Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 58(9): 4002-4010, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818927

RESUMEN

Recent studies have focused on how sickness behaviours, including lethargy, are coordinated in the brain in response to peripheral infections. Decreased hypocretin (orexin) signalling is associated with lethargy and previous research suggests that hypocretin signalling is downregulated during sickness. However, there are studies that find increases or no change in hypocretin signalling during sickness. It is further unknown whether hypocretin receptor expression changes during sickness. Using lipopolysaccharide (LPS) to induce sickness in female mice, we investigated how LPS-injection affects gene expression of hypocretin receptors and prepro-hypocretin as well as hypocretin-1 peptide concentrations in brain tissue. We found that hypocretin receptor 1 gene expression was downregulated during sickness in the lateral hypothalamus and ventral tegmental area, but not in the dorsal raphe nucleus or locus coeruleus. We found no changes in hypocretin receptor 2 expression. Using a gene expression calculation that accounts for primer efficiencies and multiple endogenous controls, we were unable to detect changes in prepro-hypocretin expression. Using radioimmunoassay, we found no change in hypocretin-1 peptide in rostral brain tissue. Our results indicate that hypocretin receptor expression can fluctuate during sickness, adding an additional level of complexity to understanding hypocretin signalling during sickness.


Asunto(s)
Área Hipotalámica Lateral , Neuropéptidos , Ratones , Femenino , Animales , Orexinas/metabolismo , Área Hipotalámica Lateral/metabolismo , Receptores de Orexina/metabolismo , Neuropéptidos/metabolismo , Área Tegmental Ventral/metabolismo , Letargia/metabolismo , Lipopolisacáridos/metabolismo , Hipotálamo/metabolismo
2.
Acupunct Med ; 41(6): 336-344, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36655631

RESUMEN

BACKGROUND: Insomnia is a well-recognized clinical sleep disorder in the adult population. It has been established that acupuncture has a clinical effects in the treatment of insomnia; however, research on the underlying neural circuits involved in these effects is limited. METHODS: The modified multiple platform method (MMPM) was used to establish a rat model of chronic sleep deprivation (CSD). Forty rats were randomly divided into a control (Con) group, (untreated) CSD group, electroacupuncture-treated CSD group (CSD + EA) and estazolam-treated CSD group (CSD + Estazolam group) with n = 10 per group. In the CSD + EA group, EA was delivered at Yintang and unilateral HT7 (left and right treated every other day) with continuous waves (2 Hz frequency) for 30 min/day over 7 consecutive days. In the CSD + Estazolam groups, estazolam was administered by oral gavage (0.1 mg/kg) for 7 consecutive days. The open field test (OFT) was used to observe behavioral changes. Immunofluorescence assays and enzyme-linked immunosorbent assay (ELISA) were used to observe the effects of EA on the ventral tegmental area (VTA)-nucleus accumbens (NAc) dopamine (DA) pathway. We also assessed the effects of EA on the expression of dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R) in the NAc, which are the downstream targets of the VTA-NAc DA pathway. RESULTS: After CSD was established by MMPM, rats exhibited increased autonomous activity and increased excitability of the VTA-NAc DA pathway, with increased VTA and NAc DA content, increased D1R expression and decreased D2R expression in the NAc. EA appeared to reduce the autonomous ability of CSD rats, leading to lower DA content in the VTA and NAc, reduced expression of D1R in the NAc and increased expression of D2R. Most importantly, EA produced effects similar to estazolam with respect to the general condition of rats with CSD and regulation of the VTA-NAc DA pathway. CONCLUSIONS: The therapeutic effect of EA in chronic insomnia may be mediated by reduced excitability of the VTA-NAc DA pathway, with lower DA content in the VTA and NAc, downregulated expression of D1R in the NAc and increased expression of D2R.


Asunto(s)
Electroacupuntura , Trastornos del Inicio y del Mantenimiento del Sueño , Ratas , Animales , Área Tegmental Ventral/metabolismo , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Privación de Sueño/terapia , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Estazolam/metabolismo , Estazolam/farmacología
3.
J Psychoactive Drugs ; 55(1): 62-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35114904

RESUMEN

Aberrant glutamatergic signaling has been closely related to several pathologies of the central nervous system. Glutamatergic activity can induce an increase in neural plasticity mediated by brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA), a nodal point in the mesolimbic dopamine system. Recent studies have related BDNF dependent plasticity in the VTA with the modulation of aversive motivation to deal with noxious environmental stimuli. The disarray of these learning mechanisms would produce an abnormal augmentation in the representation of the emotional information related to aversion, sometimes even in the absence of external environmental trigger, inducing pathologies linked to mood disorders such as depression and drug addiction. Recent studies point out that serotonin (5-hydroxytryptamine, 5-HT) receptors, especially the 2a (5-HT2a) subtype, play an important role in BDNF-related neural plasticity in the VTA. It has been observed that a single administration of a 5HT2a agonist can both revert an animal to a nondependent state from a drug-dependent state (produced by the chronic administration of a substance of abuse). The 5HT2a agonist also reverted the BDNF-induced neural plasticity in the VTA, suggesting that the administration of 5-HT2a agonists could be used as effective therapeutic agents to treat drug addiction. These findings could explain the neurobiological correlate of the therapeutic use of 5HT2a agonists, which can be found in animals, plants and fungi during traditional medicine ceremonies and rituals to treat mood related disorders.


Asunto(s)
Síndrome de Abstinencia a Sustancias , Trastornos Relacionados con Sustancias , Animales , Humanos , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología , Factor Neurotrófico Derivado del Encéfalo , Motivación , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Plasticidad Neuronal
4.
J Neuroendocrinol ; 34(4): e13126, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35365872

RESUMEN

Lactating rats show changes in the secretion of hormones and brain signals that promote hyperphagia and facilitate the production of milk. Little is known, however, about the role of ghrelin in the mechanisms sustaining lactational hyperphagia. Here, we used Wistar female rats that underwent surgery to sever the galactophores to prevent milk delivery (GC rats) and decrease the energetic drain of milk delivery. We compared plasma acyl-ghrelin concentrations and growth hormone secretagogue receptor (GHSR) mRNA expression in different brain regions of GC rats with those of sham operated lactating and nonlactating rats. Additional lactating and nonlactating rats were implanted with cannulae aimed at the lateral ventricles and were used to compare feeding responses to central ghrelin or GHSR antagonist infusions to those of nonlactating rats receiving similar infusions on day 14-16 postpartum (pp). Results show lower plasma acyl-ghrelin concentrations on day 15 pp sham operated lactating rats compared to GC or nonlactating rats. These changes occur in association with increased GHSR mRNA expression in the hypothalamic arcuate nucleus (ARC) and ventral tegmental area (VTA) of sham operated lactating rats. Despite lactational hyperphagia, infusions of ghrelin (0.25 or 1 µg) resulted in similar increases in food intake in lactating and nonlactating rats. In addition, infusions of the GHSR antagonist JMV3002 (4 µg in 1 µl of vehicle) produced greater suppression of food intake in lactating rats than in nonlactating rats. These data suggest that, despite lower plasma ghrelin, the energetic drain of lactation increases sensitivity to the orexigenic effects of ghrelin in brain regions important for food intake and energy balance, and these events are associated with lactational hyperphagia.


Asunto(s)
Ghrelina , Hipotálamo , Lactancia , Receptores de Ghrelina , Área Tegmental Ventral , Animales , Femenino , Ghrelina/sangre , Hiperfagia , Hipotálamo/metabolismo , Lactancia/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores de Ghrelina/metabolismo , Área Tegmental Ventral/metabolismo
5.
Neuroscience ; 478: 49-64, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597709

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) binds to PACAP-specific (PAC1) receptors in multiple hypothalamic areas, especially those regulating energy balance. PACAP neurons in the ventromedial nucleus (VMN) exert anorexigenic effects within the homeostatic energy balance circuitry. Since PACAP can also reduce the consumption of palatable food, we tested the hypothesis that VMN PACAP neurons project to the ventral tegmental area (VTA) to inhibit A10 dopamine neurons via PAC1 receptors and KATP channels, and thereby suppress binge-like consumption. We performed electrophysiological recordings in mesencephalic slices from male PACAP-Cre and tyrosine hydroxylase (TH)-Cre mice. Initially, we injected PACAP (30 pmol) into the VTA, where it suppressed binge intake in wildtype male but not female mice. Subsequent tract tracing studies uncovered projections of VMN PACAP neurons to the VTA. Optogenetic stimulation of VMN PACAP neurons in voltage clamp induced an outward current and increase in conductance in VTA neurons, and a hyperpolarization and decrease in firing in current clamp. These effects were markedly attenuated by the KATP channel blocker tolbutamide (100 µM) and PAC1 receptor antagonist PACAP6-38 (200 nM). In recordings from A10 dopamine neurons in TH-Cre mice, we replicated the outward current by perfusing PACAP1-38 (100 nM). This response was again completely blocked by tolbutamide and PACAP6-38, and associated with a hyperpolarization and decrease in firing. These findings demonstrate that PACAP activates PAC1 receptors and KATP channels to inhibit A10 dopamine neurons and sex-dependently suppress binge-like consumption. Accordingly, they advance our understanding of how PACAP regulates energy homeostasis via the hedonic energy balance circuitry.


Asunto(s)
Neuronas Dopaminérgicas , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Neuronas Dopaminérgicas/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Área Tegmental Ventral/metabolismo
6.
Neuropharmacology ; 196: 108691, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34197892

RESUMEN

Recent studies show that neuron-glial communication plays an important role in neurological diseases. Particularly, dysfunction of astroglial glutamate transporter GLT-1 has been involved in various neuropsychiatric disorders, including Parkinson's disease (PD) and depression. Our previous studies indicated hyperactivity of neurons in the lateral habenula (LHb) of hemiparkinsonian rats with depressive-like behaviors. Thus, we hypothesized that impaired expression or function of GLT-1 in the LHb might be a potential contributor to LHb hyperactivity, which consequently induces PD-related depression. In the study, unilateral lesions of the substantia nigra pars compacta (SNc) by 6-hydroxydopamine in rats induced depressive-like behaviors and resulted in neuronal hyperactivity as well as increased glutamate levels in the LHb compared to sham-lesioned rats. Intra-LHb injection of GLT-1 inhibitor WAY-213613 induced the depressive-like behaviors in both groups, but the dose producing behavioral effects in the lesioned rats was lower than that of sham-lesioned rats. In the two groups of rats, WAY-213613 increased the firing rate of LHb neurons and extracellular levels of glutamate, and these excitatory effects in the lesioned rats lasted longer than those in sham-lesioned rats. The functional changes of the GLT-1 which primarily expresses in astrocytes in the LHb may attribute to its downregulation after degeneration of the nigrostriatal pathway. Bioinformatics analysis showed that GLT-1 is correlated with various biomarkers of PD and depression risks. Collectively, our study suggests that astroglial GLT-1 in the LHb regulates the firing activity of the neurons, whereupon its downregulation and dysfunction are closely associated with PD-related depression.


Asunto(s)
Astrocitos/metabolismo , Depresión/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Habénula/metabolismo , Trastornos Parkinsonianos/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Oxidopamina/toxicidad , Trastornos Parkinsonianos/patología , Porción Compacta de la Sustancia Negra/patología , Ratas , Sustancia Negra/metabolismo , Sustancia Negra/patología , Tálamo/metabolismo , Tálamo/patología , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología
7.
Addict Biol ; 26(6): e13052, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33969586

RESUMEN

The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine (DA) neurons, has emerged as an integral player in both rewarding and nociceptive responses. While previous studies have demonstrated that acupuncture modulates DA transmission in the mesolimbic reward system originating in the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAc) and can reduce drug self-administration, the central links between peripheral acupuncture signals and brain reward systems are not well-characterized. Thus, we hypothesised that acupuncture would elicit inhibitory signals from RMTg neurons to brain reward systems. Acupuncture reduced acute cocaine-induced locomotor activity and DA release in a point-specific manner, which was blocked by optogenetic silencing or chemical lesion of the RMTg. The acupuncture effect was mimicked by chemical activation of the RMTg. Acupuncture activated RMTg GABA neurons. In addition, the inhibitory effects of acupuncture on acute cocaine-induced locomotor activity were prevented by electrolytic lesions of the lateral habenula (LHb) or fasciculus retroflexus (FR), areas known to project to the RMTg. These findings suggest that acupuncture recruits the RMTg to reduce the psychomotor responses enhanced by acute cocaine.


Asunto(s)
Terapia por Acupuntura/métodos , Cocaína/farmacología , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Tegmento Mesencefálico/metabolismo , Animales , Neuronas GABAérgicas/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Recompensa , Área Tegmental Ventral/metabolismo
8.
Neurochem Int ; 144: 104962, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33460722

RESUMEN

The recreational use of N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP) and ketamine have grown rapidly due to their psychotomimetic properties. These compounds induce both non-fatal and fatal adverse effects and despite the enhanced regulation, they are continuously synthesized and are being sold in the illegal drug market, including 1-phenylcyclohexan-1-amine hydrochloride (PCA). Therefore, we evaluated its abuse potential through the conditioned-place preference (CPP), self-administration, and locomotor sensitization paradigms. Pretreatment with SCH 2 3390 and haloperidol was also performed during a CPP test. We used ELISA to measure dopamine (DA) levels and western blotting to determine effects on the DA-related proteins as well as on phosphorylated CREB, deltaFosB, and brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) and nucleus accumbens (NAc). Finally, we examined the effects on brain wave activity using electroencephalography (EEG). PCA induced CPP in mice and was self-administered by rats, suggesting that PCA has rewarding and reinforcing properties. PCA increased locomotor of mice on the first treatment and challenge days. SCH 23390 and haloperidol blocked the CPP. PCA altered the DA, tyrosine hydroxylase, dopamine D1 and D2 receptors as well as p-CREB and deltaFosB. Also, PCA altered the delta and gamma waves in the brain, which were then normalized by SCH 2 3390 and haloperidol. The present findings indicate that PCA may induce abuse potential through the dopaminergic system and probably accompanied with alterations in brain wave activity which is similar to that of other psychotomimetic NMDA antagonists. We advocate thorough monitoring of PCP analogs as they pose potential harm to public health.


Asunto(s)
Ciclohexilaminas/administración & dosificación , Dopamina , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Recompensa , Área Tegmental Ventral/efectos de los fármacos , Animales , Dopamina/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Roedores , Autoadministración , Área Tegmental Ventral/metabolismo
9.
J Neurosci ; 41(5): 960-971, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33402420

RESUMEN

Drug-induced neuroadaptations in the mPFC have been implicated in addictive behaviors. Repeated cocaine exposure has been shown to increase pyramidal neuron excitability in the prelimbic (PL) region of the mouse mPFC, an adaptation attributable to a suppression of G protein-gated inwardly rectifying K+ (GIRK) channel activity. After establishing that this neuroadaptation is not seen in adjacent GABA neurons, we used viral GIRK channel ablation and complementary chemogenetic approaches to selectively enhance PL pyramidal neuron excitability in adult mice, to evaluate the impact of this form of plasticity on PL-dependent behaviors. GIRK channel ablation decreased somatodendritic GABAB receptor-dependent signaling and rheobase in PL pyramidal neurons. This manipulation also enhanced the motor-stimulatory effect of cocaine but did not impact baseline activity or trace fear learning. In contrast, selective chemogenetic excitation of PL pyramidal neurons, or chemogenetic inhibition of PL GABA neurons, increased baseline and cocaine-induced activity and disrupted trace fear learning. These effects were mirrored in male mice by selective excitation of PL pyramidal neurons projecting to the VTA, but not NAc or BLA. Collectively, these data show that manipulations enhancing the excitability of PL pyramidal neurons, and specifically those projecting to the VTA, recapitulate behavioral hallmarks of repeated cocaine exposure in mice.SIGNIFICANCE STATEMENT Prolonged exposure to drugs of abuse triggers neuroadaptations that promote core features of addiction. Understanding these neuroadaptations and their implications may suggest interventions capable of preventing or treating addiction. While previous work showed that repeated cocaine exposure increased the excitability of pyramidal neurons in the prelimbic cortex (PL), the behavioral implications of this neuroadaptation remained unclear. Here, we used neuron-specific manipulations to evaluate the impact of increased PL pyramidal neuron excitability on PL-dependent behaviors. Acute or persistent excitation of PL pyramidal neurons potentiated cocaine-induced motor activity and disrupted trace fear conditioning, effects replicated by selective excitation of the PL projection to the VTA. Our work suggests that hyperexcitability of this projection drives key behavioral hallmarks of addiction.


Asunto(s)
Miedo/fisiología , Aprendizaje/fisiología , Actividad Motora/fisiología , Células Piramidales/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Miedo/efectos de los fármacos , Miedo/psicología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Aprendizaje/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
10.
Addict Biol ; 26(1): e12862, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31997525

RESUMEN

Methamphetamine (METH) enhances dopamine (DA) transmission in the mesolimbic system implicated in its reinforcing effects. Our previous studies have shown that acupuncture attenuates drug-seeking behaviors by modulating GABAergic transmission in the ventral tegmental area and DA release in the nucleus accumbens (NAc) of the striatum. The effects of acupuncture on METH-induced behaviors and its mediation by neural pathways remain a relatively understudied area of research. The central amygdala (CeA) plays a critical role in physiological and behavioral responses to somatosensory and drug stimuli and has been implicated in negative reinforcement. Thus, we evaluated the role of the CeA in acupuncture effects on locomotor activity, positive affective states, and DA release in the NAc following acute administration of METH. Acupuncture at acupoint HT7 reduced locomotor activity, 50-kHz ultrasonic vocalizations (USVs), and NAc DA release following systemic injection of METH, which was prevented by electrolytic lesions or optogenetic inhibition of the CeA. Acupuncture alone excited CeA neurons and reversed the suppression of CeA neurons induced by METH. These results suggest that acupuncture can relieve psychomotor responses and positive affective states following METH by inhibiting NAc DA release and this effect is mediated by activation of CeA neurons.


Asunto(s)
Terapia por Acupuntura , Núcleo Amigdalino Central/metabolismo , Comportamiento de Búsqueda de Drogas/fisiología , Metanfetamina/metabolismo , Animales , Estimulantes del Sistema Nervioso Central/metabolismo , Dopamina/metabolismo , Locomoción , Masculino , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Refuerzo en Psicología , Área Tegmental Ventral/metabolismo
11.
Cell Mol Neurobiol ; 41(5): 961-975, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32323150

RESUMEN

Compound 511 (511) is specially developed for opioid addiction treatment based on the Ancient Chinese drug rehabilitation literature, and its composition has profound effects in the treatment of drug addiction in various clinical trials and animal experiments. The effect of 511 on the rewarding properties of morphine and craving responses and its potential mechanisms remain unclear. Here, we have applied a conditioned place preference (CPP) paradigm in mice to measure morphine-induced rewarding effects under the treatment of 511. Then we used the RNA sequencing strategy to screen its potential mechanisms. In our research, firstly, we found 511 could decrease CPP score, locomotor activity, self-administration, jumping behavior, weight loss, wet-dog shakes, and stereotyped behavior. Then the brain VTA region tissues were performed mRNA sequencing to detect potential mechanisms. We found the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were downregulated in morphine-induced CPP, whereas the decreased BDNF and TrkB were reversed after 511 treatment. We retested the levels of BDNF and TrkB using qRT-PCR and Western blot and found the similar results to mRNA sequencing. It has been widely reported that BDNF-TrkB signaling in the VTA is involved in multiple facets of addiction, including reward and motivation, so we focused on the BDNF-TrkB signaling to investigate the anti-addiction mechanisms of 511 in morphine addiction mice. We studied the downstream pathway of BDNF-TrkB and the soma size of dopaminergic neurons. The results showed 511 could increase the phosphorylation levels of PI3K and AKT, which were decreased in morphine-induced CPP. Simultaneously, 511 could decrease the level of PLCγ1 and the phosphorylation levels of ERK and S6K, which were increased in morphine-induced CPP. In addition, 511 also enlarged the soma size of VTA dopaminergic neurons, which was reduced in morphine-induced CPP. Hence, our research indicated 511 maybe mediate the BDNF-TrkB signaling in VTA to improve morphine addiction behavior.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Condicionamiento Clásico/fisiología , Medicamentos Herbarios Chinos/farmacología , Glicoproteínas de Membrana/metabolismo , Morfina/administración & dosificación , Proteínas Tirosina Quinasas/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Condicionamiento Clásico/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Antagonistas de Narcóticos/química , Antagonistas de Narcóticos/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Recompensa , Autoadministración , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Área Tegmental Ventral/efectos de los fármacos
12.
Brain Res Bull ; 162: 245-252, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32619693

RESUMEN

The neurocircuitry underlying hunger, satiety, motivation to eat and food reward is complex, however a lot of mechanisms are still unknown. Two main cerebral areas are responsible for controlling feeding through hunger and food reward: the hypothalamus (HPT) and the ventral tegmental area (VTA), respectively. The dopaminergic system modulates both these areas and is essential to control food ingestion. Therefore, we aim to evaluate the effects of restrictive and hyperlipidic diets during pregnancy, lactation and during adult life of the offspring, on the expression of dopaminergic system genes in VTA and HPT of mice dams and their adult male offspring. We also measured diets' effect in locomotor activity in the open field (OF) test. Female mice were divided into control (CONT), restriction (RD) and hyperlipidic (HD) dietary groups, and mated with isogenic male mice. On the 9th postpartum day (PPD), dams were tested in the OF, and on the 22nd PPD cerebral areas were collected. After weaning, the offspring also were divided into one of three diet groups, independently of the diets provided to their dams. In the 80th PPD, the offspring was tested in the OF, and at 100th PPD, VTA and HPT were collected. Gene expression was analyzed by quantitative reverse transcription real-time polymerase chain reaction. The correlation between gene expression and locomotor activity was also assessed. In dams' VTA, both diets upregulated the expression of Th, Slc6a3/Dat1, Drd1 and Drd2 genes. In opposition, in the offspring the maternal diet was associated with a reduction in Th and Ddc gene expression. In the HPT, mice dams that received restriction or hyperlipidic diets had increased Th mRNA levels, but reduced the expression of Drd4 gene. The offspring diet had no effect on the expression of the studied genes in their adult lives. Both diets increased mice dam's locomotion in the OF, however none of them altered the offspring locomotor activity. We detected a positive correlation between the duration of total locomotion in the OF and Slc6a3/Dat1 gene expression in VTA of mice dams. In the HPT, a negative correlation of locomotion and Drd4 mRNA levels, and a positive correlation with Th gene expression was observed. Our results show that restriction and hyperlipidic diets alter mice dams' locomotor activity in the OF and modify the expression of dopaminergic system genes in VTA and HPT of mice dams and in VTA of the offspring.


Asunto(s)
Restricción Calórica , Dieta Alta en Grasa , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/biosíntesis , Lactancia/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores Dopaminérgicos/biosíntesis , Factores de Edad , Animales , Animales Recién Nacidos , Restricción Calórica/efectos adversos , Dieta Alta en Grasa/efectos adversos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Expresión Génica , Hipotálamo/metabolismo , Lactancia/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Receptores Dopaminérgicos/genética , Tirosina 3-Monooxigenasa/biosíntesis , Tirosina 3-Monooxigenasa/genética , Área Tegmental Ventral/metabolismo
13.
BMC Neurosci ; 21(1): 12, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32216748

RESUMEN

BACKGROUND: Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs. Shedding the light on the mechanics of the above-mentioned cascade is of primary importance for this research domain. RESULTS: A mouse model of chronic social conflicts in daily agonistic interactions was used to analyze dorsal striatum neurons genes implicated in cAMP-mediated phosphorylation activation pathways specific for MSNs. Based on expression correlation analysis, we succeeded in dissecting Drd1- and Drd2-dopaminoceptive neurons (D1 and D2, correspondingly) gene pathways. We also found that D1 neurons genes clustering are split into two oppositely correlated states, passive and active ones, the latter apparently corresponding to D1 firing stage upon protein kinase A (PKA) activation. We observed that under defeat stress in chronic social conflicts the loser mice manifest overall depression of dopamine-mediated MSNs activity resulting in previously reported reduced motor activity, while the aggressive mice with positive fighting experience (aggressive mice) feature an increase in both D1-active phase and D2 MSNs genes expression leading to hyperactive behavior pattern corresponded by us before. Based on the alternative transcript isoforms expression analysis, it was assumed that many genes (Drd1, Adora1, Pde10, Ppp1r1b, Gnal), specifically those in D1 neurons, apparently remain transcriptionally repressed via the reversible mechanism of promoter CpG island silencing, resulting in alternative promoter usage following profound reduction in their expression rate. CONCLUSION: Based on the animal stress model dorsal striatum pooled tissue RNA-Seq data restricted to cAMP related genes subset we elucidated MSNs steady states exhaustive projection for the first time. We correspond the existence of D1 active state not explicitly outlined before, and connected with dynamic dopamine neurotransmission cycles. Consequently, we were also able to indicate an oscillated postsynaptic dopamine vs glutamate action pattern in the course of the neurotransmission cycles.


Asunto(s)
Cuerpo Estriado/metabolismo , AMP Cíclico/genética , Dopamina/genética , Neuronas GABAérgicas/metabolismo , Expresión Génica , Neuronas/metabolismo , Animales , AMP Cíclico/metabolismo , Dopamina/metabolismo , Redes Reguladoras de Genes , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones Endogámicos C57BL , Núcleos del Rafe/metabolismo , Transducción de Señal/genética , Estrés Psicológico/genética , Área Tegmental Ventral/metabolismo
14.
Sci Rep ; 9(1): 16128, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695055

RESUMEN

D-cycloserine (DCS) and amantadine (AMA) act as partial NMDA receptor (R) agonist and antagonist, respectively. In the present study, we compared the effects of DCS and AMA on dopamine D2/3R binding in the brain of adult rats in relation to motor behavior. D2/3R binding was determined with small animal SPECT in baseline and after challenge with DCS (20 mg/kg) or AMA (40 mg/kg) with [123I]IBZM as radioligand. Immediately post-challenge, motor/exploratory behavior was assessed for 30 min in an open field. The regional binding potentials (ratios of the specifically bound compartments to the cerebellar reference region) were computed in baseline and post-challenge. DCS increased D2/3R binding in nucleus accumbens, substantia nigra/ventral tegmental area, thalamus, frontal, motor and parietal cortex as well as anterodorsal and posterior hippocampus, whereas AMA decreased D2/3R binding in nucleus accumbens, caudateputamen and thalamus. After DCS, ambulation and head-shoulder motility were decreased, while sitting was increased compared to vehicle and AMA. Moreover, DCS increased rearing relative to AMA. The regional elevations of D2/3R binding after DCS reflect a reduction of available dopamine throughout the mesolimbocortical system. In contrast, the reductions of D2/3R binding after AMA indicate increased dopamine in nucleus accumbens, caudateputamen and thalamus. Findings imply that, after DCS, nigrostriatal and mesolimbic dopamine levels are directly related to motor/exploratory activity, whereas an inverse relationship may be inferred for AMA.


Asunto(s)
Amantadina/metabolismo , Cicloserina/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Sustancia Negra/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Dopamina/metabolismo , Conducta Exploratoria , Masculino , Actividad Motora , Núcleo Accumbens/metabolismo , Unión Proteica , Ratas , Ratas Wistar , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética , Tálamo/metabolismo
15.
Brain Res ; 1724: 146441, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513793

RESUMEN

Hunger resulting from food deprivation is associated with negative affect. This is supported by recent evidence showing that hunger-sensitive neurons drive feeding through a negative valence teaching signal. However, the complementary hypothesis that hormonal signals of energy surfeit counteract this negative valence, or even transmit positive valence, has received less attention. The adipose-derived hormone leptin signals in proportion to fat mass, is an indicator of energy surplus, and reduces food intake. Here, we showed that centrally-delivered leptin reduced food intake and conditioned a place preference in food-restricted as well as ad libitum fed rats. In contrast, leptin did not reduce food intake nor condition a place preference in obese rats, likely due to leptin resistance. Despite a well-known role for hindbrain leptin receptor signaling in energy balance control, hindbrain leptin delivery did not condition a place preference in food-restricted rats, suggesting that leptin acting in midbrain or forebrain sites mediates place preference conditioning. Supporting the hypothesis that leptin signaling induces a positive affective state, leptin also decreased the threshold for ventral tegmental area brain stimulation reward. Together, these data suggest that leptin signaling is intrinsically preferred, and support the view that signals of energy surfeit are associated with positive affect. Harnessing the positive valence of signals such as leptin may attenuate the negative affect associated with hunger, providing a compelling new approach for weight loss maintenance.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/fisiología , Leptina/metabolismo , Afecto/fisiología , Animales , Condicionamiento Clásico/fisiología , Emociones/fisiología , Metabolismo Energético/fisiología , Conducta Alimentaria/efectos de los fármacos , Alimentos , Privación de Alimentos/fisiología , Leptina/fisiología , Masculino , Obesidad , Ratas , Ratas Sprague-Dawley , Receptores de Leptina/metabolismo , Recompensa , Rombencéfalo/metabolismo , Transducción de Señal/efectos de los fármacos , Área Tegmental Ventral/metabolismo
16.
Nutrients ; 10(11)2018 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-30423806

RESUMEN

It has been widely described that chronic intake of fructose causes metabolic alterations which can be associated with brain function impairment. In this study, we evaluated the effects of fructose intake on the sleep⁻wake cycle, locomotion, and neurochemical parameters in Wistar rats. The experimental group was fed with 10% fructose in drinking water for five weeks. After treatment, metabolic indicators were quantified in blood. Electroencephalographic recordings were used to evaluate the sleep architecture and the spectral power of frequency bands. Likewise, the locomotor activity and the concentrations of orexin A and monoamines were estimated. Our results show that fructose diet significantly increased the blood levels of glucose, cholesterol, and triglycerides. Fructose modified the sleep⁻wake cycle of rats, increasing the waking duration and conversely decreasing the non-rapid eye movement sleep. Furthermore, these effects were accompanied by increases of the spectral power at different frequency bands. Chronic consumption of fructose caused a slight increase in the locomotor activity as well as an increase of orexin A and dopamine levels in the hypothalamus and brainstem. Specifically, immunoreactivity for orexin A was increased in the ventral tegmental area after the intake of fructose. Our study suggests that fructose induces metabolic changes and stimulates the activity of orexinergic and dopaminergic neurons, which may be responsible for alterations of the sleep⁻wake cycle.


Asunto(s)
Encéfalo/efectos de los fármacos , Azúcares de la Dieta/farmacología , Dopamina/metabolismo , Conducta Alimentaria , Fructosa/farmacología , Orexinas/metabolismo , Sueño/efectos de los fármacos , Animales , Glucemia/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Dieta , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Lípidos/sangre , Locomoción/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Ratas Wistar , Fases del Sueño/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Vigilia/efectos de los fármacos
17.
Neuron ; 98(1): 192-207.e10, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29621487

RESUMEN

Maternal behaviors are essential for the survival of the young. Previous studies implicated the medial preoptic area (MPOA) as an important region for maternal behaviors, but details of the maternal circuit remain incompletely understood. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the MPOA as key mediators of pup approach and retrieval. Reversible inactivation of MPOAEsr1+ cells impairs those behaviors, whereas optogenetic activation induces immediate pup retrieval. In vivo recordings demonstrate preferential activation of MPOAEsr1+ cells during maternal behaviors and changes in MPOA cell responses across reproductive states. Furthermore, channelrhodopsin-assisted circuit mapping reveals a strong inhibitory projection from MPOAEsr1+ cells to ventral tegmental area (VTA) non-dopaminergic cells. Pathway-specific manipulations reveal that this projection is essential for driving pup approach and retrieval and that VTA dopaminergic cells are reliably activated during those behaviors. Altogether, this study provides new insight into the neural circuit that generates maternal behaviors.


Asunto(s)
Hipotálamo/metabolismo , Conducta Materna/fisiología , Mesencéfalo/metabolismo , Área Preóptica/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Receptor alfa de Estrógeno/biosíntesis , Femenino , Hipotálamo/química , Conducta Materna/psicología , Mesencéfalo/química , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/química , Vías Nerviosas/metabolismo , Técnicas de Cultivo de Órganos , Área Preóptica/química , Área Tegmental Ventral/química
18.
Addict Biol ; 23(1): 165-181, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28271626

RESUMEN

There is growing public interest in alternative approaches to addiction treatment and scientific interest in elucidating the neurobiological underpinnings of acupuncture. Our previous studies showed that acupuncture at a specific Shenmen (HT7) points reduced dopamine (DA) release in the nucleus accumbens (NAc) induced by drugs of abuse. The present study was carried out to evaluate the effects of HT7 acupuncture on γ-aminobutyric acid (GABA) neuronal activity in the ventral tegmental area (VTA) and the reinstatement of cocaine-seeking behavior. Using microdialysis and in vivo single-unit electrophysiology, we evaluated the effects of HT7 acupuncture on VTA GABA and NAc DA release and VTA GABA neuronal activity in rats. Using a within-session reinstatement paradigm in rats self-administering cocaine, we evaluated the effects of HT7 stimulation on cocaine-primed reinstatement. Acupuncture at HT7 significantly reduced cocaine suppression of GABA release and GABA neuron firing rates in the VTA. HT7 acupuncture attenuated cocaine-primed reinstatement, which was blocked by VTA infusions of the selective GABAB receptor antagonist 2-hydroxysaclofen. HT7 stimulation significantly decreased acute cocaine-induced DA release in the NAc, which was also blocked by 2-hydroxysaclofen. HT7 acupuncture also attenuated cocaine-induced sensitization of extracellular DA levels in the NAc. Moreover, HT7 acupuncture reduced both locomotor activity and neuronal activation in the NAc induced by acute cocaine in a needle-penetration depth-dependent fashion. These results suggest that acupuncture may suppress cocaine-induced DA release in the NAc and cocaine-seeking behavior through activation of VTA GABA neurons. Acupuncture may be an effective therapy to reduce cocaine relapse by enhancing GABAergic inhibition in the VTA.


Asunto(s)
Acupuntura , Conducta Animal , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Comportamiento de Búsqueda de Drogas , Locomoción , Área Tegmental Ventral/metabolismo , Animales , Baclofeno/análogos & derivados , Baclofeno/farmacología , Dopamina/metabolismo , Fenómenos Electrofisiológicos , Antagonistas de Receptores de GABA-B/farmacología , Neuronas GABAérgicas/metabolismo , Microdiálisis , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Ratas , Área Tegmental Ventral/citología , Ácido gamma-Aminobutírico/metabolismo
19.
Adv Neurobiol ; 19: 33-48, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28933060

RESUMEN

Energy homeostasis is regulated by homeostatic and nonhomeostatic reward circuits which are closely integrated and interrelated. Before, during, and after meals, peripheral nutritional signals, through hormonal and neuronal pathways, are conveyed to selective brain areas, namely the hypothalamic nuclei and the brainstem, the main brain areas for energy balance regulation. These orexigenic and anorexigenic centers are held responsible for the integration of those signals and for an adequate output to peripheral organs involved in metabolism and energy homeostasis.Feeding includes also a hedonic behavior defined as food intake for pleasure independently of energy requirement. This nonhomeostatic regulation of energy balance is based on food reward properties, unrelated to nutritional demands, and involves areas like mesolimbic reward system, such as the ventral tegmental area and the nucleus accumbens, and also opioid, endocannabinoid, and dopamine systems.Herein, focus will be put on the brain circuits of homeostatic and nonhomeostatic regulation of food intake and energy expenditure.


Asunto(s)
Regulación del Apetito/fisiología , Encéfalo/fisiología , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Homeostasis/fisiología , Recompensa , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Dopamina/metabolismo , Ingestión de Alimentos , Endocannabinoides/metabolismo , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Hipotálamo/fisiopatología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Núcleo Accumbens/fisiopatología , Péptidos Opioides/metabolismo , Receptores Opioides/metabolismo , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/fisiopatología
20.
Neurosci Lett ; 660: 103-108, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28919537

RESUMEN

Numerous findings indicate an involvement of heavy metals in the neuropathology of several neurodegenerative disorders, especially Parkinson's disease (PD). Previous studies have demonstrated that Copper (Cu) exhibits a potent neurotoxic effect on dopaminergic neurons and triggers profound neurobehavioral alterations. Curcumin is a major component of Curcuma longa rhizomes and a powerful medicinal plant that exerts many pharmacological effects. However, the neuroprotective action of curcumin on Cu-induced dopaminergic neurotoxicity is yet to be investigated. The aim of the present study was to evaluate the impact of acute Cu-intoxication (10mg/kg B.W. i.p) for 3days on the dopaminergic system and locomotor performance as well as the possible therapeutic efficacy of curcumin I (30mg/kg B.W.). Intoxicated rats showed a significant loss of Tyrosine Hydroxylase (TH) expression within substantia nigra pars compacta (SNc), ventral tegmental area (VTA) and the striatal outputs. This was correlated with a clear decrease in locomotor performance. Critically, curcumin-I co-treatment reversed these changes and showed a noticeable protective effect; both TH expression and locomotor performance was reinstated in intoxicated rats. These results demonstrate altered dopaminergic innervations following Cu intoxication and a new therapeutic potential of curcumin against Cu-induced dopaminergic neurotransmission failure. Curcumin may therefore prevent heavy metal related Parkinsonism.


Asunto(s)
Encéfalo/efectos de los fármacos , Cobre/toxicidad , Curcumina/administración & dosificación , Neuronas Dopaminérgicas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Locomoción/efectos de los fármacos , Masculino , Enfermedad de Parkinson/metabolismo , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Porción Compacta de la Sustancia Negra/metabolismo , Ratas Wistar , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA