Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 13: 997304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277707

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are a class of flame-retardant organohalogen pollutants that act as endocrine/neuroendocrine disrupting chemicals (EDCs). In humans, exposure to brominated flame retardants (BFR) or other environmentally persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and novel organophosphate flame retardants has been associated with increasing trends of diabetes and metabolic disease. However, the effects of PBDEs on metabolic processes and their associated sex-dependent features are poorly understood. The metabolic-disrupting effects of perinatal exposure to industrial penta-PBDE mixture, DE-71, on male and female progeny of C57BL/6N mouse dams were examined in adulthood. Dams were exposed to environmentally relevant doses of PBDEs daily for 10 weeks (p.o.): 0.1 (L-DE-71) and 0.4 mg/kg/d (H-DE-71) and offspring parameters were compared to corn oil vehicle controls (VEH/CON). The following lipid metabolism indices were measured: plasma cholesterol, triglycerides, adiponectin, leptin, and liver lipids. L-DE-71 female offspring were particularly affected, showing hypercholesterolemia, elevated liver lipids and fasting plasma leptin as compared to same-sex VEH/CON, while L- and H-DE-71 male F1 only showed reduced plasma adiponectin. Using the quantitative Folch method, we found that mean liver lipid content was significantly elevated in L-DE-71 female offspring compared to controls. Oil Red O staining revealed fatty liver in female offspring and dams. General measures of adiposity, body weight, white and brown adipose tissue (BAT), and lean and fat mass were weighed or measured using EchoMRI. DE-71 did not produce abnormal adiposity, but decreased BAT depots in L-DE-71 females and males relative to same-sex VEH/CON. To begin to address potential central mechanisms of deregulated lipid metabolism, we used RT-qPCR to quantitate expression of hypothalamic genes in energy-regulating circuits that control lipid homeostasis. Both doses of DE-71 sex-dependently downregulated hypothalamic expression of Lepr, Stat3, Mc4r, Agrp, Gshr in female offspring while H-DE-71 downregulated Npy in exposed females relative to VEH/CON. In contrast, exposed male offspring displayed upregulated Stat3 and Mc4r. Intestinal barrier integrity was measured using FITC-dextran since it can lead to systemic inflammation that leads to liver damage and metabolic disease, but was not affected by DE-71 exposure. These findings indicate that maternal transfer of PBDEs disproportionately endangers female offspring to lipid metabolic reprogramming that may exaggerate risk for adult metabolic disease.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Retardadores de Llama , Bifenilos Policlorados , Animales , Femenino , Masculino , Ratones , Embarazo , Adiponectina , Proteína Relacionada con Agouti , Colesterol , Aceite de Maíz , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Homeostasis , Leptina , Ratones Endogámicos C57BL , Organofosfatos , Contaminantes Orgánicos Persistentes , Triglicéridos , Factores Sexuales
2.
Ecotoxicol Environ Saf ; 242: 113846, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35853364

RESUMEN

Deca-brominated diphenyl ether (BDE-209) is a ubiquitous industrial chemical as brominated flame retardant (BFRs). Exposure to BDE-209 has been clearly associated with male reproductive disorders. However, the meiotic arrest mechanism of spermatocytes exposed to BDE-209 is still unclear. The present work aimed to explore the protective effect of vitamin C on BDE-209-induced meiotic arrest of spermatocytes and its possible mechanism. Vitamin C (100 mg/kg BW) was administered to BDE-209-exposed (80 mg/kg BW) male Balb/c mice once daily by intraperitoneal injection for 2 weeks. Our results showed that vitamin C played male reproductive protection effects as showed by attenuated BDE-209-induced testicular damage, and reduced sperm abnormality rate. Vitamin C also attenuated BDE-209-induced increase in SOD and MDA in testes and GC-2 spd cells. Moreover, vitamin C promoted meiotic prophase in BDE-209-induced mice, with suppressed γ-H2AX, restored DMC1, RAD51, and crossover marker MLH1 levels, and prevented BDE-209-induced DNA impairment. In addition, vitamin C supplementation also interfered with BDE-209-induced upregulation of testicular H3K4me3 through inhibition of KDM5s capacity and decreasing ferrous ion concentration. Furthermore, ferrous sulfate pretreatment could partially restore the expression of H3K4me3 via maintaining the concentration of ferrous ions. Taken together, vitamin C exerts a potential therapeutic agent for preventing BDE-209-induced reproductive toxicity with meiotic arrest, which is attributed to its antioxidant and electron donor properties, as well as, modulation of ferrous ion levels and demethylation of H3K4me3.


Asunto(s)
Retardadores de Llama , Éteres Difenilos Halogenados , Animales , Ácido Ascórbico , Suplementos Dietéticos , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Masculino , Meiosis , Ratones , Ratones Endogámicos BALB C , Semen , Espermatocitos
3.
Biomed Res Int ; 2021: 2961747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34840968

RESUMEN

Network pharmacology was used to illuminate the targets and pathways of polybrominated diphenyl ethers (PBDEs) causing thyroid dysfunction. A protein-protein interaction (PPI) network was constructed. Molecular docking was applied to analyze PBDEs and key targets according to the network pharmacology results. A total of 247 targets were found to be related to 16 PBDEs. Ten key targets with direct action were identified, including the top five PIK3R1, MAPK1, SRC, RXRA, and TP53. Gene Ontology (GO) functional enrichment analysis identified 75 biological items. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 62 pathways mainly related to the regulation of the thyroid hormone signaling pathway, MAPK signaling pathway, PI3K-Akt signaling, pathways in cancer, proteoglycans in cancer, progesterone-mediated oocyte maturation, and others. The molecular docking results showed that BDE-99, BDE-153, 5-OH-BDE47, 5'-OH-BDE99, 5-BDE47 sulfate, and 5'-BDE99 sulfate have a good binding effect with the kernel targets. PBDEs could interfere with the thyroid hormone endocrine through multiple targets and biological pathways, and metabolites demonstrated stronger effects than the prototypes. This research provides a basis for further research on the toxicological effects and molecular mechanisms of PBDEs and their metabolites. Furthermore, the application of network pharmacology to the study of the toxicity mechanisms of environmental pollutants provides a new methodology for environmental toxicology.


Asunto(s)
Éteres Difenilos Halogenados/toxicidad , Enfermedades de la Tiroides/inducido químicamente , Bases de Datos de Compuestos Químicos , Bases de Datos Genéticas , Bases de Datos de Proteínas , Evaluación Preclínica de Medicamentos , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Éteres Difenilos Halogenados/química , Éteres Difenilos Halogenados/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/genética , Enfermedades de la Tiroides/genética , Enfermedades de la Tiroides/metabolismo
4.
Ecotoxicol Environ Saf ; 198: 110623, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32361490

RESUMEN

Humans are exposed to polybrominated diphenyl ethers (PBDEs) via ingestion of food, dust inhalation, and dermal absorption. Exposure to PBDEs via the placenta and breast milk is a special and important pathway in infants. This nested case-control study aimed to investigate the levels of PBDEs in maternal serum and colostrum, and to assess the association between the occurrence of fetal growth restriction (FGR) and prenatal exposure to PBDEs. We recruited 293 mother-newborn pairs, including 98 FGR cases and 195 healthy controls in Wenzhou, China. Maternal serum and colostrum samples were collected during pregnancy and after delivery, respectively, and the levels of PBDEs were measured by gas chromatography-tandem mass spectrometry. The total levels of PBDEs in maternal serum and colostrum were found to be in equilibrium, but congener profiles of PBDEs in these matrices were different. Increased BDE-207, BDE-209, ∑BDE196-209 and ∑PBDEs levels in maternal serum and BDE-99, ∑BDE17-154 and ∑PBDEs levels in colostrum were correlated with decreased birth weight Z score. Increased concentrations of higher brominated BDEs in maternal serum (odds ratio (OR) = 1.010, 95%CI = 1.003-1.018) and low-to moderately brominated BDEs in colostrum (OR = 1.004, 95%CI = 1.000-1.009) were associated with increased risk of FGR, which showed an exposure-response relationship. In addition, infants with FGR were more exposed to PBDEs in colostrum after birth than healthy infants. Longitudinal birth cohort studies are needed to determine the prolonged effect of PBDEs exposure on the growth of FGR infants in the future.


Asunto(s)
Retardo del Crecimiento Fetal/inducido químicamente , Éteres Difenilos Halogenados/toxicidad , Exposición Materna , Estudios de Casos y Controles , China , Calostro/química , Contaminantes Ambientales/toxicidad , Femenino , Cromatografía de Gases y Espectrometría de Masas , Éteres Difenilos Halogenados/sangre , Humanos , Recién Nacido , Leche Humana/química , Placenta/efectos de los fármacos , Placenta/metabolismo , Embarazo
5.
Toxicol Appl Pharmacol ; 391: 114914, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32032643

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants considered as neurotoxicants and endocrine disruptors with important biological effects ranging from alterations in growth, reproduction, and effects on the hypothalamus-pituitary-adrenal axis. The vasopressinergic (AVPergic) system is a known target for pentaBDEs mixture (DE-71) and the structurally similar chemicals, polychlorinated biphenyls. However, the potential adverse effects of mixtures containing octaBDE compounds, like DE-79, on the AVPergic system are still unknown. The present study aims to examine the effects of perinatal DE-79 exposure on the AVPergic system. Dams were dosed from gestational day 6 to postnatal day 21 at doses of 0 (control), 1.7 (low) or 10.2 (high) mg/kg/day, and male offspring from all doses at 3-months-old were subjected to normosmotic and hyperosmotic challenge. Male offspring where later assessed for alterations in osmoregulation (i.e. serum osmolality and systemic vasopressin release), and both vasopressin immunoreactivity (AVP-IR) and gene expression in the hypothalamic paraventricular and supraoptic nuclei. Additionally, to elucidate a possible mechanism for the effects of DE-79 on the AVPergic system, both neuronal nitric oxide synthase immunoreactivity (nNOS-IR) and mRNA expression were investigated in the same hypothalamic nuclei. The results showed that perinatal DE-79 exposure AVP-IR, mRNA expression and systemic release in adulthood under normosmotic conditions and more evidently under hyperosmotic stimulation. nNOS-IR and mRNA expression were also affected in the same nuclei. Since NO is an AVP regulator, we propose that disturbances in NO could be a mechanism underlying the AVPergic system disruption following perinatal DE-79 exposure leading to osmoregulation deficits.


Asunto(s)
Contaminantes Ambientales/toxicidad , Éteres Difenilos Halogenados/toxicidad , Vasopresinas/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Hipotálamo/metabolismo , Hipotálamo Anterior/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I , Osmorregulación/efectos de los fármacos , Presión Osmótica/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Embarazo , Ratas , Ratas Wistar
6.
Ecotoxicol Environ Saf ; 186: 109767, 2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31610358

RESUMEN

Cadmium, a typical heavy metal, causes serious toxicities on many organs and tissues. As the last partially controlled class of polybrominated diphenyl ethers (PBDEs), BDE209 can also induce various health issues. Although apoptosis mediated by mitochondria has been known to be a key player in inducing toxicities by cadmium, the detailed mechanisms are incompletely understood. Moreover, co-existence of cadmium and PBDEs has been found in various environment context and human body. However, studies on the joint toxicity of cadmium and PBDEs are still limited with largely unknown mechanisms. In the present study, we investigated the adverse effects and mechanisms of single or combined treatment of CdCl2 and BDE209 on hepatocytes. We observed that apoptosis were significantly induced by CdCl2, and the combined treatment of CdCl2 and BDE209 greatly promoted the progression of apoptosis. BDE209 induced mild apoptosis. Mitochondria was the pivot of several mechanisms to induce apoptosis, including ROS production, decreased mitochondrial membrane potential (MMP), mtDNA damage and disordered calcium (Ca2+) homeostasis. However, we found that mtDNA damage and disordered Ca2+ homeostasis were the main mechanisms for CdCl2-induced apoptosis while ROS production played important roles in BDE209-induced apoptosis. Less mtDNA damage occurred in BDE209-treated cells. In the cells with combined treatment, CdCl2 and BDE209 exhibited a complementary pattern for the underlying mechanisms of apoptosis, leading to the joint toxicities, in which CdCl2 showed more contributions. In a conclusion, our results demonstrated that combined exposure to cadmium and BDE209 causes joint adverse effects on hepatocytes through diverse mechanisms as mediated by mitochondria.


Asunto(s)
Cadmio/toxicidad , Daño del ADN , ADN Mitocondrial , Éteres Difenilos Halogenados/toxicidad , Homeostasis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sinergismo Farmacológico , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Homeostasis/genética , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
7.
Ecotoxicol Environ Saf ; 174: 224-235, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30844666

RESUMEN

In recent years, decabromodiphenyl ethane (DBDPE), a new alternative flame retardant to the decabrominated diphenyl ethers (BDE-209), is widely used in a variety of products. Previous studies have indicated that DBDPE, like BDE-209, could disrupt thyroid function. However, compared with BDE-209, the degrees of thyrotoxicosis induced by DBDPE were not clear. In addition, the mechanism of thyrotoxicosis induced by DBDPE or BDE-209 was still under further investigation. In this study, male rats as a model were orally exposed to DBDPE or BDE-209 by 5, 50, 500 mg/kg bw/day for 28 days. Then, we assessed the thyrotoxicosis of DBDPE versus BDE-209 and explored the mechanisms of DBDPE and BDE-209-induced thyrotoxicosis. Results showed that decreased free triiodothyronine (FT3) and increased thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) in serum were observed in both 500 mg/kg bw/day BDE-209 and DBDPE group. Decreased total thyroxine (TT4), total T3 (TT3), and free T4 (FT4) were only observed in BDE-209 group but not in DBDPE group. Histological examination and transmission electron microscope examination showed that high level exposure to BDE-209 and DBDPE both caused significant changes in histological structure and ultrastructure of the thyroid gland. Additionally, oxidative damages of thyroid gland (decreased SOD and GSH activities, and increased MDA content) were also observed in both BDE-209 and DBDPE groups. TG contents in the thyroid gland was reduced in BDE-209 group but not in DBDPE group. Both BDE-209 and DBDPE affected the expression of hypothalamic-pituitary-thyroid (HPT) axis related genes. These findings suggested that both BDE-209 and DBDPE exposure could disrupt thyroid function in the direction of hypothyroidism and the underlying mechanism was likely to be oxidative stress and perturbations of HPT axis. However, DBDPE was found to be less toxic than BDE-209.


Asunto(s)
Bromobencenos/toxicidad , Disruptores Endocrinos/toxicidad , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Glándula Tiroides/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Hipófisis/patología , Ratas , Ratas Sprague-Dawley , Glándula Tiroides/metabolismo , Glándula Tiroides/ultraestructura , Tirotropina/sangre , Hormona Liberadora de Tirotropina/sangre , Triyodotironina/sangre
8.
Artículo en Inglés | MEDLINE | ID: mdl-30528702

RESUMEN

Antioxidant enzymes play essential roles against oxidative stress caused by 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is ubiquitous in marine environment and organisms. However, research on antioxidant responses to BDE-47 in marine bivalves is scarce. In this study, we identified the full-length cDNA of catalase (CAT), and glutathione peroxidase (GPx) in the clam Mactra veneriformis. Subsequently, the responses of CAT, GPx, and copper, zinc-superoxide dismutase (Cu, Zn-SOD) were investigated in the clams exposed to 0.1, 1, and 10 µg/L BDE-47 for 7 days, and then depurated in natural seawater for 3 days. MvCAT and MvGPx contained conserved sequences. The deduced amino acid sequences shared high similarity with CATs and GPxs in other mollusks. M. veneriformis accumulated BDE-47 in a dose-dependent manner and eliminated BDE-47 poorly. BDE-47 induced a time- and dose-dependent increase of malondialdehyde content. Both the dose and the duration had significant effect on mRNA expressions and activities of the three antioxidants. Cu, Zn-SOD responded to BDE-47 earlier than CAT and GPx. The antioxidant responses could recover after depuration. These results suggested that M. veneriformis could accumulate BDE-47 efficiently. Antioxidant enzymes were triggered to counter the oxidative stress generated by BDE-47. Cu, Zn-SOD acted as the first defense against oxidative stress, while CAT and GPx intervened later. This study is therefore helpful in understanding the antioxidant responses to PBDEs in marine bivalves.


Asunto(s)
Antioxidantes/metabolismo , Bivalvos/efectos de los fármacos , Éteres Difenilos Halogenados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Secuencia de Aminoácidos , Animales , Antioxidantes/química , Secuencia de Bases , Bivalvos/metabolismo , Catalasa/genética , Catalasa/metabolismo , ADN Complementario , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo
9.
Chemosphere ; 176: 39-46, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28254713

RESUMEN

2,2',4,4'-tetrabromodiphenylether (BDE-47) is known to have the potential to disrupt the thyroid endocrine system in fishes due to its structural similarity to the thyroid hormones triiodothyronine (T3) and thyroxine (T4). However, the effects of BDE-47 on thyroid function in fishes remain unclear. In this study, abnormal development (e.g. deformity, hemorrhaging) and an imbalance in thyroid hormone (TH) homeostasis was shown in the early developmental stages of the mangrove killifish Kryptolebias marmoratus in response to BDE-47 exposure. To examine the thyroid endocrinal effect of BDE-47 exposure in mangrove killifish K. marmoratus larvae, transcript levels of genes involved in TH homeostasis and hypothalamus-pituitary-thyroid (HPT) axis-related genes were measured. The expression of thyroid hormone metabolism-related genes (e.g. deiodinases, UGT1ab) and HPT axis-related genes was up-regulated and there were significant changes in TH levels (P < 0.05) in response to BDE-47 exposure. This study provides insights into the regulation of TH homeostasis at the transcriptional level and provides a better understanding on the potential impacts of BDE-47 on the thyroid endocrine system of fishes.


Asunto(s)
Ciprinodontiformes/crecimiento & desarrollo , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Éteres Difenilos Halogenados/toxicidad , Hormonas Tiroideas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo , Desarrollo Embrionario/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Larva/efectos de los fármacos , Larva/genética , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Hormonas Tiroideas/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-28088650

RESUMEN

CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an "orphan" gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Copépodos/efectos de los fármacos , Copépodos/genética , Sistema Enzimático del Citocromo P-450/genética , Éteres Difenilos Halogenados/toxicidad , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Regulación de la Expresión Génica/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Petróleo/toxicidad , Regiones Promotoras Genéticas/efectos de los fármacos , ARN Mensajero/genética , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Xenobióticos/toxicidad
11.
Fish Shellfish Immunol ; 51: 200-210, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26915310

RESUMEN

Polybrominated diphenyl ethers-47 (PBDE-47) and -209 are significant components of total PBDEs in water and can catalyze the production of reactive oxygen species (ROS) in the organisms. Anti-oxidant enzymes play an important role in scavenging the high level of ROS. In the current study, two full-length cDNAs of Cu/Zn superoxide dismutase (CuZnSODs) and catalase (CAT) were isolated from freshwater bivalve Anodonta woodiana by rapid amplification of cDNA ends approach and respectively named as AwSOD and AwCAT. The nucleotide sequence of AwSOD cDNA had an open reading frame (ORF) of 465 bp encoding a polypeptide of 155 amino acids in which signature 1 GKHGFHVHEFGDNT and signature 2 GNAGARSACGVI of SODs were observed. Deduced amino acid sequence of AwSOD showed a significant similarity with that of CuZnSODs. AwCAT had an ORF 1536 bp encoding a polypeptide of 512 amino acids which contains a conserved catalytic site motif, and a proximal heme-ligand signature motif of CATs. The time-course expressions of AwSOD and AwCAT in hepatopancreas were measured by quantitative real-time PCR. Expressions of AwSOD and AwCAT showed a significant up-regulation in groups at a low concentration treatment of PBDE-47, a biphasic pattern in groups with a high concentration treatment. Administration of PBDE-209 could result in an up-regulation of AwSOD and AwCAT expressions with time- and dose-dependent matter. These results indicate that up-regulations of AwSOD and AwCAT expression of hepatopancreas of freshwater bivalve A. woodiana contribute to eliminate oxidative stress derived from PBDE-47 and -209 treated.


Asunto(s)
Anodonta/efectos de los fármacos , Catalasa/genética , Éteres Difenilos Halogenados/toxicidad , Superóxido Dismutasa-1/genética , Secuencia de Aminoácidos , Animales , Anodonta/genética , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Agua Dulce , Expresión Génica/efectos de los fármacos , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Regulación hacia Arriba
12.
J Appl Toxicol ; 36(5): 659-68, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26206603

RESUMEN

Decabromodiphenyl ether (BDE-209) has been detected in human serum, semen, placenta, cord blood and milk worldwide. However, little is known regarding the potential effects on the early human embryonic development of BDE-209. In this study, human embryonic stem cell lines FY-hES-10 and FY-hES-26 were used to evaluate the potential effects and explore the toxification mechanisms using low-level BDE-209 exposure. Our data showed that BDE-209 exposure (1, 10 and 100 nM) reduced the expression of pluripotent genes such as OCT4, SOX2 and NANOG and induced human embryonic stem cells (hESCs) apoptosis. The downregulation of BIRC5/BCL2 and upregulation of BAX were related to apoptosis of hESCs induced by BDE-209 exposure. A mechanism study showed that OCT4 down-regulation accompanied by OCT4 promoter hypermethylation and increasing miR-145/miR-335 levels, OCT4 inhibitors. Moreover, BDE-209 could increase the generation of intracellular reactive oxygen species (ROS) and decrease SOD2 expression. The ROS increase and OCT4 downregulation after BDE-209 exposure could be reversed partly by antioxidant N-acetylcysteine supplement. These findings showed that BDE-209 exposure could decrease pluripotent genes expression via epigenetic regulation and induce apoptosis through ROS generation in human embryonic stem cells in vitro.


Asunto(s)
Éteres Difenilos Halogenados/toxicidad , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Epigénesis Genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Survivin , Regulación hacia Arriba , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
13.
Toxicol Mech Methods ; 25(1): 34-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25299509

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are used as flame retardants, and they have been detected in human blood, adipose tissue and breast milk, a consequence of their physicochemical and bioaccumulative properties, as well as their high environmental persistence. Many studies report liver toxicity related to exposure to PBDEs. In the present study, we investigated the toxicity of BDE-47 and BDE-99 at concentrations ranging from 0.1 to 50 µM in isolated rat liver mitochondria. We evaluated how incubation of a mitochondrial suspension with the PBDEs affected the mitochondrial inner membrane, membrane potential, oxygen consumption, calcium release, mitochondrial swelling, and ATP levels to find out whether the tested compound interfered with the bioenergetics of this organelle. Both PBDEs were toxic to mitochondria: BDE-47 and BDE-99 concentrations equal to or higher than 25 and 50 µM, respectively, modified all the parameters used to assess mitochondrial bioenergetics, which culminated in ATP depletion. These effects stemmed from the ability of both PBDEs to cause Membrane Permeability Transition (MPT) in mitochondria, which impaired mitochondrial bioenergetics. In particular, BDE-47, which has fewer bromine atoms in the molecule, can easily overcome biological membranes what would be responsible for the major negative effects exerted by this congener when compared with BDE-99.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Ratas Wistar , Factores de Tiempo
14.
Environ Toxicol Chem ; 33(12): 2810-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25210006

RESUMEN

Juvenile red-eared sliders (Trachemys scripta elegans) and snapping turtles (Chelydra serpentina) were fed food dosed with brominated diphenyl ether-47 (BDE-47) or BDE-99 for 6 mo beginning approximately 9 mo posthatch. During the exposure period, measurements of growth, bioenergetics, and behavior were made; thyroid function and accumulation were quantified postexposure. Whole-body concentrations of both congeners were lower in red-eared sliders compared with snapping turtles after 6 mo of exposure. Snapping turtles receiving BDE-47 had significantly elevated standard metabolic rates after 3 mo and 4 mo of exposure (p = 0.014 and p = 0.019, respectively). When exposed to BDE-99, red-eared sliders were slower to right themselves after having been inverted (p < 0.0001). Total glandular thyroxine concentrations were significantly reduced in red-eared sliders exposed to BDE-47 (mean control, 8080 ng/g; mean BDE-47, 5126 ng/g; p = 0.034). These results demonstrate that dietary exposure to BDE-47 and BDE-99 can elicit a suite of responses in 2 species of turtles, but that the red-eared slider appears to be a more sensitive species to the measured end points.


Asunto(s)
Conducta Animal/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Éteres Difenilos Halogenados/toxicidad , Glándula Tiroides/efectos de los fármacos , Tortugas/metabolismo , Animales , Exposición a Riesgos Ambientales , Cromatografía de Gases y Espectrometría de Masas , Éteres Difenilos Halogenados/análisis , Glándula Tiroides/metabolismo , Tiroxina/metabolismo
15.
Environ Toxicol Pharmacol ; 37(3): 1243-55, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24835553

RESUMEN

17ß-Hydroxysteroid dehydrogenases (17ß-HSDs) are multifunctional enzymes involved in the metabolism of steroids, fatty acids, retinoids and bile acid. In this study, two novel types of 17ß-HSDs (named as MgHsd17b10 and MgHsd17b12) were cloned from Mytilus galloprovincialis by using rapid amplification of cDNA ends (RACE) approaches. Sequence analysis showed that MgHsd17b10 and MgHsd17b12 encoded a polypeptide of 259 and 325 amino acids, respectively. Phylogenetic analysis revealed that MgHsd17b10 and MgHsd17b12 were evolutionarily clustered with other invertebrate 17ß-HSD type 10 and 17ß-HSD type 12 homologues. The MgHsd17b10 and MgHsd17b12 transcripts could be detected in all examined tissues with higher expression levels in digestive glands and gonad. After exposed to endocrine disrupting chemicals (Bisphenol A or 2,2',4,4'-tetrabromodiphenyl ether), the expression of MgHsd17b10 and MgHsd17b12 transcripts was both down-regulated in digestive glands. These findings suggest that MgHsd17b10 and MgHsd17b12 perhaps play an important role in the endocrine regulation of M. galloprovincialis.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/genética , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Éteres Difenilos Halogenados/toxicidad , Mytilus/genética , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Secuencia de Bases , ADN Complementario/genética , Regulación de la Expresión Génica/efectos de los fármacos , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
16.
Environ Sci Pollut Res Int ; 21(3): 1924-1935, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24006159

RESUMEN

The present study examined the effects of oral exposure of 4,4'-dibromodiphenyl ether (BDE-15), 4,4'-dichlorodiphenyl ether (CDE-15), and 4,4'-dihydroxydiphenyl ether (HODE-15) on hepatic oxidative stress (OS) and metal status in Institute of Cancer Research (ICR) male mice. Furthermore, the role of vitamin E in ameliorating potential OS caused by BDE-15, CDE-15, and HODE-15 was investigated. Three groups of mice were exposed to 1.20 mg/kg(body weight)/day of each of the three toxicants for 28 days. Results showed that none of the three toxicants altered growth rates of mice, but significantly increased (P<0.05) relative liver weights and decreased relative kidney weights. Pathological changes including cell swelling, inflammation and vacuolization, and hepatocellular hypertrophy in livers were observed. Significant decreases (P<0.05 and P<0.01) in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activity, and glutathione (GSH) levels, together with increases in malondialdehyde (MDA) content were recorded in all toxicant-treated groups. Hepatic copper levels increased in all toxicant-treated groups. Hepatic zinc levels decreased in the liver of BDE-15-treated mice, whereas they increased in the livers of CDE-15-treated and HODE-15-treated mice. In conclusion, daily exposure to the three toxicants perturbed metal homeostasis and increased OS in mouse liver. Experimental data indicated the hepatic oxidative toxicity of the three toxicants followed the order BDE-15

Asunto(s)
Antioxidantes/metabolismo , Éteres Difenilos Halogenados/toxicidad , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Vitamina E/metabolismo , Animales , Antioxidantes/farmacología , Catalasa/metabolismo , Glutatión/metabolismo , Éteres Difenilos Halogenados/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Malondialdehído/metabolismo , Metales/metabolismo , Metales/toxicidad , Ratones , Ratones Endogámicos ICR , Superóxido Dismutasa/metabolismo , Vitamina E/farmacología
17.
Toxicology ; 312: 48-55, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23916505

RESUMEN

Recent studies have identified exposure to polybrominated diphenyl ethers (PBDEs) as a risk factor for deficits in cognitive functioning seen in children as well as adults. Additionally, similar alterations in learning and memory have also been observed in animal models of PBDE exposure. However, given these findings, the molecular alterations that may underlie these neurobehavioral endpoints have not been identified. As the frontal cortex is involved in modulating several cognitive functions, the purpose of our study was to investigate the possible changes to the GABAergic and glutamatergic neurotransmitter systems located in the frontal cortex following exposure to the PBDE mixture, DE-71. Primary cultured neurons isolated from the frontal cortex showed a dose-dependent reduction in neurons as well as neurite outgrowth. Furthermore, evaluation of DE-71 neurotoxicity in the frontal cortex using an in vivo model showed alterations to specific proteins involved in mediating GABA and glutamate neurotransmission, including GAD67, vGAT, vGlut, and GABA(A) 2α receptor subunit. Interestingly, these alterations appeared to be preferential for the GABA and glutamate systems located in the frontal cortex. These findings identify specific targets of PBDE neurotoxicity and provide a possible molecular mechanism for PBDE-mediated neurobehavioral deficits that arise from the frontal cortex.


Asunto(s)
Retardadores de Llama/toxicidad , Lóbulo Frontal/efectos de los fármacos , Éteres Difenilos Halogenados/toxicidad , Secuencia de Aminoácidos , Animales , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Ácido gamma-Aminobutírico/metabolismo
18.
Water Res ; 47(2): 650-60, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23182666

RESUMEN

We investigated the suitability of an active biomonitoring approach, using the ecologically relevant species Gammarus fossarum, to assess trends of bioavailable contamination in continental waters. Gammarids were translocated into cages at 27 sites, in the Rhône-Alpes region (France) during early autumn 2009. Study sites were chosen to represent different physico-chemical characteristics and various anthropic pressures. Biotic factors such as sex, weight and food availability were controlled in order to provide robust and comparable results. After one week of exposure, concentrations of 11 metals/metalloids (Cd, Pb, Hg, Ni, Zn, Cr, Co, Cu, As, Se and Ag) and 38 hydrophobic organic substances including polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyles (PCBs), pentabromodiphenylethers (PBDEs) and organochlorine pesticides, were measured in gammarids. All metals except Ag, and 33 organic substances among 38 were quantified in G. fossarum, showing that this species is relevant for chemical biomonitoring. The control of biotic factors allowed a robust and direct inter-site comparison of the bioavailable contamination levels. Overall, our results show the interest and robustness of the proposed methodological approach for assessing trends of bioavailable contamination, notably for metals and hydrophobic organic contaminants, in continental waters. Furthermore, we built threshold values of bioavailable contamination in gammarids, above which measured concentrations are expected to reveal a bioavailable contamination at the sampling site. Two ways to define such values were investigated, a statistical approach and a model fit. Threshold values were determined for almost all the substances investigated in this study and similar values were generally derived from the two approaches. Then, levels of contaminants measured in G. fossarum at the 27 study sites were compared to the threshold values obtained using the model fit. These threshold values could serve as a basis for further implementation of quality grids to rank sites according to the extent of the bioavailable contamination, with regard to the applied methodology.


Asunto(s)
Agroquímicos/farmacocinética , Anfípodos/efectos de los fármacos , Monitoreo del Ambiente/métodos , Agua Dulce/química , Metales Pesados/farmacocinética , Modelos Biológicos , Contaminantes Químicos del Agua/farmacocinética , Agroquímicos/química , Agroquímicos/toxicidad , Anfípodos/química , Anfípodos/crecimiento & desarrollo , Anfípodos/metabolismo , Animales , Arsénico/química , Arsénico/farmacocinética , Arsénico/toxicidad , Disponibilidad Biológica , Fenómenos Químicos , Francia , Éteres Difenilos Halogenados/química , Éteres Difenilos Halogenados/farmacocinética , Éteres Difenilos Halogenados/toxicidad , Hidrocarburos Clorados/química , Hidrocarburos Clorados/farmacocinética , Hidrocarburos Clorados/toxicidad , Masculino , Metales Pesados/química , Metales Pesados/toxicidad , Plaguicidas/química , Plaguicidas/farmacocinética , Plaguicidas/toxicidad , Bifenilos Policlorados/química , Bifenilos Policlorados/farmacocinética , Bifenilos Policlorados/toxicidad , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Hidrocarburos Policíclicos Aromáticos/toxicidad , Ríos , Selenio/química , Selenio/farmacocinética , Selenio/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
19.
Artículo en Inglés | MEDLINE | ID: mdl-22127959

RESUMEN

Validation of the 15-day intact adult male rat screening assay (IAMRSA), an endocrine activity screen, was extended beyond the 28 substances evaluated to date. Two independent laboratories evaluated specificity using allyl alcohol (AA), a putative negative control, and DE-71 (technical grade pentabromodiphenyl ether) for comparison with previous pubertal assays that demonstrated thyroid effects. Male rats (15/group) were gavaged daily with AA (0, 10, 30, or 40 mg/kg/day) or DE-71 (0, 3, 30, or 60 mg/kg/day) for 15 days. Body and organ weights and serum hormone concentrations were measured, and a limited histopathological assessment was conducted. AA results were considered negative at doses that did not exceed the maximum tolerated dose (MTD); effects reported were dose-related decreases in weight gain, increased liver weights and, although the pattern varied across studies, alterations in some androgen-sensitive endpoints in the high-dose where the maximum tolerated dose was exceeded. In the DE-71 studies, dose-dependent increases in liver weights (consistent with hepatic enzyme induction), decreases in tri-iodothyronine and thyroxine, concomitant thyroid stimulating hormone increases were observed and one laboratory reported histopathological thyroid changes in mid- and high-dose groups, and the other increased thyroid weights. For DE-71, the IAMRSA was comparable in sensitivity to the pubertal assays. Overall, the specificity and sensitivity of the IAMRSA for deployment in an endocrine screening battery are supported. However, differentiating primary endocrine-mediated effects from secondary effects caused by systemic toxicity will be challenging, emphasizing the need to utilize a battery of assays and a weight of evidence approach when evaluating the potential endocrine activity of chemicals.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antitiroideos/toxicidad , Éteres Difenilos Halogenados/toxicidad , Laboratorios , Propanoles/toxicidad , Animales , Peso Corporal/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Conducta Alimentaria/efectos de los fármacos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
20.
J Toxicol Environ Health B Crit Rev ; 14(5-7): 495-536, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21790323

RESUMEN

Organohalogen compounds such as polychlorinated biphenyls (PCB) and polybrominated diphenyl ethers (PBDE) are global environmental pollutants and highly persistent, bioaccumulative chemicals that produce adverse effects in humans and wildlife. Because of the widespread use of these organohalogens in household items and consumer products, indoor contamination is a significant source of human exposure, especially for children. One significant concern with regard to health effects associated with exposure to organohalogens is endocrine disruption. Toxicological studies on organohalogen pollutants primarily focused on sex steroid and thyroid hormone actions, and findings have largely shaped the way one envisions their disruptive effects occurring. Organohalogens exert additional effects on other systems including other complex endocrine systems that may be disregulated at various levels of organization. Over the last 20 years evidence has mounted in favor of a critical role of nitric oxide (NO) in numerous functions ranging from neuroendocrine functions to learning and memory. With its participation in multiple systems and action at several levels of integration, NO signaling has a pervasive influence on nervous and endocrine functions. Like blockers of NO synthesis, PCBs and PBDEs produce multifaceted effects on physiological systems. Based on this unique set of converging information it is proposed that organohalogen actions occur, in part, by hijacking processes associated with this ubiquitous bioactive molecule. The current review examines the emerging evidence for NO involvement in selected organohalogen actions and includes recent progress from our laboratory that adds to our current understanding of the actions of organohalogens within hypothalamic neuroendocrine circuits. The thyroid, vasopressin, and reproductive systems as well as processes associated with long-term potentiation were selected as sample targets of organohalogens that rely on regulation by NO. Information is provided about other toxicants with demonstrated interference of NO signaling. Our focus on the convergence between NO system and organohalogen toxicity offers a novel approach to understanding endocrine and neuroendocrine disruption that is particularly problematic for developing organisms. This new working model is proposed as a way to encourage future study in elucidating common mechanisms of action that are selected with a better operational understanding of the systems affected.


Asunto(s)
Disruptores Endocrinos/toxicidad , Éteres Difenilos Halogenados/toxicidad , Óxido Nítrico/metabolismo , Bifenilos Policlorados/toxicidad , Animales , Contaminantes Ambientales/toxicidad , Humanos , Hidrocarburos Halogenados/toxicidad , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Sistemas Neurosecretores/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA