Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 439: 138101, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043286

RESUMEN

In milk, fat exists in the form of milk fat globules (MFGs). The average size (average fat globules of different particle sizes) is the most common parameter when describing MFG size. There are different views on whether there is a correlation between MFG size and milk fat content. Is the MFG size correlated with milk fat content in ruminants? To address this question, we conducted two experiments. In experiment Ⅰ, dairy cows (n = 40) and dairy goats (n = 30) were each divided into a normal group and a low-fat group according to the milk fat content. In experiment Ⅱ, dairy cows (n = 16) and dairy goats (n = 12) were each divided into a normal group and a conjugated linoleic acid (CLA)-induced low-fat group. The normal groups were fed a basal diet, and the CLA-induced low-fat groups were fed the basal diet + 300 g/d CLA (cows) or the basal diet + 90 g/d CLA (goats). In both experiments, we determined the correlation between MFG size and milk composition and MFG distribution. The results showed that in the normal and low-fat groups of cows and goats, MFG size was not correlated with milk fat, protein, or lactose content or fat-to-protein ratio. Additionally, there was no difference in the distribution of large, medium, and small MFGs (P > 0.05). However, in the CLA-induced low-fat groups, we found a correlation between MFG size and milk fat content and fat-to-protein ratio (R2 > 0.3). Moreover, there was a significant change in the size distribution of MFGs. Therefore, in natural milk, MFG size was not correlated with milk fat content. Following CLA supplementation, MFG size was correlated with milk fat content. Our findings revealed that CLA and not milk fat affects MFG distribution and size.


Asunto(s)
Lactancia , Ácidos Linoleicos Conjugados , Femenino , Bovinos , Animales , Ácidos Grasos/metabolismo , Leche/metabolismo , Dieta/veterinaria , Cabras/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Suplementos Dietéticos
2.
Obes Res Clin Pract ; 17(5): 378-382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37634961

RESUMEN

OBJECTIVES: Obesity is a major global health issue, resulting in significant costs and increased mortality rates. Finding effective treatments for obesity is therefore essential. This study investigated the combined effects of L-Carnitine (LC) and Conjugated Linoleic Acid (CLA) on weight loss and adipose tissue microRNA levels. SUBJECTS /METHODS: Forty male Wistar rats weighing 150-200 g and about 8 weeks old were fed either a normal fat diet (NFD) or a high-fat diet (HFD) for 8 weeks. Afterwards, the HFD group was randomly divided into four subgroups: control, LC (200 mg kg-1), CLA (500 mg kg-1), and both (n = 8 in each group). The study lasted for an additional 4 weeks. The animals' weights were recorded regularly, and after 12 weeks, miRNAs were extracted from epididymal adipose tissue and analysed using real-time PCR. The miRNA expression levels of miR-27a and miR-143 were compared between groups using Kolmogorov-Smirnov and one-way ANOVA tests in SPSS software. RESULTS: At the end of the first 8 weeks, the HFD group weighed significantly more than the NFD group. LC significantly decreased weight gain (4.2%) compared to the control group, whereas CLA alone (3.5%) or in combination with LC (3.1%) did not significantly slow weight gain. Real-time PCR results showed that the HFD group had higher miR-143 levels and lower miR-27a levels compared to the NFD group. LC and CLA increased miR-27a expression after 4 weeks, but their combination decreased miR-27a expression. CLA alone reduced miR-143 expression, whereas LC had almost no effect. Their combination also reduced miR-143 expression. CONCLUSION: CLA and LC, which are considered weight loss supplements, can potentially regulate metabolism and cellular pathways. However, their combination did not show a synergistic effect on weight loss, possibly due to the reduction in miR-27a expression. Further studies are needed to evaluate the effects of combined fat burners on obesity treatment.


Asunto(s)
Ácidos Linoleicos Conjugados , MicroARNs , Humanos , Ratas , Masculino , Animales , MicroARNs/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo , Carnitina/farmacología , Carnitina/metabolismo , Ratas Wistar , Obesidad/genética , Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Aumento de Peso , Pérdida de Peso
3.
J Dairy Sci ; 106(7): 5096-5114, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37173257

RESUMEN

Oxidative stress and inflammation, as natural parts of metabolic adaptations during the transition from late gestation to early lactation, are critical indicators of dairy cows' metabolic health. This study was designed to investigate the effects of abomasal infusion of essential fatty acids (EFA), particularly α-linolenic acid, and conjugated linoleic acid (CLA) on plasma, erythrocyte, and liver markers of oxidative stress in dairy cows during the transition period. Rumen-cannulated German Holstein cows (n = 38) in their second lactation (11,101 ± 1,118 kg milk/305 d, mean ± standard deviation) were abomasally infused with one of the following treatments from d -63 antepartum until d 63 postpartum (PP): CTRL (n = 9; 76 g/d coconut oil); EFA (n = 9; 78 g/d linseed plus 4 g/d safflower oil); CLA (n = 10; isomers cis-9,trans-11 and trans-10,cis-12 CLA; 38 g/d); and EFA+CLA (n = 10; 120 g/d). Hematological parameters as well as markers of oxidative status were measured in plasma, erythrocytes, and liver before and after calving. Immunohematological parameters, including erythrocyte number, hematocrit, hemoglobin, mean corpuscular hemoglobin, leukocytes, and basophils, were affected by time, and their peak levels were observed on the day after calving. The oxidative stress markers glutathione peroxidase 1 and reactive oxygen metabolites in plasma and erythrocytes were both affected by time, exhibiting the highest levels on d 1 PP, whereas ß-carotene, retinol, and tocopherol were at their lowest levels at the same time. Immunohematological parameters were only marginally affected by fatty acid treatment in a time-dependent manner. As such, lymphocyte and atypical lymphocyte counts were both significantly highest in the groups that received EFA at d 1 PP. Moreover, EFA supplementation increased the mean corpuscular volume and showed a trend for induction of mean corpuscular hemoglobin compared with the CLA group during the transition period. The PP mean thrombocyte volume was higher in the EFA than in the CLA group (except for d 28) and both EFA and CLA reduced number of thrombocytes and thrombocrit at distinct time points. Hepatic mRNA abundance of markers related to oxidative status, including glutathione peroxidase (GPX-1) and catalase (CAT), was lower (P < 0.05) in EFA-treated than non-EFA-treated cows at d 28 PP. Dairy cows at the onset of lactation were characterized by induced markers of both oxidative stress and inflammation. Supplementing EFA and CLA had minor and time-dependent effects on markers of oxidative stress in plasma, erythrocytes, and liver. A comparison of EFA supplementation with CLA or CTRL showed higher immunohematological response at d 1 PP and lower hepatic antioxidant levels by d 28 PP. Supplementation with EFA+CLA had only a minor effect on oxidative markers, which were more similar to those with the EFA treatment. Altogether, despite the time-dependent differences, the current findings show only minor effects of EFA and CLA supplementation in the prevention of early lactation-induced oxidative stress.


Asunto(s)
Enfermedades de los Bovinos , Ácidos Linoleicos Conjugados , Femenino , Embarazo , Bovinos , Animales , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo , Suplementos Dietéticos , Lactancia/fisiología , Leche/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Esenciales/farmacología , Estrés Oxidativo , Inflamación/metabolismo , Inflamación/veterinaria , Dieta/veterinaria , Enfermedades de los Bovinos/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675252

RESUMEN

The aim of this study was to evaluate the anti-atherosclerotic effect of pomegranate seed oil as a source of conjugated linolenic acid (CLnA) (cis-9,trans-11,cis-13; punicic acid) compared to linolenic acid (LnA) and conjugated linoleic acid (CLA) (cis-9,trans-11) in apoE/LDLR-/- mice. In the LONG experiment, 10-week old mice were fed for the 18 weeks. In the SHORT experiment, 18-week old mice were fed for the 10 weeks. Diets were supplied with seed oils equivalent to an amount of 0.5% of studied fatty acids. In the SHORT experiment, plasma TCh and LDL+VLDL cholesterol levels were significantly decreased in animals fed CLnA and CLA compared to the Control. The expression of PPARα in liver was four-fold increased in CLnA group in the SHORT experiment, and as a consequence the expression of its target gene ACO was three-fold increased, whereas the liver's expression of SREBP-1 and FAS were decreased in CLnA mice only in the LONG experiment. Punicic acid and CLA isomers were determined in the adipose tissue and liver in animals receiving pomegranate seed oil. In both experiments, there were no effects on the area of atherosclerotic plaque in aortic roots. However, in the SHORT experiment, the area of atherosclerosis in the entire aorta in the CLA group compared to CLnA and LnA was significantly decreased. In conclusion, CLnA improved the lipid profile and affected the lipid metabolism gene expression, but did not have the impact on the development of atherosclerotic plaque in apoE/LDLR-/- mice.


Asunto(s)
Aterosclerosis , Ácidos Linoleicos Conjugados , Placa Aterosclerótica , Granada (Fruta) , Ratones , Animales , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/metabolismo , Granada (Fruta)/metabolismo , Metabolismo de los Lípidos , Ácidos Linolénicos/farmacología , Ácidos Linolénicos/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aceites de Plantas/farmacología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo
5.
Food Res Int ; 161: 111767, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192874

RESUMEN

Eight lactating cows were used to determine the effects of citrus peel extract (CPE) on milk performance, antioxidant properties, and milk lipids composition. CPE supplementation up to 150 g/d (CPE150) increased milk yield and the proportions of unsaturated fatty acids of conjugated linoleic acid. CPE with abundant polyphenol and flavonoids can transfer these bioactive substances to mammary gland and improve the antioxidant properties of milk obtained from cows. Lipidomics revealed that 56 lipid species were altered between CON vs CPE150, and there were five key differential metabolic pathways. In particular, milk phosphatidylethanolamine and phosphatidylcholine were significantly increased with dietary CPE supplementation. In summary, our results provide insights into the modifications in the milk components and milk quality of dairy cows received CPE. The inclusion of CPE in the diet of dairy cows may be an effective and natural way to increase the antioxidant amounts and beneficial lipids in milk.


Asunto(s)
Citrus , Ácidos Linoleicos Conjugados , Alimentación Animal/análisis , Animales , Antioxidantes/farmacología , Bovinos , Cromatografía Liquida , Suplementos Dietéticos , Femenino , Lactancia , Ácidos Linoleicos Conjugados/metabolismo , Lipidómica , Leche/metabolismo , Fosfatidilcolinas , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacología , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Espectrometría de Masas en Tándem
6.
Andrologia ; 54(11): e14598, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36161725

RESUMEN

The present study was carried out to examine first, if diets enriched with 320 g of the base diet with common dietary oils including fish oil, olive oil, hydrogenated sunflower seed (H-SFS) oil, flaxseed oil and sunflower seed oil (SFS) could induce weight gain and alter reproductive and metabolic characteristics of male mice. Second, whether the addition of conjugated linoleic acid (CLA, 10% of the diet) could ameliorate any negative effects. In this cross-sectional study, 90 four-week-old male NMRI mice were used in two consecutive experiments. A high level of dietary oils negatively affected some reproductive and metabolic characteristics of male mice (p < 0.05), specifically, sunflower seed oil enrichment resulted in higher HDL levels and apoptosis of germinal epithelial cells. An olive oil-enriched diet caused an increase in plasma triglyceride concentrations and germinal cell apoptosis, as well as a decrease in sperm concentration and perturbed spermatogenesis. When CLA was fed in conjunction with dietary oils it successfully mitigated some of the negative reproductive and metabolic characteristics. We conclude that male reproductive processes are affected by high dietary oils, even before signs of obesity are evident. Inclusion of dietary CLA may provide some benefit to offset negative effects, although further studies are required.


Asunto(s)
Grasas Insaturadas en la Dieta , Ácidos Linoleicos Conjugados , Masculino , Ratones , Animales , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo , Aceite de Girasol , Estudios Transversales , Alimentación Animal/análisis , Semen/metabolismo , Aceites de Plantas , Aceites de Pescado/farmacología , Grasas Insaturadas en la Dieta/metabolismo , Suplementos Dietéticos
7.
Zygote ; 30(6): 863-871, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36148787

RESUMEN

Conjugated linoleic acid (CLA) is a mixture of positional isomers of linoleic acid found in ruminant products and meat. The diet supplementing with CLA is an emerging area, requiring studies to elucidate its effects on animals and human reproduction, as well as its side effects. Therefore, the aim of this study was to evaluate the effects of CLA gastric administration, during the pregestational and gestational period in biometric and reproductive parameters, as well as in ovarian morphophysiology. Animals were distributed in three groups: (1) control (n = 10); (2) fish oil (n = 10); and (3) CLA (n = 10), that daily received, by gavage, phosphate-buffered saline, fish oil and CLA, respectively, carried out over 50 days (before mating, mating and pregnancy). There was an increment in the nasoanal distance and Lee index of the CLA and fish oil-treated groups during the first weeks (P > 0.05). CLA administration did not affect the ovarian follicle mobilization (P > 0.05), the number of follicles (P > 0.05) and the integrated density of lipid content of oocytes included in antral follicles (P > 0.05). There was no effect of CLA administration on the litter weight (P > 0.05; F2 and F3), however, an increment (P < 0.05) in the number of pups per litter (F2) was observed. Overall, this study demonstrated the absence of side effects of the CLA gastric administration on mice reproductive performance and suggests that this treatment would transgenerationally enhance fertility in this species.


Asunto(s)
Ácidos Linoleicos Conjugados , Embarazo , Humanos , Femenino , Animales , Ratones , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo , Reproducción , Suplementos Dietéticos , Aceites de Pescado/farmacología , Ácido Linoleico
8.
Sci Rep ; 12(1): 5648, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383209

RESUMEN

Essential fatty acids (EFA) and conjugated linoleic acids (CLA) are unsaturated fatty acids with immune-modulatory effects, yet their synergistic effect is poorly understood in dairy cows. This study aimed at identifying differentially abundant proteins (DAP) and their associated pathways in dairy cows supplied with a combination of EFA and CLA during the transition from antepartum (AP) to early postpartum (PP). Sixteen Holstein cows were abomasally infused with coconut oil as a control (CTRL) or a mixture of EFA (linseed + safflower oil) and CLA (Lutalin, BASF) (EFA + CLA) from - 63 to + 63 days relative to parturition. Label-free quantitative proteomics was performed on plasma samples collected at days - 21, + 1, + 28, and + 63. During the transition time, DAP, consisting of a cluster of apolipoproteins (APO), including APOE, APOH, and APOB, along with a cluster of immune-related proteins, were related to complement and coagulation cascades, inflammatory response, and cholesterol metabolism. In response to EFA + CLA, specific APO comprising APOC3, APOA1, APOA4, and APOC4 were increased in a time-dependent manner; they were linked to triglyceride-enriched lipoprotein metabolisms and immune function. Altogether, these results provide new insights into metabolic and immune adaptation and crosstalk between them in transition dairy cows divergent in EFA + CLA status.


Asunto(s)
Ácidos Linoleicos Conjugados , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Esenciales , Femenino , Lactancia/fisiología , Ácidos Linoleicos Conjugados/metabolismo , Metabolismo de los Lípidos , Leche/metabolismo , Proteómica
9.
J Food Prot ; 85(4): 712-719, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35113991

RESUMEN

ABSTRACT: Probiotics in fermented foods or commercially available supplements benefit the host by providing metabolites and peptides. The production of these metabolites varies with the available substrates or prebiotics present in the system and their concentration. In this study, 0.5% peanut flour (PF) was used to stimulate the growth and production of metabolites of wild-type Lactobacillus casei (LCwt) and compare with an engineered L. casei (LCCLA) capable of converting a higher amount of conjugated linoleic acid (CLA). The total extracellular metabolites present in the cell-free cultural supernatant (CFCS) of LCwt (without peanut), LCwt+PF (with peanut), and LCCLA were collected after 24 and 48 h of incubation, and their antagonistic activities against enterohemorrhagic Escherichia coli (EHEC EDL933) growth and pathogenesis were evaluated. All collected metabolites exhibited varying efficiency in restraining EHEC EDL933 growth, whereas supplementing a low concentration of CLA to the 48-h CFCS from LCwt showed augmented antagonism toward EHEC EDL933. A downregulation of key virulence genes was observed from metabolites collected at the 48-h time point. These observations indicate that the presence of metabolites in CFCSs-including CLA, which is produced by Lactobacillus and was identified by gas chromatography-mass spectrometry-plays a critical role. This study demonstrates the potential applicability of Lactobacillus-originated CLA in the prevention of EHEC EDL933-mediated illnesses.


Asunto(s)
Escherichia coli Enterohemorrágica , Lacticaseibacillus casei , Ácidos Linoleicos Conjugados , Probióticos , Suplementos Dietéticos , Lacticaseibacillus casei/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacología
10.
Liver Int ; 42(6): 1449-1466, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35184357

RESUMEN

BACKGROUND & AIMS: Disruption of lipid metabolism is largely linked to metabolic disorders, such as hypercholesterolemia (HCL) and liver steatosis. While cholesterol metabolic re-programmers can serve as targets for relevant interventions. Here we explored the dietary conjugated linoleic acids (CLA)-induced HCL in mice and the molecular regulation behind it. METHODS: A high dose of CLA supplementation in the diet was used to induce HCL in mice and was found to cause a hyper-activated cholesterol biosynthesis programme in the liver, leading to cholesterol metabolism dysregulation. The effects of a small-molecule drug targeting PPARα, i.e., GW6471 were studied in vivo in mice fed diets with CLA supplementation for 28 days, and in primary hepatocytes derived from HCL-mice in vitro. RESULTS: We demonstrate that CLA induced HCL and liver steatosis through multiple pathways. Among which was the PPARα-mediated cholesterogenesis. It was found to cooperate with SREBP2 via binding to Hmgcr and Dhcr7 (genes encoding key enzymes of the cholesterol biosynthetic pathway) and recruits the histone marks H3K27ac and H3K4me1 and cofactors. PPARα inhibition disrupts its physical association with SREBP2 by blocking cobinding of PPARα and SREBP2 to the genomic DNA response element. We showed that NR RORγ functions as an essential mediator that facilitates the interaction of PPARα and SREBP2 to modulate the cholesterol biosynthesis genes expression. CONCLUSIONS: Our study unravels that the small-molecule compound GW6471 exerts an attractive therapeutic effect for CLA-induced HCL, involving multiple pathways with the "PPARα-RORγ-SREBP2" being a potential complex player in this hepatic cholesterol biosynthesis programming.


Asunto(s)
Hígado Graso , Hipercolesterolemia , Hiperlipidemias , Ácidos Linoleicos Conjugados , Animales , Colesterol/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , PPAR alfa
11.
J Proteomics ; 252: 104436, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34839038

RESUMEN

This study aimed at investigating the synergistic effects of essential fatty acids (EFA) and conjugated linoleic acids (CLA) on the liver proteome profile of dairy cows during the transition to lactation. 16 Holstein cows were infused from 9 wk. antepartum to 9 wk. postpartum into the abomasum with either coconut oil (CTRL) or a mixture of EFA (linseed + safflower oil) and CLA (EFA + CLA). Label-free quantitative proteomics was performed in liver tissue biopsied at days -21, +1, +28, and + 63 relative to calving. Differentially abundant proteins (DAP) between treatment groups were identified at the intersection between a multivariate and a univariate analysis. In total, 1680 proteins were identified at each time point, of which between groups DAP were assigned to the metabolism of xenobiotics by cytochrome P450, drug metabolism - cytochrome P450, steroid hormone biosynthesis, glycolysis/gluconeogenesis, and glutathione metabolism. Cytochrome P450, as a central hub, enriched with specific CYP enzymes comprising: CYP51A1 (d - 21), CYP1A1 & CYP4F2 (d + 28), and CYP4V2 (d + 63). Collectively, supplementation of EFA + CLA in transition cows impacted hepatic lipid metabolism and enriched several common biological pathways at all time points that were mainly related to ω-oxidation of fatty acids through the Cytochrome p450 pathway. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is among the first longitudinal proteomics studies in nutrition of dairy cows. The selected time points are critical periods around parturition with profound endocrine and metabolic adaptations. Second, our findings provided novel information on key drivers of biologically relevant pathways suggested according to previously reported performance, zootechnical, and metabolism data (already published elsewhere). Third, our results revealed the role of cytochrome P450 that is hardly investigated, and of ω-oxidation pathways in the metabolism of fatty acids with the involvement of specific enzymes.


Asunto(s)
Ácidos Linoleicos Conjugados , Animales , Bovinos , Dieta , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Esenciales/metabolismo , Ácidos Grasos Esenciales/farmacología , Femenino , Lactancia , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Hígado/metabolismo , Leche , Embarazo , Proteoma/metabolismo
12.
Lipids ; 57(1): 33-44, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741309

RESUMEN

Jacaric acid, a conjugated linolenic acid (CLNA) present in jacaranda oil (JO), is considered a potent anticarcinogenic agent. Several studies have focused on its biological effects, but the metabolism once consumed is not clear yet. The aim of this work was to evaluate the effects of two different daily doses of JO on serum parameters and fatty acid (FA) profile of mice tissues after 4 weeks of feeding. No significant changes on body weight gain, food intake, or tissue weight were determined after 0.7 or 2 ml/kg of JO supplementation compared to control animals. Significantly lower blood low-density lipoproteins-cholesterol (20 mg/dl) and glucose (~147-148 mg/dl) levels were detected in both oil-treated groups compared to control (31.2 and 165 mg/dl, respectively). Moreover, jacaric acid was partially converted into cis9, trans11 conjugated linoleic acid (CLA) and thus further incorporated into tissues. Liver evidenced the highest total conjugated fatty acid content (1.1%-2.2%), followed by epididymal (0.7%-1.9%) and mesenteric (1.4%-1.8%) fat. Lower saturated and higher unsaturated fatty acid content was detected in both oil-treated groups compared to control. Our results support the safety of JO and its potential application with a functional or nutraceutical propose, by increasing human CLNA consumption and further availability of CLA.


Asunto(s)
Ácidos Grasos , Ácidos Linoleicos Conjugados , Animales , Disponibilidad Biológica , Biomarcadores/metabolismo , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Hígado/metabolismo , Ratones , Ácido alfa-Linolénico/metabolismo
13.
Br J Nutr ; 127(10): 1443-1454, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33658091

RESUMEN

This experiment was designed to investigate the effect of supplementing conjugated linoleic acid (CLA) in breeder hens diet on development and hepatic lipid metabolism of chick offspring. Hy-Line Brown breeder hens were allocated into two groups, supplemented with 0 (control (CT)) or 0·5 % CLA for 8 weeks. Offspring chicks were grouped according to the mother generation and fed for 7 d. CLA treatment had no significant influence on development, egg quality and fertility of breeder hens but darkened the egg yolks in shade and increased yolk sac mass compared with the CT group. Addition of CLA resulted in increased body mass and liver mass and decreased deposition of subcutaneous adipose tissue in chick offspring. The serum TAG and total cholesterol levels of chick offspring were decreased in CLA group. CLA treatment increased the incorporation of both CLA isomers (c9t11 and t10c12) in the liver of chick offspring, accompanied by the decreased hepatic TAG levels, related to the significant reduction of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) enzyme activities and the increased carnitine palmitoyltransferase-1 (CPT1) enzyme activity. Meanwhile, CLA treatment reduced the mRNA expression of genes related to fatty acid biosynthesis (FAS, ACC and sterol regulatory element-binding protein-1c) and induced the expression of genes related to ß-oxidative (CPT1, AMP-activated protein kinase and PPARα) in chick offspring liver. In summary, the addition of CLA in breeder hens diet significantly increased the incorporation of CLA in the liver of chick offspring, which further regulate hepatic lipid metabolism.


Asunto(s)
Ácidos Linoleicos Conjugados , Animales , Pollos/metabolismo , Dieta/veterinaria , Ácido Graso Sintasas/metabolismo , Femenino , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Metabolismo de los Lípidos , Hígado/metabolismo
14.
Toxicol Mech Methods ; 31(9): 674-679, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34238125

RESUMEN

Acrolein (AC) is a toxic substance that can have a neurotoxic effect. It can cause oxidative stress and mitochondrial dysfunction. Conjugated linoleic acid (CLA), a dietary supplement, has many biological functions. Limited information is available about the effect of CLA on AC-induced brain toxicity. Therefore, the present study aims to investigate the effect of CLA on mitochondrial oxidative stress, respiratory enzymes, krebs cycle enzymes and ATP levels in AC treated rat brain. Sprague Dawley male rats were given AC (5 mg/kg i.p.), CLA (200 mg/kg orally) and CLA with AC for six days per week for 30 days. Some oxidative stress parameters and mitochondrial enzymes such as manganese super oxide dismutase, glutathione peroxidase, NADP+-dependent isocitrate dehydrogenase (ICDH), alpha-ketoglutarate dehydrogenase (α-KGDH), malate dehydrogenase, reduced glutathione (GSH), lipid peroxidation (LP), protein carbonyl (PC), oxidative phosphorylation (OXPHOS) and tricarboxylic acid cycle (TCA) enzymes, and ATP levels were determined. AC significantly decreased the activities of GSH, antioxidant enzymes, OXPHOS enzymes (complex I and IV), TCA enzymes (ICDH and α-KGDH) and ATP levels. Significant increases were also observed in mitochondrial LP and PC levels in AC group. Co-treatment with AC + CLA improved oxidative stress and mitochondrial dysfunction caused by AC. As a result of our findings, it was observed that CLA was effective in improving oxidative stress and impaired mitochondrial functions in brain tissue by the effect of AC. Considering the association between neurodegenerative diseases and mitochondrial dysfunction, CLA can play a role in the prevention and therapy of neurodegenerative disorders.


Asunto(s)
Ácidos Linoleicos Conjugados , Acroleína/toxicidad , Animales , Antioxidantes/metabolismo , Encéfalo , Ácidos Linoleicos Conjugados/metabolismo , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley
15.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810070

RESUMEN

Phosphoproteomics is a cutting-edge technique that can be utilized to explore adipose tissue (AT) metabolism by quantifying the repertoire of phospho-peptides (PP) in AT. Dairy cows were supplemented with conjugated linoleic acid (CLA, n = 5) or a control diet (CON, n = 5) from 63 d prepartum to 63 d postpartum; cows were slaughtered at 63 d postpartum and AT was collected. We performed a quantitative phosphoproteomics analysis of subcutaneous (SC) and omental (OM) AT using nanoUPLC-MS/MS and examined the effects of CLA supplementation on the change in the phosphoproteome. A total of 5919 PP were detected in AT, and the abundance of 854 (14.4%) were differential between CON and CLA AT (p ≤ 0.05 and fold change ± 1.5). The abundance of 470 PP (7.9%) differed between OM and SC AT, and the interaction treatment vs. AT depot was significant for 205 PP (3.5% of total PP). The integrated phosphoproteome demonstrated the up- and downregulation of PP from proteins related to lipolysis and lipogenesis, and phosphorylation events in multiple pathways, including the regulation of lipolysis in adipocytes, mTOR signaling, insulin signaling, AMPK signaling, and glycolysis. The differential regulation of phosphosite on a serine residue (S777) of fatty acid synthase (FASN) in AT of CLA-supplemented cows was related to lipogenesis and with more phosphorylation sites compared to acetyl-coenzyme A synthetase (ACSS2). Increased protein phosphorylation was seen in acetyl-CoA carboxylase 1 (ACACA;8 PP), FASN (9 PP), hormone sensitive lipase (LIPE;6 PP), perilipin (PLIN;3 PP), and diacylglycerol lipase alpha (DAGLA;1 PP) in CLA vs. CON AT. The relative gene expression in the SC and OM AT revealed an increase in LIPE and FASN in CLA compared to CON AT. In addition, the expression of DAGLA, which is a lipid metabolism enzyme related to the endocannabinoid system, was 1.6-fold higher in CLA vs. CON AT, and the expression of the cannabinoid receptor CNR1 was reduced in CLA vs. CON AT. Immunoblots of SC and OM AT showed an increased abundance of FASN and a lower abundance of CB1 in CLA vs. CON. This study presents a complete map of the SC and the OM AT phosphoproteome in dairy cows following CLA supplementation and discloses many unknown phosphorylation sites, suggestive of increased lipid turnover in AT, for further functional investigation.


Asunto(s)
Tejido Adiposo/metabolismo , Suplementos Dietéticos , Ácidos Linoleicos Conjugados/metabolismo , Metabolismo de los Lípidos , Fosfoproteínas/metabolismo , Proteoma , Proteómica , Animales , Biomarcadores , Bovinos , Biología Computacional/métodos , Ontología de Genes , Ácidos Linoleicos Conjugados/administración & dosificación , Lipogénesis , Leche , Epiplón , Proteómica/métodos , Grasa Subcutánea/metabolismo
16.
J Dairy Sci ; 104(4): 5095-5109, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33663821

RESUMEN

In the dairy cow, late gestation and early lactation are characterized by a complexity of metabolic processes required for the homeorhetic adaptation to the needs of fetal growth and milk production. Skeletal muscle plays an important role in this adaptation. The objective of this study was to characterize the metabolome in skeletal muscle (semitendinosus muscle) and in serum of dairy cows in the context of the physiological changes occurring in early lactation and to test the effects of dietary supplementation (from d 1 in milk onwards) with conjugated linoleic acids (sCLA; 100 g/d; supplying 7.6 g of cis-9,trans-11 CLA and 7.6 g of trans-10,cis-12 CLA per cow/d; n = 11) compared with control fat-supplemented cows (CTR; n = 10). The metabolome was characterized in skeletal muscle samples collected on d 21 and 70 after calving in conjunction with their serum counterpart using a targeted metabolomics approach (AbsoluteIDQ p180 kit; Biocrates Life Sciences AG, Innsbruck, Austria). Thereby 188 metabolites from 6 different compound classes (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids, and hexoses) were quantified in both sample types. In both groups, dry matter intake increased after calving. It was lower in sCLA than in CTR on d 21, which resulted in reduced calculated net energy and metabolizable protein balances. On d 21, the concentrations of dopamine, Ala, and hexoses in the skeletal muscle were higher in sCLA than in CTR. On d 21, the changed metabolites in serum were mainly long-chain (>C24) diacyl phosphatidylcholine PC (PC-aa) and acyl-alkyl phosphatidylcholine (PC-ae), along with lysophosphatidylcholine acyl (lysoPC-a) C26:1 that were all lower in sCLA than in CTR. Supplementation with CLA affected the muscle concentrations of 22 metabolites on d 70 including 10 long-chain (>C22) sphingomyelin (SM), hydroxysphingomyelin [SM(OH)], PC-aa, and PC-ae along with 9 long-chain (>C16) lysoPC-a and 3 metabolites related to amino acids (spermine, citrulline, and Asp). On d 70, the concentrations of lysoPC-a C18:2 and C26:0 in serum were higher in the sCLA cows than in the CTR cows. Regardless of treatment, the concentrations of Ile, Leu, Phe, Lys, His, Met, Trp, and hydroxybutyrylcarnitine (C4-OH) decreased, whereas those of ornithine, Gln, and trans-4-hydroxyproline (t4-OH-Pro) increased from d 21 to 70 in muscle. The significantly changed metabolites in serum with time of lactation were 28 long-chain (>C30) PC-ae and PC-aa, 7 long-chain (>C16) SM and SM(OH), along with lysoPC-a C20:3 that were all increased. In conclusion, in addition to other significantly changed metabolites, CLA supplementation mainly led to changes in muscle and serum concentrations of glycerophospholipids and sphingolipids that might reflect the phospholipid compositional changes in muscle. The metabolome changes observed in sCLA on d 21 seem to be, at least in part, due to the lower DMI in these cows. The changes in the muscle concentrations of AA from d 21 to 70, which coincided with the steady energy and MP balances, might reflect a shift of protein synthesis/degradation balance toward synthesis.


Asunto(s)
Ácidos Linoleicos Conjugados , Animales , Austria , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Lactancia , Ácidos Linoleicos Conjugados/metabolismo , Metaboloma , Leche , Músculo Esquelético/metabolismo , Embarazo
17.
Methods Mol Biol ; 2278: 87-100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33649950

RESUMEN

The biological significance of conjugated fatty acids (CFAs) has been linked to positive health effects based on biomedical, in vitro, and clinical studies. Of note, conjugated linoleic acids (CLAs) are the most widely characterized fatty acids as geometric isomers cis-9,trans-11 and trans-10,cis-12 CLA occur naturally in ruminant fats, dairy products, and hydrogenated oils. Concerning CLAs, it is known that bacterial biohydrogenation, a process whereby ruminal bacteria or starter cultures of lactic acid bacteria have the ability to synthesize CLA by altering the chemical structure of essential fatty acids via enzymatic mechanisms, produces a multitude of isomers with desirable properties. Bifidobacterium species are classed as food grade microorganisms and some of these strains harness molecular determinants that are responsible for the bioconversion of free fatty acids to CLAs. However, molecular mechanisms have yet to be fully elucidated. Reports pertaining to CLAs have been attributed to suppressing tumor growth, delaying the onset of diabetes mellitus and reducing body fat in obese individuals. Given the increased attention for their bioactive properties, we describe in this chapter the qualitative and quantitative methods used to identify and quantify CLA isomers produced by bifidobacterial strains in supplemented broth media. These approaches enable rapid detection of potential CLA producing strains and accurate measurement of fatty acids in biological matrices.


Asunto(s)
Bifidobacterium/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Bifidobacterium/química , Técnicas de Cultivo de Célula/métodos , Cromatografía de Gases/métodos , Isomerismo , Ácidos Linoleicos Conjugados/análisis , Espectrofotometría/métodos
18.
J Dairy Sci ; 103(9): 7655-7681, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32600765

RESUMEN

To meet the energy requirements of high-yielding dairy cows, grains and fats have increasingly been incorporated in ruminant diets. Moreover, lipid supplements have been included in ruminant diets under experimental or practical conditions to increase the concentrations of bioactive n-3 fatty acids and conjugated linoleic acids in milk and meat. Nevertheless, those feeding practices have dramatically increased the incidence of milk fat depression in dairy cattle. Although induction of milk fat depression may be a management tool, most often, diet-induced milk fat depression is unintended and associated with a direct economic loss. In this review, we give an update on the role of fatty acids, particularly originating from rumen biohydrogenation, as well as of rumen microbes in diet-induced milk fat depression. Although this syndrome seems to be multi-etiological, the best-known causal factor remains the shift in rumen biohydrogenation pathway from the formation of mainly trans-11 intermediates toward greater accumulation of trans-10 intermediates, referred to as the trans-11 to trans-10 shift. The microbial etiology of this trans-11 to trans-10 shift is not well understood yet and it seems that unraveling the microbial mechanisms of diet-induced milk fat depression is challenging. Potential strategies to avoid diet-induced milk fat depression are supplementation with rumen stabilizers, selection toward more tolerant animals, tailored management of cows at risk, selection toward more efficient fiber-digesting cows, or feeding less concentrates and grains.


Asunto(s)
Grasas de la Dieta/metabolismo , Leche/química , Rumen/metabolismo , Rumen/microbiología , Animales , Bovinos , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Femenino , Hidrogenación , Lactancia , Ácidos Linoleicos Conjugados/metabolismo , Leche/metabolismo
19.
PLoS One ; 15(3): e0216187, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32168348

RESUMEN

A systematic review and meta-analysis were conducted to predict and identify ways to increase conjugated linoleic acid (CLA) formation in ruminant-derived products to treat human health issues with dietary tannins. The objective was to compare and confirm the effects of dietary tannins on CLA formation by analyzing in vitro and/or in vivo studies. We reported the results of the meta-analysis based on numerical data from 38 selected publications consisting of 3712 treatments. Generally, via multiple pathways, the CLA formation increased when dietary tannins increased. Concurrently, dietary tannins increased Δ9 desaturation and the CLA indices in milk and meat (P < 0.05 and P < 0.001, with average R2 values of 0.23 and 0.44, respectively), but they did not change the rumen fermentation characteristics, including total volatile fatty acids (mmol/L) and their acid components. In vitro observations may accurately predict in vivo results. Unfortunately, there was no relationship between in vitro observations and in vivo results (R2 < 0.10), indicating that it is difficult to predict CLA formation in vivo considering in vitro observations. According to the statistical meta-analysis results regarding animal aspects, the ranges of tannin levels required for CLA formation in vitro and in vivo were approximately 0.1-20 g/kg dry matter (DM) (P < 0.001) and 2.1-80 g/kg DM (P < 0.001), respectively. In conclusion, the in vivo method was more suitable for the direct observation of fatty acid transformation than the in vitro method.


Asunto(s)
Ácidos Linoleicos Conjugados/metabolismo , Rumiantes/metabolismo , Taninos/metabolismo , Animales , Técnicas de Cultivo Celular por Lotes , Sesgo , Carne/análisis , Leche/metabolismo , Análisis de Regresión
20.
Acta Biochim Pol ; 67(1): 99-109, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32031769

RESUMEN

Lactobacillus plantarum YW11 capability to convert linoleic acid into conjugated linoleic acid and other metabolites was studied in a dose-dependent manner by supplementing LA at different concentrations. L. plantarum YW11 displayed a uniform distinctive growth curve of CLA and other metabolites at concentrations of LA ranging from 1% (w/v) to 10% (w/v), with slightly increased growth at higher LA concentrations. The biotransformation capability of L. plantarum YW11 evaluated by GC-MS revealed a total of one CLA isomer, i.e. 9-cis,11-trans-octadecadienoic acid, also known as the rumenic acid (RA), one linoleic acid isomer (linoelaidic acid), and LA metabolites: (E)-9-octadecenoic acid ethyl ester, trans, trans-9,12-octadecadienoic acid, propyl ester and stearic acid. All the metabolites of linoleic acid were produced from 1 to 10% LA supplemented MRS media, while surprisingly the only conjugated linoleic acid compound was produced at 10% LA. To assess the presence of putative enzymes, responsible for conversion of LA into CLA, in silico characterization was carried out. The in silico characterization revealed presence of four enzymes (10-linoleic acid hydratase, linoleate isomerase, acetoacetate decarboxylase and dehydrogenase) that may be involved in the production of CLA (rumenic acid) and LA isomers. The biotransformation ability of L. plantarum YW11 to convert LA into RA has great prospects for biotechnological and industrial implications that could be exploited in the future scale-up experiments.


Asunto(s)
Biotransformación , Lactobacillus plantarum/metabolismo , Ácido Linoleico/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Simulación por Computador , Microbiología de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Isomerismo , Lactobacillus plantarum/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA