesol/análogos & derivados , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Salicilatos/farmacología , Línea Celular , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Farnesol/química , Farnesol/farmacología , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/química , Salicilatos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA