Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542445

RESUMEN

Panax ginseng C. A. Meyer (Ginseng) is one of the most used traditional Chinese herbal medicines, with its roots being used as the main common medicinal parts; its therapeutic potential has garnered significant attention. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) is a family of early auxin-responsive genes capable of regulating root development in plants through the auxin signaling pathway. In the present study, 84 Aux/IAA genes were identified from the ginseng genome and their complexity and diversity were determined through their protein domains, phylogenetic relationships, gene structures, and cis-acting element predictions. Phylogenetic analyses classified PgIAA into six subgroups, with members in the same group showing greater sequence similarity. Analyses of interspecific collinearity suggest that segmental duplications likely drove the evolution of PgIAA genes, followed by purifying selection. An analysis of cis-regulatory elements suggested that PgIAA family genes may be involved in the regulation of plant hormones. RNA-seq data show that the expression pattern of Aux/IAA genes in Ginseng is tissue-specific, and PgIAA02 and PgIAA36 are specifically highly expressed in lateral, fibrous, and arm roots, suggesting their potential function in root development. The PgIAA02 overexpression lines exhibited an inhibition of lateral root growth in Ginseng. In addition, yeast two-hybrid and subcellular localization experiments showed that PgIAA02 interacted with PgARF22/PgARF36 (ARF: auxin response factor) in the nucleus and participated in the biological process of root development. The above results lay the foundation for an in-depth study of Aux/IAA and provide preliminary information for further research on the role of the Aux/IAA gene family in the root development of Ginseng.


Asunto(s)
Panax , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Panax/genética , Panax/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regulación de la Expresión Génica de las Plantas
2.
BMC Plant Biol ; 24(1): 190, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486151

RESUMEN

BACKGROUND: Rosmarinic acid (RA), like other phenolic compounds, is sources of antioxidants and anti-inflammatory agents in medicinal plants. In vitro culture of plants can improve the medicinal plants' metabolite profile and phenolic compound quantity. To date, various methods have been proposed to increase this medicinal metabolite in plants, among which the use of bioelicitors can be mentioned. In the present study, a native isolate of heterocystous cyanobacteria, Nostoc spongiaeforme var. tenue ISB65, was used to stimulate the production of biomass and content of RA in Mentha piperita L. (peppermint) grown in vitro from apical meristem. Mentha piperita L. explants were inoculated in half strength Murashige and Skoog (1/2 MS) medium containing cyanobacterial lysate (CL). After 50 days of culturing, the growth indices, the content of photosynthetic pigments, and RA in control and treated plants were measured. RESULTS: CL inoculation resulted in a significant enhancement in the vegetative growth indices of peppermint, including root and shoot length, plant biomass and leaf number. The content of photosynthetic pigments also increased in cyanobacteria-treated plants. Inoculation with CL increased the RA content by 2.3-fold, meaning that the plants treated with CL had the highest RA content (7.68 mg. g- 1 dry weight) compared to the control (3.42 mg. g- 1 dry weight). Additionally, HPLC analysis revealed the presence of several auxins in CL. CONCLUSIONS: The presence of auxins and the chemical content of CL such as K+ and Ca2+, as regulators of metabolic pathways and molecular activities of cells, may be responsible for the enhanced growth and phenolic compounds of plants under tissue culture conditions. An improvement in RA content in the tissue culture of medicinal plants treated with CL was reported for the first time in this investigation.


Asunto(s)
Cianobacterias , Plantas Medicinales , Mentha piperita/química , Mentha piperita/metabolismo , Mentha piperita/microbiología , Ácido Rosmarínico , Meristema , Biomasa , Fenoles/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas Medicinales/química
3.
Chemosphere ; 354: 141633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442772

RESUMEN

The activated sludge method is widely used for the treatment of phenol-containing wastewater, which gives rise to the problem of toxic residual sludge accumulation. Indole-3-acetic acid (IAA), a typical phytohormone, facilitates the microalgal resistance to toxic inhibition while promoting biomass accumulation. In this study, Chlorococcum humicola (C. humicola) was cultured in toxic sludge extract and different concentrations of IAA were used to regulate its physiological properties and enrichment of high value-added products. Ultimately, proteomics analysis was used to reveal the response mechanism of C. humicola to exogenous IAA. The results showed that the IAA concentration of 5 × 10-6 mol/L (M) was most beneficial for C. humicola to cope with the toxic stress in the sludge extract medium, to promote the activity of rubisco enzyme, to enhance the efficiency of photosynthesis, and, finally, to accumulate protein as a percentage of specific dry weight 1.57 times more than that of the control group. Exogenous IAA altered the relative abundance of various amino acids in C. humicola cells, and proteomic analyses showed that exogenous IAA stimulated the algal cells to produce more indole-3-glycerol phosphate (IGP), indole, and serine by up-regulating the enzymes. These precursors are converted to tryptophan under the regulation of tryptophan synthase (A0A383V983), and tryptophan can be metabolized to endogenous IAA to promote the growth of C. humicola. These findings have important implications for the treatment of toxic residual sludge while enriching for high-value amino acids.


Asunto(s)
Proteómica , Triptófano , Triptófano/metabolismo , Aguas del Alcantarillado , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Extractos Vegetales
4.
Planta ; 259(3): 66, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332379

RESUMEN

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Asunto(s)
Ácido Abscísico , Robinia , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Robinia/genética , Tetraploidía , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica , Piruvatos/metabolismo , Raíces de Plantas/metabolismo
5.
PLoS Genet ; 20(2): e1011135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315718

RESUMEN

Phosphorus (P) deficiency is one of the most critical factors for plant growth and productivity, including its inhibition of lateral root initiation. Auxin response factors (ARFs) play crucial roles in root development via auxin signaling mediated by genetic pathways. In this study, we found that the transcription factor ZmARF1 was associated with low inorganic phosphate (Pi) stress-related traits in maize. This superior root morphology and greater phosphate stress tolerance could be ascribed to the overexpression of ZmARF1. The knock out mutant zmarf1 had shorter primary roots, fewer root tip number, and lower root volume and surface area. Transcriptomic data indicate that ZmLBD1, a direct downstream target gene, is involved in lateral root development, which enhances phosphate starvation tolerance. A transcriptional activation assay revealed that ZmARF1 specifically binds to the GC-box motif in the promoter of ZmLBD1 and activates its expression. Moreover, ZmARF1 positively regulates the expression of ZmPHR1, ZmPHT1;2, and ZmPHO2, which are key transporters of Pi in maize. We propose that ZmARF1 promotes the transcription of ZmLBD1 to modulate lateral root development and Pi-starvation induced (PSI) genes to regulate phosphate mobilization and homeostasis under phosphorus starvation. In addition, ZmERF2 specifically binds to the ABRE motif of the promoter of ZmARF1 and represses its expression. Collectively, the findings of this study revealed that ZmARF1 is a pivotal factor that modulates root development and confers low-Pi stress tolerance through the transcriptional regulation of the biological function of ZmLBD1 and the expression of key Pi transport proteins.


Asunto(s)
Fosfatos , Zea mays , Fosfatos/metabolismo , Fósforo/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Raíces de Plantas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
BMC Genomics ; 25(1): 207, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395740

RESUMEN

BACKGROUND: Darjeeling tea is a globally renowned beverage, which faces numerous obstacles in sexual reproduction, such as self-incompatibility, poor seed germination, and viability, as well as issues with vegetative propagation. Somatic embryogenesis (SE) is a valuable method for rapid clonal propagation of Darjeeling tea. However, the metabolic regulatory mechanisms underlying SE in Darjeeling tea remain largely unknown. To address this, we conducted an integrated metabolomics and transcriptomics analysis of embryogenic callus (EC), globular embryo (GE), and heart-shaped embryo (HE). RESULTS: The integrated analyses showed that various genes and metabolites involved in the phenylpropanoid pathway, auxin biosynthesis pathway, gibberellin, brassinosteroid and amino acids biosynthesis pathways were differentially enriched in EC, GE, and HE. Our results revealed that despite highly up-regulated auxin biosynthesis genes YUC1, TAR1 and AAO1 in EC, endogenous indole-3-acetic acid (IAA) was significantly lower in EC than GE and HE. However, bioactive Gibberellin A4 displayed higher accumulation in EC. We also found higher BABY BOOM (BBM) and Leafy cotyledon1 (LEC1) gene expression in GE along with high accumulation of castasterone, a brassinosteroid. Total flavonoids and phenolics levels were elevated in GE and HE compared to EC, especially the phenolic compound chlorogenic acid was highly accumulated in GE. CONCLUSIONS: Integrated metabolome and transcriptome analysis revealed enriched metabolic pathways, including auxin biosynthesis and signal transduction, brassinosteroid, gibberellin, phenylpropanoid biosynthesis, amino acids metabolism, and transcription factors (TFs) during SE in Darjeeling tea. Notably, EC displayed lower endogenous IAA levels, conducive to maintaining differentiation, while higher IAA concentration in GE and HE was crucial for preserving embryo identity. Additionally, a negative correlation between bioactive gibberellin A4 (GA4) and IAA was observed, impacting callus growth in EC. The high accumulation of chlorogenic acid, a phenolic compound, might contribute to the low success rate in GE and HE formation in Darjeeling tea. TFs such as BBM1, LEC1, FUS3, LEA, WOX3, and WOX11 appeared to regulate gene expression, influencing SE in Darjeeling tea.


Asunto(s)
Brasinoesteroides , Giberelinas , Ácido Clorogénico , Perfilación de la Expresión Génica , Ácidos Indolacéticos/metabolismo , , Desarrollo Embrionario , Aminoácidos/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Physiol Plant ; 175(6): e14078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148231

RESUMEN

Aromatic aldehydes and amines are common plant metabolites involved in several specialized metabolite biosynthesis pathways. Recently, we showed that the aromatic aldehyde synthase PtAAS1 and the aromatic amino acid decarboxylase PtAADC1 contribute to the herbivory-induced formation of volatile 2-phenylethanol and its glucoside 2-phenylethyl-ß-D-glucopyranoside in Populus trichocarpa. To unravel alternative metabolic fates of phenylacetaldehyde and 2-phenylethylamine beyond alcohol and alcohol glucoside formation, we heterologously expressed PtAAS1 and PtAADC1 in Nicotiana benthamiana and analyzed plant extracts using untargeted LC-qTOF-MS and targeted LC-MS/MS analysis. While the metabolomes of PtAADC1-expressing plants did not significantly differ from those of control plants, expression of PtAAS1 resulted in the accumulation of phenylacetic acid (PAA) and PAA-amino acid conjugates, identified as PAA-aspartate and PAA-glutamate. Herbivory-damaged poplar leaves revealed significantly induced accumulation of PAA-Asp, while levels of PAA remained unaltered upon herbivory. Transcriptome analysis showed that members of auxin-amido synthetase GH3 genes involved in the conjugation of auxins with amino acids were significantly upregulated upon herbivory in P. trichocarpa leaves. Overall, our data indicates that phenylacetaldehyde generated by poplar PtAAS1 serves as a hub metabolite linking the biosynthesis of volatile, non-volatile herbivory-induced specialized metabolites, and phytohormones, suggesting that plant growth and defense can be balanced on a metabolic level.


Asunto(s)
Herbivoria , Espectrometría de Masas en Tándem , Cromatografía Liquida , Ácidos Indolacéticos/metabolismo , Aminoácidos/metabolismo , Glucósidos , Regulación de la Expresión Génica de las Plantas
8.
Biol Res ; 56(1): 58, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941013

RESUMEN

Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.


Asunto(s)
Fertilidad , MicroARNs , Temperatura , Citoplasma/genética , Fertilidad/genética , Ácidos Indolacéticos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hormonas/metabolismo , Polen/genética , Polen/metabolismo , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
9.
Plant Mol Biol ; 113(4-5): 205-217, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37973765

RESUMEN

The generation of adventitious roots (ARs) is the key to the success of cuttings. The appropriate environment for AR differentiation in tea plants is acidic. However, the mechanism is unclear. In this study, pH 4.5 was suitable condition for the differentiation of AR in tea plants. At the base of cuttings, the root primordia differentiated ARs more rapidly at pH 4.5 than pH 7.0, and nine AR differentiation-related genes were found to be differentially expressed in 30 days, the result was also validated by qRT-PCR. The promoter regions of these genes contained auxin and brassinosteroid response elements. The expression levels of several genes which were involved in auxin and brassinosteroid synthesis as well as signaling at pH 4.5 compared to pH 7.0 occurred differential expression. Brassinolide (BL) and indole-3-acetic acid (IAA) could affect the differentiation of ARs under pH 4.5 and pH 7.0. By qRT-PCR analysis of genes during ARs generation, BL and IAA inhibited and promoted the expression of CsIAA14 gene, respectively, to regulate auxin signal transduction. Meanwhile, the expression levels of CsKNAT4, CsNAC2, CsNAC100, CsWRKY30 and CsLBD18 genes were up-regulated upon auxin treatment and were positively correlated with ARs differentiation.This study showed that pH 4.5 was the most suitable environment for the root primordia differentiation of AR in tea plant. Proper acidic pH conditions promoted auxin synthesis and signal transduction. The auxin initiated the expression of AR differentiation-related genes, and promoted its differentiated. BL was involved in ARs formation and elongation by regulating auxin signal transduction.


Asunto(s)
Brasinoesteroides , Camellia sinensis , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica , Té/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Plant Physiol ; 193(4): 2480-2497, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606259

RESUMEN

Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as ß-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to ß-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Raíces de Plantas/metabolismo , Sacarosa/metabolismo
11.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37511169

RESUMEN

It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.


Asunto(s)
Arabidopsis , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Filogenia , Tetraploidía , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446349

RESUMEN

The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.


Asunto(s)
Ácidos Indolacéticos , Quinurenina , Ácidos Indolacéticos/metabolismo , Quinurenina/metabolismo , Proteínas de Plantas/genética , Polen/genética , Polen/metabolismo , Desarrollo Embrionario
13.
J Exp Bot ; 74(21): 6708-6721, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479226

RESUMEN

Abscisic acid (ABA) is critical in drought tolerance and plant growth. Group A protein type 2C phosphatases (PP2Cs) are negative regulators of ABA signaling and plant adaptation to stress. Knowledge about the functions of potato group A PP2Cs is limited. Here, we report that the potato group A PP2C StHAB1 is broadly expressed in potato plants and strongly induced by ABA and drought. Suppression of StHAB1 enhanced potato ABA sensitivity and drought tolerance, whereas overexpression of the dominant mutant StHAB1G276D compromised ABA sensitivity and drought tolerance. StHAB1 interacts with almost all ABA receptors and the Snf1-Related Kinase OST1. Suppressing StHAB1 and overexpressing StHAB1G276D alter potato growth morphology; notably, overexpression of StHAB1G276D causes excessive shoot branching. RNA-sequencing analyses identified that the auxin efflux carrier genes StPIN3, StPIN5, and StPIN8 were up-regulated in StHAB1G276D-overexpressing axillary buds. Correspondingly, the auxin concentration was reduced in StHAB1G276D-overexpressing axillary buds, consistent with the role of auxin in repressing lateral branch outgrowth. The expression of BRANCHED1s (StBRC1a and StBRC1b) was unchanged in StHAB1G276D-overexpressing axillary buds, suggesting that StHAB1G276D overexpression does not cause axillary bud outgrowth via regulation of BRC1 expression. Our findings demonstrate that StHAB1 is vital in potato drought tolerance and shoot branching.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum tuberosum , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistencia a la Sequía , Ácidos Indolacéticos/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo
14.
Sci Rep ; 13(1): 9689, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322165

RESUMEN

Indirect somatic embryogenesis (ISE) is a morphogenetic pathway in which somatic cells form callus and, later, somatic embryos (SE). 2,4-dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin that promotes the proliferation and dedifferentiation of somatic cells, inducing the ISE. However, 2,4-D can cause genetic, epigenetic, physiological and morphological disorders, preventing the regeneration and/or resulting abnormal somatic embryos (ASE). We aimed to evaluate the toxic 2,4-D effect during the Coffea arabica and C. canephora ISE, assessing the SE morphology, global 5-methylcytosine levels (5-mC%) and DNA damage. Leaf explants were inoculated in media with different 2,4-D concentrations. After 90 days, the friable calli were transferred to the regeneration medium, and the number of normal and abnormal SE was monthly counted. The increase of the 2,4-D concentration increased the number of responsive explants in both Coffea. At 9.06, 18.08 and 36.24 µM 2,4-D, C. arabica presented the highest values of responsive explants, differing from C. canephora. Normal and abnormal SE regeneration increased in relation to the time and 2,4-D concentration. Global 5-mC% varied at different stages of the ISE in both Coffea. Furthermore, the 2,4-D concentration positively correlated with global 5-mC%, and with the mean number of ASE. All ASE of C. arabica and C. canephora exhibited DNA damage and showed higher global 5-mC%. The allotetraploid C. arabica exhibited greater tolerance to the toxic effect of 2,4-D than the diploid C. canephora. We conclude that synthetic 2,4-D auxin promotes genotoxic and phytotoxic disorders and promotes epigenetic changes during Coffea ISE.


Asunto(s)
Coffea , Coffea/genética , Café/metabolismo , Desarrollo Embrionario , Ácidos Indolacéticos/metabolismo , Ácido 2,4-Diclorofenoxiacético/toxicidad , Ácido 2,4-Diclorofenoxiacético/metabolismo
15.
J Exp Bot ; 74(22): 6933-6949, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37166384

RESUMEN

Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.


Asunto(s)
Ácidos Indolacéticos , Proteínas de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pared Celular/metabolismo , Pectinas/metabolismo
16.
Plant Cell Environ ; 46(6): 1921-1934, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36891914

RESUMEN

Auxins are a class of phytohormones with roles involved in the establishment and maintenance of the arbuscular mycorrhizal symbiosis (AMS). Auxin response factors (ARFs) and Auxin/Indole-acetic acids (AUX/IAAs), as two transcription factors of the auxin signaling pathway, coregulate the transcription of auxin response genes. However, the interrelation and regulatory mechanism of ARFs and AUX/IAAs in regulating AMS are still unclear. In this study, we found that the content of auxin in tomato roots increased sharply and revealed the importance of the auxin signaling pathway in the early stage of AMS. Notably, SlARF6 was found to play a negative role in AMF colonization. Silencing SlARF6 significantly increased the expression of AM-marker genes, as well as AMF-induced phosphorus uptake. SlIAA23 could interact with SlARF6 in vivo and in vitro, and promoted the AMS and phosphorus uptake. Interestingly, SlARF6 and SlIAA23 played a contrary role in strigolactone (SL) synthesis and accumulation in AMF-colonized roots of tomato plants. SlARF6 could directly bind to the AuxRE motif of the SlCCD8 promoter and inhibited its transcription, however, this effect was attenuated by SlIAA23 through interaction with SlARF6. Our results suggest that SlIAA23-SlARF6 coregulated tomato-AMS via an SL-dependent pathway, thus affecting phosphorus uptake in tomato plants.


Asunto(s)
Micorrizas , Solanum lycopersicum , Micorrizas/fisiología , Solanum lycopersicum/genética , Simbiosis/genética , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo
17.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982639

RESUMEN

With far-red-light supplementation (3 W·m-2, and 6 W·m-2), the flower budding rate, plant height, internode length, plant display, and stem diameter of Chinese kale were largely elevated, as well as the leaf morphology such as leaf length, leaf width, petiole length, and leaf area. Consequently, the fresh weight and dry weight of the edible parts of Chinese kale were markedly increased. The photosynthetic traits were enhanced, and the mineral elements were accumulated. To further explore the mechanism that far-red light simultaneously promoted the vegetative growth and reproductive growth of Chinese kale, this study used RNA sequencing to gain a global perspective on the transcriptional regulation, combining it with an analysis of composition and content of phytohormones. A total of 1409 differentially expressed genes were identified, involved mainly in pathways related to photosynthesis, plant circadian rhythm, plant hormone biosynthesis, and signal transduction. The gibberellins GA9, GA19, and GA20 and the auxin ME-IAA were strongly accumulated under far-red light. However, the contents of the gibberellins GA4 and GA24, the cytokinins IP and cZ, and the jasmonate JA were significantly reduced by far-red light. The results indicated that the supplementary far-red light can be a useful tool to regulate the vegetative architecture, elevate the density of cultivation, enhance the photosynthesis, increase the mineral accumulation, accelerate the growth, and obtain a significantly higher yield of Chinese kale.


Asunto(s)
Brassica , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Brassica/metabolismo , Transcriptoma , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo
18.
Plant J ; 113(4): 851-865, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36597651

RESUMEN

Auxin Response Factor 8 plays a key role in late stamen development: its splice variants ARF8.4 and ARF8.2 control stamen elongation and anther dehiscence. Here, we characterized the role of ARF8 isoforms in pollen fertility. By phenotypic and ultrastructural analysis of arf8-7 mutant stamens, we found defects in pollen germination and viability caused by alterations in exine structure and pollen coat deposition. Furthermore, tapetum degeneration, a prerequisite for proper pollen wall formation, is delayed in arf8-7 anthers. In agreement, the genes encoding the transcription factors TDF1, AMS, MS188 and MS1, required for exine and pollen coat formation, and tapetum development, are downregulated in arf8-7 stamens. Consistently, the sporopollenin content is decreased, and the expression of sporopollenin synthesis/transport and pollen coat protein biosynthetic genes, regulated by AMS and MS188, is reduced. Inducible expression of the full-length isoform ARF8.1 in arf8-7 inflorescences complements the pollen (and tapetum) phenotype and restores the expression of the above transcription factors. Chromatin immunoprecipitation-quantitative polymerase chain reaction assay revealed that ARF8.1 directly targets the promoters of TDF1, AMS and MS188. In conclusion, the ARF8.1 isoform controls pollen and tapetum development acting directly on the expression of TDF1, AMS and MS188, which belong to the pollen/tapetum genetic pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Factor VIII/genética , Factor VIII/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Polen , Isoformas de Proteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614182

RESUMEN

Auxin is a key regulator that virtually controls almost every aspect of plant growth and development throughout its life cycle. As the major components of auxin signaling, auxin response factors (ARFs) play crucial roles in various processes of plant growth and development. In this study, a total of 35 PtrARF genes were identified, and their phylogenetic relationships, chromosomal locations, synteny relationships, exon/intron structures, cis-elements, conserved motifs, and protein characteristics were systemically investigated. We also analyzed the expression patterns of these PtrARF genes and revealed that 16 of them, including PtrARF1, 3, 7, 11, 13-17, 21, 23, 26, 27, 29, 31, and 33, were preferentially expressed in primary stems, while 15 of them, including PtrARF2, 4, 6, 9, 10, 12, 18-20, 22, 24, 25, 28, 32, and 35, participated in different phases of wood formation. In addition, some PtrARF genes, with at least one cis-element related to indole-3-acetic acid (IAA) or abscisic acid (ABA) response, responded differently to exogenous IAA and ABA treatment, respectively. Three PtrARF proteins, namely PtrARF18, PtrARF23, and PtrARF29, selected from three classes, were characterized, and only PtrARF18 was a transcriptional self-activator localized in the nucleus. Moreover, Y2H and bimolecular fluorescence complementation (BiFC) assay demonstrated that PtrARF23 interacted with PtrIAA10 and PtrIAA28 in the nucleus, while PtrARF29 interacted with PtrIAA28 in the nucleus. Our results provided comprehensive information regarding the PtrARF gene family, which will lay some foundation for future research about PtrARF genes in tree development and growth, especially the wood formation, in response to cellular signaling and environmental cues.


Asunto(s)
Populus , Madera , Madera/metabolismo , Populus/metabolismo , Filogenia , Familia de Multigenes , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Hormonas , Regulación de la Expresión Génica de las Plantas
20.
BMC Plant Biol ; 23(1): 20, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627574

RESUMEN

Although the interaction between P and Zn has long been recognized in plants, the physiological and molecular mechanisms underlying P and Zn interactions are poorly understood. We show here that P supply decreases the Zn concentration in maize shoots and roots. Compared to +P + Zn (addition of both P and Zn), +P-Zn reduced and -P-Zn increased the total length of 1° lateral roots (LRs). Under +P + Zn, both P and Zn concentrations were lower in the sl1 mutant roots than in wild-type (WT) maize roots, and P accumulation did not reduce the Zn concentration in ll1 mutant roots. Transcriptome profiling showed that the auxin signaling pathway contributed to P-mediated Zn homeostasis in maize. Auxin production and distribution were altered by changes in P and Zn supply. Cytosolic Zn co-localized with auxin accumulation under +P + Zn. Exogenous application of 1-NAA and L-Kyn altered the P-mediated root system architecture (RSA) under Zn deficiency. -P-Zn repressed the expression of miR167. Overexpression of ZmMIR167b increased the lengths of 1° LRs and the concentrations of P and Zn in maize. These results indicate that auxin-dependent RSA is important for P-mediated Zn homeostasis in maize.HighlightAuxin-dependent RSA is important for P-mediated Zn homeostasis in maize.


Asunto(s)
Fósforo , Zea mays , Fósforo/metabolismo , Zea mays/metabolismo , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Homeostasis , Zinc/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA