Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Lipids ; 56(4): 423-435, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33886120

RESUMEN

Implementing insects, such as the black soldier fly larvae (BSFL), as animal feed commonly includes the previous removal of substantial amounts of fat. This fat may represent an as yet underutilized energy source for livestock. However, transfer of lauric and myristic acid, prevalent in BSFL fat and undesired in human nutrition, into animal-source foods like eggs may limit its implementation. To quantify this, a laying hen experiment was performed comprising five different diets (10 hens/diet). These were a control diet with soybean oil and meal and a second diet with soybean oil but with partially defatted BSFL meal as protein source. The other three diets were based on different combinations of partially defatted BSFL meal and fat obtained by two different production methods. Lauric acid made up half of the BSFL fat from both origins. Both BSFL fats also contained substantial amounts of myristic and palmitic acid. However, in the insect-based diets, the net transfer from diet to egg yolk was less than 1% for lauric acid, whereas the net transfer for myristic and palmitic acid was about 30% and 100%, respectively. The net transfer did not vary between BSFL originating from production on different larval feeding substrates. The results illustrate that hens are able to metabolize or elongate very large proportions of ingested lauric acid and myristic acid, which are predominant in the BSFL lipids (together accounting for as much as 37 mol%), such that they collectively account for less than 3.5 mol% of egg yolk fatty acids.


Asunto(s)
Alimentación Animal , Dípteros/química , Yema de Huevo/química , Ácidos Láuricos/metabolismo , Ácido Mirístico/metabolismo , Animales , Pollos , Ácidos Grasos/análisis , Ácidos Grasos/química , Femenino , Larva/química , Ácidos Láuricos/análisis , Ácido Mirístico/análisis , Aceite de Soja
2.
PLoS Biol ; 17(2): e3000123, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716063

RESUMEN

The diffusible signal factors (DSFs) are a family of quorum-sensing autoinducers (AIs) produced and detected by numerous gram-negative bacteria. The DSF family AIs are fatty acids, differing in their acyl chain length, branching, and substitution but having in common a cis-2 double bond that is required for their activity. In both human and plant pathogens, DSFs regulate diverse phenotypes, including virulence factor expression, antibiotic resistance, and biofilm dispersal. Despite their widespread relevance to both human health and agriculture, the molecular basis of DSF recognition by their cellular receptors remained a mystery. Here, we report the first structure-function studies of the DSF receptor regulation of pathogenicity factor R (RpfR). We present the X-ray crystal structure of the RpfR DSF-binding domain in complex with the Burkholderia DSF (BDSF), which to our knowledge is the first structure of a DSF receptor in complex with its AI. To begin to understand the mechanistic role of the BDSF-RpfR contacts observed in the biologically important complex, we have also determined the X-ray crystal structure of the RpfR DSF-binding domain in complex with the inactive, saturated isomer of BDSF, dodecanoic acid (C12:0). In addition to these ligand-receptor complex structures, we report the discovery of a previously overlooked RpfR domain and show that it binds to and negatively regulates the DSF synthase regulation of pathogenicity factor F (RpfF). We have named this RpfR region the RpfF interaction (FI) domain, and we have determined its X-ray crystal structure alone and in complex with RpfF. These X-ray crystal structures, together with extensive complementary in vivo and in vitro functional studies, reveal the molecular basis of DSF recognition and the importance of the cis-2 double bond to DSF function. Finally, we show that throughout cellular growth, the production of BDSF by RpfF is post-translationally controlled by the RpfR N-terminal FI domain, affecting the cellular concentration of the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Thus, in addition to describing the molecular basis for the binding and specificity of a DSF for its receptor, we describe a receptor-synthase interaction regulating bacterial quorum-sensing signaling and second messenger signal transduction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Proteínas Bacterianas/química , Burkholderia/metabolismo , Cristalización , Cristalografía por Rayos X , GMP Cíclico/biosíntesis , Ácidos Láuricos/química , Ácidos Láuricos/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Percepción de Quorum
3.
Xenobiotica ; 49(2): 187-199, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29448869

RESUMEN

1. The objective of our study was to develop and validate a cocktail approach to allow the simultaneous characterization of various CYP450-mediated oxidations by human heart microsomes for nine probe drug substrates, namely, 7-ethoxyresorufin, bupropion, repaglinide, tolbutamide, bufuralol, chlorzoxazone, ebastine, midazolam and dodecanoic acid. 2. The first validation step was conducted using recombinant human CYP450 isoenzymes by comparing activity measured for each probe drug as a function of (1) buffer used, (2) selectivity towards specific isoenzymes and (3) drug interactions between probes. Activity was all measured by validated LC-MSMS methods. 3. Two cocktails were then constituted with seven of the nine drugs and subjected to kinetic validation. Finally, all probe drugs were incubated with human heart microsomes prepared from ventricular tissues obtained from 12 patients undergoing cardiac transplantation. 4. Validated cocktail #1 including bupropion, chlorzoxazone, ebastine and midazolam was used to characterize CYP2B6-, 2E1-, 2J2- and 3A5-mediated metabolism in human hearts. 5. Cocktail #2 which includes bufuralol, 7-ethoxyresorufin and repaglinide failed the validation step. Substrates in cocktail #2 as well as tolbutamide and dodecanoic acid had to be incubated separately because of their physico-chemical characteristics (solubility and ionization) or drug interactions. 6. Activity in HHM was the highest towards ebastine, chlorzoxazone and tolbutamide.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas/metabolismo , Bupropión/metabolismo , Butirofenonas/metabolismo , Carbamatos/metabolismo , Clorzoxazona/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Etanolaminas/metabolismo , Humanos , Ácidos Láuricos/metabolismo , Midazolam/metabolismo , Miocardio/metabolismo , Oxazinas/metabolismo , Piperidinas/metabolismo , Tolbutamida/metabolismo
4.
Sci Rep ; 8(1): 17213, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464291

RESUMEN

In this study, a lauroyl grafted hydrophobic glycolipid derivative of alginate has been successfully synthesized and characterized. This glycolipid has been incorporated into Psyllium husk gel-alginate composite films and compared with the films containing only Psyllim husk gel and Psyllim husk gel-alginate for its mechanical and physicochemical properties. Additionally, the composite film has also been evaluated for protein adsorption and antimicrobial property to verify its utility in biomedical applications. The results showed that the composite films have enhanced physicochemical and mechanical properties. The film produced better swelling characteristic and lower protein adsorption property indicating the usefulness of the film in wound care dressing, particularly for low suppurating wounds. Incorporation of the synthesised glycolipid derivative also imparts antimicrobial activity to the composite film. Therefore, the developed film is capable of sustaining the microbial contamination during the storage and also valuable in the biomedical utility including wound dressings.


Asunto(s)
Alginatos/metabolismo , Fenómenos Químicos , Geles/síntesis química , Glucolípidos/síntesis química , Ácidos Láuricos/metabolismo , Fenómenos Mecánicos , Psyllium/metabolismo , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Geles/química , Glucolípidos/química , Unión Proteica
5.
Plant Biotechnol J ; 15(11): 1397-1408, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28301719

RESUMEN

Medium-chain fatty acids (MCFA, C6-14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl-CoA-dependent pathway for the synthesis of MFCA-rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.


Asunto(s)
Arecaceae/genética , Arecaceae/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Ácidos Grasos/metabolismo , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Arabidopsis/genética , Arecaceae/enzimología , Biomasa , Muerte Celular , Cinnamomum camphora/genética , Cocos/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Láuricos/metabolismo , Metabolismo de los Lípidos , Lípidos de la Membrana/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma , Triglicéridos
6.
Mo Med ; 114(4): 303-307, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30228616

RESUMEN

Recently, debate has erupted in both the scientific community and throughout the lay public around whether a low-fat or low-carbohydrate diet is better for weight loss. In other words, is it better to cut fat or cut carbohydrate for weight loss. However, going beyond this debate (fat versus carbohydrate), are questions around whether certain fatty acids are worse for promoting insulin resistance, inflammation, and obesity. The overall evidence in the literature suggests that medium-chain saturated fats (such as lauric acid, found in coconut oil) and monounsaturated fat (oleic acid, found in olive oil) are less likely to promote insulin resistance, inflammation, and fat storage compared to long-chain saturated fatty acids (such as stearic acid found in large quantities in butter, but particularly palmitic acid found in palm oil) especially when consumed on top of a diet moderate in refined carbohydrates. Compared to long-chain saturated fats, lauric acid and oleic acid have an increased fatty acid oxidation rate, are more likely to be burned for energy and less likely to be stored in adipose tissue, and thus promote increased energy expenditure. Omega-6 polyunsaturated fatty acids (PUFAs), such as linoleic acid, as found in vegetable oils may contribute to obesity, whereas omega-3 PUFA may be protective. Importantly, both olive oil as part of a Mediterranean diet, and omega-3 from fish and fish oil have been proven to reduce risk of cardiovascular (CV) events.


Asunto(s)
Ácidos Grasos/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Dieta/métodos , Dieta/estadística & datos numéricos , Metabolismo Energético/fisiología , Ácidos Grasos/efectos adversos , Ácidos Grasos Omega-3/efectos adversos , Ácidos Grasos Omega-3/metabolismo , Femenino , Aceites de Pescado/administración & dosificación , Aceites de Pescado/efectos adversos , Humanos , Ácidos Láuricos/efectos adversos , Ácidos Láuricos/metabolismo , Ácido Linoleico/efectos adversos , Ácido Linoleico/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Ácido Oléico/efectos adversos , Ácido Oléico/metabolismo , Aceite de Oliva/administración & dosificación , Aceite de Oliva/efectos adversos , Ácidos Esteáricos/efectos adversos , Ácidos Esteáricos/metabolismo
7.
Pharm Biol ; 54(12): 2814-2821, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27307092

RESUMEN

CONTEXT: The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. OBJECTIVE: To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. MATERIALS AND METHODS: Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. RESULTS: The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 µg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). DISCUSSION AND CONCLUSION: The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.


Asunto(s)
Ajo , Ácidos Láuricos/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Mirístico/metabolismo , Extractos Vegetales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antituberculosos/aislamiento & purificación , Antituberculosos/metabolismo , Antituberculosos/farmacología , Simulación por Computador , Humanos , Ácidos Láuricos/aislamiento & purificación , Ácidos Láuricos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Ácido Mirístico/aislamiento & purificación , Ácido Mirístico/farmacología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Raíces de Plantas , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/química
8.
Mol Microbiol ; 96(4): 708-27, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25656587

RESUMEN

Cell-cell communication mediated by diffusible signal factor (DSF) plays an important role in virulence of several Xanthomonas group of plant pathogens. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzicola, DSF is required for virulence and in planta growth. In order to understand the role of DSF in promoting in planta growth and virulence, we have characterized the DSF deficient mutant of X. oryzae pv. oryzicola. Mutant analysis by expression analysis, radiolabelled iron uptake studies and growth under low-iron conditions indicated that DSF positively regulates ferric iron uptake. Further, the DSF deficient mutant of X. oryzae pv. oryzicola exhibited a reduced capacity to use ferric form of iron for growth under low-iron conditions. Exogenous iron supplementation in the rice leaves rescued the in planta growth deficiency of the DSF deficient mutant. These data suggest that DSF promotes in planta growth of X. oryzae pv. oryzicola by positively regulating functions involved in ferric iron uptake which is important for its virulence. Our results also indicate that requirement of iron uptake strategies to utilize either Fe(3+) or Fe(2+) form of iron for colonization may vary substantially among closely related members of the Xanthomonas group of plant pathogens.


Asunto(s)
Compuestos Férricos/metabolismo , Ácidos Láuricos/metabolismo , Interacciones Microbianas , Oryza/microbiología , Transducción de Señal , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Citratos/biosíntesis , Compuestos Férricos/farmacología , Regulación Bacteriana de la Expresión Génica , Ligasas/genética , Ligasas/metabolismo , Mutación , Hojas de la Planta/microbiología , Pirrolidinonas , Virulencia/genética , Xanthomonas/genética , Xanthomonas/crecimiento & desarrollo
9.
Plant Cell Environ ; 37(9): 2102-15, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24520956

RESUMEN

Cutin and suberin represent lipophilic polymers forming plant/environment interfaces in leaves and roots. Despite recent progress in Arabidopsis, there is still a lack on information concerning cutin and suberin synthesis, especially in crops. Based on sequence homology, we isolated two cDNA clones of new cytochrome P450s, CYP77A19 and CYP77A20 from potato tubers (Solanum tuberosum). Both enzymes hydroxylated lauric acid (C12:0) on position ω-1 to ω-5. They oxidized fatty acids with chain length ranging from C12 to C18 and catalysed hydroxylation of 16-hydroxypalmitic acid leading to dihydroxypalmitic (DHP) acids, the major C16 cutin and suberin monomers. CYP77A19 also produced epoxides from linoleic acid (C18:2). Exploration of expression pattern in potato by RT-qPCR revealed the presence of transcripts in all tissues tested with the highest expression in the seed compared with leaves. Water stress enhanced their expression level in roots but not in leaves. Application of methyl jasmonate specifically induced CYP77A19 expression. Expression of either gene in the Arabidopsis null mutant cyp77a6-1 defective in flower cutin restored petal cuticular impermeability. Nanoridges were also observed in CYP77A20-expressing lines. However, only very low levels of the major flower cutin monomer 10,16-dihydroxypalmitate and no C18 epoxy monomers were found in the cutin of the complemented lines.


Asunto(s)
Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos/metabolismo , Lípidos de la Membrana/genética , Mutación/genética , Solanum tuberosum/enzimología , Cromatografía de Gases , Cromatografía en Capa Delgada , Clonación Molecular , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Ácidos Láuricos/química , Ácidos Láuricos/metabolismo , Oxidación-Reducción , Permeabilidad , Fenotipo , Plantas Modificadas Genéticamente , Especificidad por Sustrato
10.
Plant Physiol ; 162(3): 1337-58, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23735505

RESUMEN

Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis.


Asunto(s)
Arecaceae/genética , Ácidos Grasos/análisis , Frutas/genética , Semillas/química , Semillas/genética , Proteínas de Arabidopsis/genética , Arecaceae/crecimiento & desarrollo , Arecaceae/metabolismo , Secuencia de Bases , Endospermo/genética , Endospermo/metabolismo , Ácidos Grasos/biosíntesis , Frutas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Ácidos Láuricos/análisis , Ácidos Láuricos/metabolismo , Lípidos/análisis , Datos de Secuencia Molecular , Aceite de Palma , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Aceites de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Nicotiana/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo
11.
Enzyme Microb Technol ; 52(3): 141-50, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23410924

RESUMEN

Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The influence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with protic ionic liquids also favoured reduced mass loss according to TG curves (always less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino groups, and profiling enthalpy changes of mass loss.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas Inmovilizadas/metabolismo , Líquidos Iónicos/química , Lipasa/metabolismo , 2-Propanol/metabolismo , Proteínas Bacterianas/química , Burkholderia cepacia/enzimología , Rastreo Diferencial de Calorimetría , Emulsionantes/metabolismo , Enzimas Inmovilizadas/química , Esterificación , Geles , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Ácidos Láuricos/metabolismo , Lipasa/química , Microscopía Electrónica de Rastreo , Aceite de Oliva , Aceites de Plantas/metabolismo , Porosidad , Gel de Sílice , Aceite de Soja/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Termogravimetría
12.
Phytochemistry ; 83: 70-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22795601

RESUMEN

Prunus africana--an evergreen tree found in Afromontane forests--is used in traditional medicine to cure benign prostate hyperplasia. Different bioactive constituents derived from bark extracts from 20 tree populations sampled throughout the species' natural range in Africa were studied by means of GC-MSD. The average concentration [mg/kgw/w] in increasing order was: lauric acid (18), myristic acid (22), n-docosanol (25), ferulic acid (49), ß-sitostenone (198), ß-sitosterol (490), and ursolic acid (743). The concentrations of many bark constituents were significantly correlated and concentration of n-docosanol was highly significantly correlated with all other analytes. Estimates of variance components revealed the highest variation among populations for ursolic acid (66%) and the lowest for ß-sitosterol (20%). In general, environmental parameters recorded (temperature, precipitation, altitude) for the samples sites were not correlated with the concentration of most constituents; however, concentration of ferulic acid was significantly correlated with annual precipitation. Because the concentration of compounds in bark extracts may be affected by tree size, the diameter of sampled plants at 1.3m tree height (as proxy of age) was recorded. The only relationship with tree diameter was a negative correlation with ursolic acid. Under the assumption that genetically less variable populations have less variable concentrations of bark compounds, correlations between variation parameters of the concentration and the respective genetic composition based on chloroplast and nuclear DNA markers were assessed. Only variation of ß-sitosterol concentration was significantly correlated with haplotypic diversity. The fixation index (F(IS)) was positively correlated with the variation in concentration of ferulic acid. Principal Components Analysis (PCA) indicated a weak geographic pattern. Mantel tests, however, revealed associations between the geographic patterns of bioactive constituents and the phylogenetic relationship among the populations sampled. This suggests an independent evolution of bark metabolism within different phylogeographical lineages, and the molecular phylogeographic pattern is partly reflected in the variation in concentration of bark constituents. The results have important implications for the design of strategies for the sustainable use and conservation of this important African tree species.


Asunto(s)
ADN de Cloroplastos/genética , ADN Ribosómico/genética , Prunus africana/química , Temperatura , África , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Alcoholes Grasos/química , Alcoholes Grasos/metabolismo , Marcadores Genéticos/genética , Ácidos Láuricos/química , Ácidos Láuricos/metabolismo , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Análisis de Componente Principal , Prunus africana/metabolismo , Sitoesteroles/química , Sitoesteroles/metabolismo , Triterpenos/química , Triterpenos/metabolismo , Ácido Ursólico
13.
J Sci Food Agric ; 92(3): 679-84, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21922463

RESUMEN

BACKGROUND: Bioactive compounds are capable of providing health benefits, reducing disease incidence or favoring body functioning. There is a growing search for vegetable oils containing such compounds. This study aimed to characterize the pulp and kernel oils of the Brazilian palm species guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata), aiming at possible uses in several industries. RESULTS: Fatty acid composition, phenolic and carotenoid contents, tocopherol composition were evaluated. The majority of the fatty acids in pulps were oleic and linoleic; macaúba pulp contained 526 g kg⁻¹ of oleic acid. Lauric acid was detected in the kernels of all three species as the major saturated fatty acid, in amounts ranging from 325.8 to 424.3 g kg⁻¹. The jerivá pulp contained carotenoids and tocopherols on average of 1219 µg g⁻¹ and 323.50 mg kg⁻¹, respectively. CONCLUSION: The pulps contained more unsaturated fatty acids than the kernels, mainly oleic and linoleic. Moreover, the pulps showed higher carotenoid and tocopherol contents. The kernels showed a predominance of saturated fatty acids, especially lauric acid. The fatty acid profiles of the kernels suggest that these oils may be better suited for the cosmetic and pharmaceutical industries than for use in foods.


Asunto(s)
Antioxidantes/análisis , Arecaceae/química , Carotenoides/análisis , Grasas de la Dieta/análisis , Ácidos Grasos/análisis , Aceites de Plantas/química , Tocoferoles/análisis , Antioxidantes/metabolismo , Arecaceae/crecimiento & desarrollo , Arecaceae/metabolismo , Brasil , Carotenoides/biosíntesis , Productos Agrícolas/química , Productos Agrícolas/metabolismo , Ácidos Grasos/biosíntesis , Frutas/química , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Humanos , Ácidos Láuricos/análisis , Ácidos Láuricos/metabolismo , Ácido Linoleico/análisis , Ácido Linoleico/biosíntesis , Valor Nutritivo , Ácido Oléico/análisis , Ácido Oléico/biosíntesis , Aceite de Palma , Fenoles/análisis , Fenoles/metabolismo , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Análisis Espacio-Temporal , Especificidad de la Especie , Tocoferoles/metabolismo
14.
Br J Nutr ; 107(11): 1714-25, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22018667

RESUMEN

We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG. Trout were fed for 15 weeks one of the four isoproteic diets containing fish oil (FO) or CO as fat source (FS), incorporated at 5% (low fat, LF) or 15% (high fat, HF). Fat level or FS did not modify food intake (g/kg(0·8) per d), despite higher intestinal cholecystokinin-T mRNA in trout fed the HF-FO diet. The HF diets relative to the LF ones induced higher growth and adiposity, whereas the replacements of FO by CO resulted in similar growth and adiposity. This, together with the substantial retention of C12 (57% of intake), suggests the relatively low oxidation of ingested C12. The down-regulation of carnitine palmitoyl-transferase-1 (CPT-1) confirms the minor dependency of medium-chain fatty acids (MCFA) on CPT-1 to enter the mitochondria. However, MCFA did not up-regulate mitochondrial oxidation evaluated using hepatic hydroxyacyl-CoA dehydrogenase as a marker, in line with their high retention in body lipids. At a low lipid level, MCFA increased mRNA levels of fatty acid synthase, elongase and stearoyl-CoA desaturase in liver, showing the hepatic activation of fatty acid synthesis pathways by MCFA, reflected by increased 16 : 0, 18 : 0, 16 : 1, 18 : 1 body levels. The high capacity of trout to incorporate and transform C12, rather than to readily oxidise C12, contrasts with data in mammals and may explain the absence of a satiating effect of CO in rainbow trout.


Asunto(s)
Ingestión de Alimentos , Ácidos Láuricos/administración & dosificación , Metabolismo de los Lípidos , Hígado/metabolismo , Músculo Esquelético/metabolismo , Oncorhynchus mykiss/metabolismo , Aceites de Plantas/administración & dosificación , Adiposidad , Animales , Acuicultura , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Colecistoquinina/genética , Colecistoquinina/metabolismo , Aceite de Coco , Dieta con Restricción de Grasas/veterinaria , Dieta Alta en Grasa/veterinaria , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ácidos Láuricos/efectos adversos , Ácidos Láuricos/análisis , Ácidos Láuricos/metabolismo , Hígado/enzimología , Músculo Esquelético/enzimología , Oncorhynchus mykiss/crecimiento & desarrollo , Fosforilación Oxidativa , Aceites de Plantas/efectos adversos , Aceites de Plantas/química , Aceites de Plantas/metabolismo , ARN Mensajero/metabolismo , Aumento de Peso
15.
J Dairy Sci ; 92(11): 5561-82, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19841218

RESUMEN

This experiment (replicated 3 x 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g of LA/d, or 530 g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15 d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition.


Asunto(s)
Amoníaco/metabolismo , Digestión , Ácidos Grasos/análisis , Fermentación , Ácidos Láuricos/metabolismo , Leche/química , Aceites de Plantas/metabolismo , Animales , Bovinos , Aceite de Coco , Suplementos Dietéticos , Ingestión de Alimentos/fisiología , Femenino , Contenido Digestivo/química , Concentración de Iones de Hidrógeno , Lactancia/fisiología , Estiércol/análisis , Distribución Aleatoria , Rumen/metabolismo
16.
J Food Sci ; 74(6): M237-41, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19723207

RESUMEN

Listeria monocytogenes (Lm) is a food safety concern that can be associated with ready-to-eat (RTE) meat and poultry products because of its persistence in the processing environment. Listeriosis has a fatality rate of 28% in immuno-compromised individuals. RTE meats receive a lethal heat treatment but may become contaminated by Lm after this treatment. Federal regulators and manufacturers of RTE meats are working to find additional ways to control postprocess contamination by Lm in RTE meats. This research was initiated to validate combinations of antimicrobials that would produce an immediate lethality of at least 1 log of Lm on artificially contaminated frankfurters, and also suppress Lm growth to less than 2 logs throughout the extended shelf life at refrigerated temperatures (4 degrees C). Based on our studies, 22-ppm lauric arginate (LAE, ethyl-N-dodecanoyl-L-arginate hydrochloride) gave more than a 1-log reduction of Lm surface inoculated onto frankfurters within 12 h. The combination of either 1.8%/0.13% or 2.1%/0.15% potassium lactate/sodium diacetate (L/D) in combination with 22 ppm LAE caused more than a 2-log reduction at 12 h. Storage studies revealed that complementary interactions of L/D and LAE also met the 2nd requirement. This combination initially reduced Lm by 2 logs and suppressed growth to less than 2 logs even at the end of the 156-d storage life for frankfurters. These results confirmed that the combination of L/D with LAE as a postprocessing-prepackaging application could be useful in complying with the USDA's Alternative 1 that requires validation for the control of Lm on RTE frankfurters.


Asunto(s)
Ácido Acético/metabolismo , Antibacterianos/metabolismo , Arginina/metabolismo , Microbiología de Alimentos , Ácido Láctico/metabolismo , Ácidos Láuricos/metabolismo , Listeria monocytogenes/crecimiento & desarrollo , Productos de la Carne/microbiología , Acetato de Sodio/metabolismo , Ácido Acético/administración & dosificación , Animales , Antibacterianos/administración & dosificación , Arginina/administración & dosificación , Recuento de Colonia Microbiana , Aditivos Alimentarios/metabolismo , Contaminación de Alimentos/legislación & jurisprudencia , Contaminación de Alimentos/prevención & control , Manipulación de Alimentos/métodos , Microbiología de Alimentos/legislación & jurisprudencia , Humanos , Ácidos Láuricos/administración & dosificación , Listeriosis/prevención & control , Sensación , Acetato de Sodio/administración & dosificación , Factores de Tiempo
17.
Biotechnol Lett ; 30(9): 1627-31, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18427927

RESUMEN

Rhizomucor miehei lipase was immobilized in hydroxy(propylmethyl) cellulose or agar gels containing lecithin or AOT microemulsions. The effect of the diffusion of substrates and products to this catalyst was studied, as well as the effect of temperature on the initial rate of ester synthesis. The composition of the gel affects the reaction rate due to mass transport phenomena. The apparent activation energies were higher for the systems based on agar, independently of the microemulsion used, and lower for the systems based on AOT microemulsions, independently of the polymer used.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Lipasa/metabolismo , Rhizomucor/enzimología , Temperatura , 1-Propanol/metabolismo , Catálisis , Difusión , Emulsiones , Activación Enzimática , Esterificación , Geles , Heptanol/metabolismo , Derivados de la Hipromelosa , Cinética , Ácidos Láuricos/metabolismo , Lecitinas/metabolismo , Metilcelulosa/análogos & derivados , Metilcelulosa/metabolismo , Especificidad por Sustrato
18.
Pflugers Arch ; 455(4): 701-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17717684

RESUMEN

Obesity is positively correlated to dietary lipid intake, and the type of lipid may play a causal role in the development of obesity-related pathologies. A major protein secreted by adipose tissue is adiponectin, which has antiatherogenic and antidiabetic properties. The aim of this study was to evaluate the effects of four different high-fat diets (enriched with soybean oil, fish oil, coconut oil, or lard) on adiponectin gene expression and secretion by the white adipose tissue (WAT) of mice fed on a selected diet for either 2 (acute treatment) or 60 days (chronic treatment). Additionally, 3T3-L1 adipocytes were treated for 48 h with six different fatty acids: palmitic, linoleic, eicosapentaenoic (EPA), docosahexaenoic (DHA), lauric, or oleic acid. Serum adiponectin concentration was reduced in the soybean-, coconut-, and lard-enriched diets in both groups. Adiponectin gene expression was lower in retroperitoneal WAT after acute treatment with all diets. The same reduction in levels of adiponectin gene expression was observed in epididymal adipose tissue of animals chronically fed soybean and coconut diets and in 3T3-L1 cells treated with palmitic, linoleic, EPA, and DHA acids. These results indicate that the intake of certain fatty acids may affect serum adiponectin levels in mice and adiponectin gene expression in mouse WAT and 3T3-L1 adipocytes. The effects appear to be time dependent and depot specific. It is postulated that the downregulation of adiponectin expression by dietary enrichment with soybean oil or coconut oil may contribute to the development of insulin resistance and atherosclerosis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Grasas de la Dieta/metabolismo , Ácidos Grasos/metabolismo , Células 3T3-L1 , Adiponectina/sangre , Adiponectina/genética , Adiponectina/metabolismo , Animales , Aceite de Coco , Grasas de la Dieta/administración & dosificación , Ácidos Docosahexaenoicos/metabolismo , Regulación hacia Abajo , Ácido Eicosapentaenoico/metabolismo , Aceites de Pescado/metabolismo , Ácidos Láuricos/metabolismo , Ácido Linoleico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Oléico/metabolismo , Ácido Palmítico/metabolismo , Aceites de Plantas/metabolismo , Aceite de Soja/metabolismo , Factores de Tiempo
19.
Plant Cell ; 19(5): 1473-87, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17496121

RESUMEN

CYP703 is a cytochrome P450 family specific to land plants. Typically, each plant species contains a single CYP703. Arabidopsis thaliana CYP703A2 is expressed in the anthers of developing flowers. Expression is initiated at the tetrad stage and restricted to microspores and to the tapetum cell layer. Arabidopsis CYP703A2 knockout lines showed impaired pollen development and a partial male-sterile phenotype. Scanning electron and transmission electron microscopy of pollen from the knockout plants showed impaired pollen wall development with absence of exine. The fluorescent layer around the pollen grains ascribed to the presence of phenylpropanoid units in sporopollenin was absent in the CYP703A2 knockout lines. Heterologous expression of CYP703A2 in yeast cells demonstrated that CYP703 catalyzes the conversion of medium-chain saturated fatty acids to the corresponding monohydroxylated fatty acids, with a preferential hydroxylation of lauric acid at the C-7 position. Incubation of recombinant CYP703 with methanol extracts from developing flowers confirmed that lauric acid and in-chain hydroxy lauric acids are the in planta substrate and product, respectively. These data demonstrate that in-chain hydroxy lauric acids are essential building blocks in sporopollenin synthesis and enable the formation of ester and ether linkages with phenylpropanoid units. This study identifies CYP703 as a P450 family specifically involved in pollen development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Biopolímeros/biosíntesis , Carotenoides/biosíntesis , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Láuricos/metabolismo , Polen/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Catálisis , Pared Celular/ultraestructura , Sistema Enzimático del Citocromo P-450/genética , Evolución Molecular , Etiquetas de Secuencia Expresada , Fertilidad , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidroxilación , Ácidos Láuricos/química , Modelos Biológicos , Mutación/genética , Filogenia , Polen/citología , Polen/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
J Plant Physiol ; 164(8): 993-1001, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16919843

RESUMEN

N-acylethanolamines (NAEs) are a group of lipid mediators that play important roles in mammals, but not much is known about their precise function in plants. In this work, we analyzed the possible involvement of N-lauroylethanolamine [NAE(12:0)] in the regulation of cut-flower senescence. In cut carnation flowers of cv. Red Barbara, the pulse treatment with 5 microM NAE(12:0) slowed senescence by delaying the onset of initial wilting. Ion leakage, which is a reliable indicator of membrane integrity, was postponed in NAE(12:0)-treated flowers. The lipid peroxidation increased in carnation petals with time, in parallel to the development in activity of lipoxygenase and superoxide anion production rate, and these increases were both delayed by NAE(12:0) supplementation. The activities of four enzymes (superoxide dismutase, catalase, glutathione reductase and ascorbate peroxidase) that are implicated in antioxidant defense were also upregulated in the cut carnations that had been treated with NAE(12:0). These data indicate that NAE(12:0)-induced delays in cut-carnation senescence involve the protection of the integrity of membranes via suppressing oxidative damage and enhancing antioxidant defense. We propose that the stage from the end of blooming to the onset of wilting is a critical period for NAE(12:0) action.


Asunto(s)
Dianthus/fisiología , Etanolaminas/metabolismo , Ácidos Láuricos/metabolismo , Envejecimiento , Antioxidantes/metabolismo , Ascorbato Peroxidasas , Catalasa/metabolismo , Dianthus/efectos de los fármacos , Dianthus/enzimología , Dianthus/crecimiento & desarrollo , Etanolaminas/farmacología , Flores/enzimología , Flores/fisiología , Glutatión Reductasa/metabolismo , Cinética , Ácidos Láuricos/farmacología , Lipooxigenasa/metabolismo , Peroxidasas/metabolismo , Proteínas de Plantas/metabolismo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA