Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
J Neuroendocrinol ; 36(4): e13377, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38418229

RESUMEN

Neurogenesis continues throughout adulthood in the subventricular zone, hippocampal subgranular zone, and the hypothalamic median eminence (ME) and the adjacent medio-basal hypothalamus. The ME is one of the circumventricular organs (CVO), which are specialized brain areas characterized by an incomplete blood-brain barrier and, thus, are involved in mediating communication between the central nervous system and the periphery. Additional CVOs include the organum vasculosum laminae terminalis (OVLT) and the subfornical organs (SFO). Previous studies have demonstrated that the ME contains neural stem cells (NSCs) capable of generating new neurons and glia in the adult brain. However, it remains unclear whether the OVLT and SFO also contain proliferating cells, the identity of these cells, and their ability to differentiate into mature neurons. Here we show that glial and mural subtypes exhibit NSC characteristics, expressing the endogenous mitotic maker Ki67, and incorporating the exogenous mitotic marker BrdU in the OVLT and SFO of adult rats. Glial cells constitutively proliferating in the SFO comprise NG2 glia, while in the OVLT, both NG2 glia and tanycytes appear to constitute the NSC pool. Furthermore, pericytes, which are mural cells associated with capillaries, also contribute to the pool of cells constitutively proliferating in the OVLT and SFO of adult rats. In addition to these glial and mural cells, a fraction of NSCs containing proliferation markers Ki67 and BrdU also expresses the early postmitotic neuronal marker doublecortin, suggesting that these CVOs comprise newborn neurons. Notably, these neurons can differentiate and express the mature neuronal marker NeuN. These findings establish the sensory CVOs OVLT and SFO as additional neurogenic niches, where the generation of new neurons and glia persists in the adult brain.


Asunto(s)
Organum Vasculosum , Órgano Subfornical , Ratas , Animales , Bromodesoxiuridina , Antígeno Ki-67 , Hipotálamo , Neurogénesis/fisiología , Proliferación Celular
2.
Clin Endocrinol (Oxf) ; 97(1): 72-80, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35419873

RESUMEN

OBJECTIVE: We recently reported cases of adipsic hypernatremia caused by autoantibodies against the subfornical organ in patients with hypothalamic-pituitary lesions. This study aimed to clarify the clinical features of newly identified patients with adipsic hypernatremia whose sera displayed immunoreactivity to the mouse subfornical organ. DESIGN: Observational cohort study of patients diagnosed with adipsic hypernatremia in Japan, United States, and Europe. METHODS: The study included 22 patients with adipsic hypernatremia but without overt structural changes in the hypothalamic-pituitary region and congenital disease. Antibody response to the mouse subfornical organ was determined using immunohistochemistry. The clinical characteristics were compared between the patients with positive and negative antibody responses. RESULTS: Antibody response to the mouse subfornical organ was detected in the sera of 16 patients (72.7%, female/male ratio, 1:1, 12 pediatric and 4 adult patients). The prolactin levels at the time of diagnosis were significantly higher in patients with positive subfornical organ (SFO) immunoreactivity than in those with negative SFO immunoreactivity (58.9 ± 33.5 vs. 22.9 ± 13.9 ng/ml, p < .05). Hypothalamic disorders were found in 37.5% of the patients with positive SFO immunoreactivity. Moreover, six patients were diagnosed with rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation/neural tumor syndrome after the diagnosis of adipsic hypernatremia. Plasma renin activity levels were significantly higher in patients with serum immunoreactivity to the Nax channel. CONCLUSIONS: The patients with serum immunoreactivity to the SFO had higher prolactin levels and hypothalamic disorders compared to those without the immunoreactivity. The clinical characteristics of patients with serum immunoreactivity to the subfornical organ included higher prolactin levels and hypothalamic disorders, which were frequently associated with central hypothyroidism and the presence of retroperitoneal tumors.


Asunto(s)
Hipernatremia , Enfermedades Hipotalámicas , Órgano Subfornical , Animales , Niño , Femenino , Humanos , Hipotálamo , Inmunidad , Masculino , Ratones , Prolactina , Órgano Subfornical/fisiología
3.
Handb Clin Neurol ; 180: 203-215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225930

RESUMEN

In this chapter, we review the extensive literature describing the roles of the subfornical organ (SFO), the organum vasculosum of the terminalis (OVLT), and the median preoptic nucleus (MnPO), comprising the lamina terminalis, in cardiovascular regulation and the control of fluid balance. We present this information in the context of both historical and technological developments which can effectively be overlaid upon each other. We describe intrinsic anatomy and connectivity and then discuss early work which described how circulating angiotensin II acts at the SFO to stimulate drinking and increase blood pressure. Extensive studies using direct administration and lesion approaches to highlight the roles of all regions of the lamina terminalis are then discussed. At the cellular level we describe c-Fos and electrophysiological work, which has highlighted an extensive group of circulating hormones which appear to influence the activity of specific neurons in the SFO, OVLT, and MnPO. We highlight optogenetic studies that have begun to unravel the complexities of circuitries underlying physiological outcomes, especially those related to different components of drinking. Finally, we describe the somewhat limited human literature supporting conclusions that these structures play similar and potentially important roles in human physiology.


Asunto(s)
Organum Vasculosum , Órgano Subfornical , Humanos , Hipotálamo , Área Preóptica , Equilibrio Hidroelectrolítico
4.
Sci Rep ; 10(1): 2826, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071335

RESUMEN

Tanycyte is a subtype of ependymal cells which extend long radial processes to brain parenchyma. The present study showed that tanycyte-like ependymal cells in the organum vasculosum of the lamina terminalis, subfornical organ and central canal (CC) expressed neural stem cell (NSC) marker nestin, glial fibrillar acidic protein and sex determining region Y. Proliferation of these tanycyte-like ependymal cells was promoted by continuous intracerebroventricular infusion of fibroblast growth factor-2 and epidermal growth factor. Tanycytes-like ependymal cells in the CC are able to form self-renewing neurospheres and give rise mostly to new astrocytes and oligodendrocytes. Collagenase-induced small medullary hemorrhage increased proliferation of tanycyte-like ependymal cells in the CC. These results demonstrate that these tanycyte-like ependymal cells of the adult mouse brain are NSCs and suggest that they serve as a source for providing new neuronal lineage cells upon brain damage in the medulla oblongata.


Asunto(s)
Órganos Circunventriculares/metabolismo , Células Ependimogliales/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Linaje de la Célula/genética , Proliferación Celular/genética , Órganos Circunventriculares/crecimiento & desarrollo , Epéndimo/crecimiento & desarrollo , Epéndimo/metabolismo , Células Ependimogliales/citología , Factor de Crecimiento Epidérmico/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/genética , Humanos , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Ratones , Nestina/genética , Células-Madre Neurales/citología , Organum Vasculosum/crecimiento & desarrollo , Organum Vasculosum/metabolismo , Órgano Subfornical/crecimiento & desarrollo , Órgano Subfornical/metabolismo
5.
Neuron ; 105(6): 1094-1111.e10, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31955944

RESUMEN

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. We imaged mouse InsCtx neurons during two physiological deficiency states: hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis but not changes in behavior. Accordingly, while artificial induction of hunger or thirst in sated mice via activation of specific hypothalamic neurons (AgRP or SFOGLUT) restored cue-evoked food- or water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger or thirst, food or water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger or thirst, food or water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory signals of current physiological state with hypothalamus-gated amygdala inputs that signal upcoming ingestion of food or water to compute a prediction of future physiological state.


Asunto(s)
Corteza Cerebral/fisiología , Hambre/fisiología , Interocepción/fisiología , Sed/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Señales (Psicología) , Femenino , Hipotálamo/fisiología , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología , Imagen Óptica , Optogenética , Órgano Subfornical/fisiología
6.
FASEB J ; 34(1): 974-987, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914667

RESUMEN

Drinking behavior and osmotic regulatory mechanisms exhibit clear daily variation which is necessary for achieving the homeostatic osmolality. In mammals, the master clock in the brain's suprachiasmatic nuclei has long been held as the main driver of circadian (24 h) rhythms in physiology and behavior. However, rhythmic clock gene expression in other brain sites raises the possibility of local circadian control of neural activity and function. The subfornical organ (SFO) and the organum vasculosum laminae terminalis (OVLT) are two sensory circumventricular organs (sCVOs) that play key roles in the central control of thirst and water homeostasis, but the extent to which they are subject to intrinsic circadian control remains undefined. Using a combination of ex vivo bioluminescence and in vivo gene expression, we report for the first time that the SFO contains an unexpectedly robust autonomous clock with unusual spatiotemporal characteristics in core and noncore clock gene expression. Furthermore, putative single-cell oscillators in the SFO and OVLT are strongly rhythmic and require action potential-dependent communication to maintain synchrony. Our results reveal that these thirst-controlling sCVOs possess intrinsic circadian timekeeping properties and raise the possibility that these contribute to daily regulation of drinking behavior.


Asunto(s)
Ritmo Circadiano , Hipotálamo/fisiología , Prosencéfalo/fisiología , Animales , Órganos Circunventriculares/fisiología , Colforsina/farmacología , Regulación de la Expresión Génica , Homeostasis , Luminiscencia , Masculino , Ratones , Neuronas/fisiología , Oscilometría , Órgano Subfornical/fisiología , Tetrodotoxina/farmacología
7.
Physiol Rep ; 8(1): e14338, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31925945

RESUMEN

We previously showed that 2 weeks of a severe food restricted (sFR) diet (40% of the caloric intake of the control (CT) diet) up-regulated the circulating renin angiotensin (Ang) system (RAS) in female Fischer rats, most likely as a result of the fall in plasma volume. In this study, we investigated the role of the central RAS in the mean arterial pressure (MAP) and heart rate (HR) dysregulation associated with sFR. Although sFR reduced basal mean MAP and HR, the magnitude of the pressor response to intracerebroventricular (icv) microinjection of Ang-[1-8] was not affected; however, HR was 57 ± 13 bpm lower 26 min after Ang-[1-8] microinjection in the sFR rats and a similar response was observed after losartan was microinjected. The major catabolic pathway of Ang-[1-8] in the hypothalamus was via Ang-[1-7]; however, no differences were detected in the rate of Ang-[1-8] synthesis or degradation between CT and sFR animals. While sFR had no effect on the AT1 R binding in the subfornical organ (SFO), the organum vasculosum laminae terminalis (OVLT) and median preoptic nucleus (MnPO) of the paraventricular anteroventral third ventricle, ligand binding increased 1.4-fold in the paraventricular nucleus (PVN) of the hypothalamus. These findings suggest that sFR stimulates the central RAS by increasing AT1 R expression in the PVN as a compensatory response to the reduction in basal MAP and HR. These findings have implications for people experiencing a period of sFR since an activated central RAS could increase their risk of disorders involving over activation of the RAS including renal and cardiovascular diseases.


Asunto(s)
Angiotensina I/metabolismo , Presión Arterial/fisiología , Restricción Calórica , Frecuencia Cardíaca/fisiología , Hipotálamo/metabolismo , Fragmentos de Péptidos/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina/fisiología , Inanición/metabolismo , Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Presión Arterial/efectos de los fármacos , Autorradiografía , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Inyecciones Intraventriculares , Losartán/farmacología , Organum Vasculosum/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Fragmentos de Péptidos/farmacología , Peptidil-Dipeptidasa A/metabolismo , Área Preóptica/metabolismo , Ratas , Ratas Endogámicas F344 , Sistema Renina-Angiotensina/efectos de los fármacos , Órgano Subfornical/metabolismo
8.
J Anat ; 232(4): 540-553, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29280147

RESUMEN

The circumventricular organs (CVOs) are specialised neuroepithelial structures found in the midline of the brain, grouped around the third and fourth ventricles. They mediate the communication between the brain and the periphery by performing sensory and secretory roles, facilitated by increased vascularisation and the absence of a blood-brain barrier. Surprisingly little is known about the origins of the CVOs (both developmental and evolutionary), but their functional and organisational similarities raise the question of the extent of their relationship. Here, I review our current knowledge of the embryonic development of the seven major CVOs (area postrema, median eminence, neurohypophysis, organum vasculosum of the lamina terminalis, pineal organ, subcommissural organ, subfornical organ) in embryos of different vertebrate species. Although there are conspicuous similarities between subsets of CVOs, no unifying feature characteristic of their development has been identified. Cross-species comparisons suggest that CVOs also display a high degree of evolutionary flexibility. Thus, the term 'CVO' is merely a functional definition, and features shared by multiple CVOs may be the result of homoplasy rather than ontogenetic or phylogenetic relationships.


Asunto(s)
Barrera Hematoencefálica/embriología , Órganos Circunventriculares/embriología , Animales , Área Postrema/anatomía & histología , Área Postrema/fisiología , Órganos Circunventriculares/anatomía & histología , Humanos , Hipotálamo/embriología , Filogenia , Glándula Pineal/anatomía & histología , Glándula Pineal/embriología , Neurohipófisis/embriología , Órgano Subcomisural/anatomía & histología , Órgano Subcomisural/fisiología , Órgano Subfornical/embriología
9.
Nat Neurosci ; 20(2): 230-241, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27991901

RESUMEN

Body fluid conditions are continuously monitored in the brain to regulate thirst and salt-appetite sensations. Angiotensin II drives both thirst and salt appetite; however, the neural mechanisms underlying selective water- and/or salt-intake behaviors remain unknown. Using optogenetics, we show that thirst and salt appetite are driven by distinct groups of angiotensin II receptor type 1a-positive excitatory neurons in the subfornical organ. Neurons projecting to the organum vasculosum lamina terminalis control water intake, while those projecting to the ventral part of the bed nucleus of the stria terminalis control salt intake. Thirst-driving neurons are suppressed under sodium-depleted conditions through cholecystokinin-mediated activation of GABAergic neurons. In contrast, the salt appetite-driving neurons were suppressed under dehydrated conditions through activation of another population of GABAergic neurons by Nax signals. These distinct mechanisms in the subfornical organ may underlie the selective intakes of water and/or salt and may contribute to body fluid homeostasis.


Asunto(s)
Apetito , Ingestión de Líquidos/fisiología , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Sensación/efectos de los fármacos , Cloruro de Sodio/farmacología , Sed/fisiología , Animales , Apetito/efectos de los fármacos , Encéfalo/efectos de los fármacos , Ingestión de Líquidos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Órgano Subfornical/metabolismo
10.
Redox Biol ; 11: 82-90, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27889641

RESUMEN

Angiotensin II (AngII) elicits the production of superoxide (O2•-) from mitochondria in numerous cell types within peripheral organs and in the brain suggesting a role for mitochondrial-produced O2•- in the pathogenesis of hypertension. However, it remains unclear if mitochondrial O2•- is causal in the development of AngII-induced hypertension, or if mitochondrial O2•- in the absence of elevated AngII is sufficient to increase blood pressure. Further, the tissue specific (i.e. central versus peripheral) redox regulation of AngII hypertension remains elusive. Herein, we hypothesized that increased mitochondrial O2•- in the absence of pro-hypertensive stimuli, such as AngII, elevates baseline systemic mean arterial pressure (MAP), and that AngII-mediated hypertension is exacerbated in animals with increased mitochondrial O2•- levels. To address this hypothesis, we generated novel inducible knock-down mouse models of manganese superoxide dismutase (MnSOD), the O2•- scavenging antioxidant enzyme specifically localized to mitochondria, targeted to either the brain subfornical organ (SFO) or peripheral tissues. Contrary to our hypothesis, knock-down of MnSOD either in the SFO or in peripheral tissues was not sufficient to alter baseline systemic MAP. Interestingly, when mice were challenged with chronic, peripheral infusion of AngII, only the MnSOD knock-down confined to the SFO, and not the periphery, demonstrated an increased sensitization and potentiated hypertension. In complementary experiments, over-expressing MnSOD in the SFO significantly decreased blood pressure in response to chronic AngII. Overall, these studies indicate that mitochondrial O2•- in the brain SFO works in concert with other AngII-dependent factors to drive an increase in MAP, as elevated mitochondrial O2•- alone, either in the SFO or peripheral tissues, failed to raise baseline blood pressure.


Asunto(s)
Angiotensina II/metabolismo , Hipertensión/genética , Superóxido Dismutasa/genética , Superóxidos/metabolismo , Angiotensina II/genética , Animales , Antioxidantes/metabolismo , Presión Sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Especificidad de Órganos , Oxidación-Reducción , Órgano Subfornical/metabolismo , Órgano Subfornical/patología
11.
J Endocrinol ; 231(2): 167-180, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27613338

RESUMEN

Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.


Asunto(s)
Deshidratación/fisiopatología , Estradiol/uso terapéutico , Estrógenos/uso terapéutico , Neuronas/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Supraóptico/efectos de los fármacos , Desequilibrio Hidroelectrolítico/prevención & control , Animales , Arginina Vasopresina/agonistas , Arginina Vasopresina/análisis , Arginina Vasopresina/metabolismo , Conducta Animal/efectos de los fármacos , Deshidratación/terapia , Ingestión de Líquidos/efectos de los fármacos , Terapia de Reemplazo de Estrógeno , Femenino , Fluidoterapia , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ovariectomía/efectos adversos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/patología , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Área Preóptica/patología , Ratas Wistar , Órgano Subfornical/efectos de los fármacos , Órgano Subfornical/metabolismo , Órgano Subfornical/patología , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/patología , Núcleo Vestibular Lateral/efectos de los fármacos , Núcleo Vestibular Lateral/metabolismo , Núcleo Vestibular Lateral/patología , Desequilibrio Hidroelectrolítico/sangre , Desequilibrio Hidroelectrolítico/etiología , Desequilibrio Hidroelectrolítico/fisiopatología
12.
Nature ; 537(7622): 680-684, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27487211

RESUMEN

Thirst motivates animals to drink in order to maintain fluid balance. Thirst has conventionally been viewed as a homeostatic response to changes in blood volume or tonicity. However, most drinking behaviour is regulated too rapidly to be controlled by blood composition directly, and instead seems to anticipate homeostatic imbalances before they arise. How this is achieved remains unknown. Here we reveal an unexpected role for the subfornical organ (SFO) in the anticipatory regulation of thirst in mice. By monitoring deep-brain calcium dynamics, we show that thirst-promoting SFO neurons respond to inputs from the oral cavity during eating and drinking and then integrate these inputs with information about the composition of the blood. This integration allows SFO neurons to predict how ongoing food and water consumption will alter fluid balance in the future and then to adjust behaviour pre-emptively. Complementary optogenetic manipulations show that this anticipatory modulation is necessary for drinking in several contexts. These findings provide a neural mechanism to explain longstanding behavioural observations, including the prevalence of drinking during meals, the rapid satiation of thirst, and the fact that oral cooling is thirst-quenching.


Asunto(s)
Ingestión de Líquidos/fisiología , Ingestión de Alimentos/fisiología , Homeostasis , Neuronas/fisiología , Órgano Subfornical/citología , Sed/fisiología , Equilibrio Hidroelectrolítico/fisiología , Animales , Sangre , Calcio/metabolismo , Retroalimentación Fisiológica , Femenino , Masculino , Ratones , Boca/inervación , Boca/fisiología , Vías Nerviosas , Optogenética , Órgano Subfornical/fisiología , Factores de Tiempo
13.
Neuroscience ; 329: 112-21, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27163380

RESUMEN

Activation of angiotensinergic pathways by central aldosterone (Aldo)-mineralocorticoid receptor (MR) pathway plays a critical role in angiotensin II (Ang II)-induced hypertension. The subfornical organ (SFO) contains both MR and angiotensin II type 1 receptors (AT1R) and can relay the signals of circulating Ang II to downstream nuclei such as the paraventricular nucleus (PVN), supraoptic nucleus (SON) and rostral ventrolateral medulla (RVLM). In Wistar rats, subcutaneous (sc) infusion of Ang II at 500ng/min/kg for 1 or 2weeks increased reactive oxygen species (ROS) as measured by dihydroethidium (DHE) staining in a nucleus - specific pattern. Intra-SFO infusion of AAV-MR- or AT1aR-siRNA prevented the Ang II-induced increase in AT1R mRNA expression in the SFO and decreased MR mRNA. Both MR- and AT1aR-siRNA prevented increases in ROS in the PVN and RVLM. MR- but not AT1aR-siRNA in the SFO prevented the Ang II-induced ROS in the SON. Both MR- and AT1aR-siRNA in the SFO prevented most of the Ang II-induced hypertension as assessed by telemetry. These results indicate that Aldo-MR signaling in the SFO is needed for the activation of Ang II-AT1R-ROS signaling from the SFO to the PVN and RVLM. Activation of Aldo-MR signaling from the SFO to the SON may enhance AT1R dependent activation of pre-sympathetic neurons in the PVN.


Asunto(s)
Angiotensina II/metabolismo , Hipotálamo/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Mineralocorticoides/metabolismo , Órgano Subfornical/metabolismo , Aldosterona/metabolismo , Angiotensina II/administración & dosificación , Animales , Presión Sanguínea/fisiología , Dependovirus , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Frecuencia Cardíaca/fisiología , Hipertensión/metabolismo , Masculino , Bulbo Raquídeo/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Distribución Aleatoria , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptores de Mineralocorticoides/genética
14.
Oxid Med Cell Longev ; 2016: 3959087, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26881025

RESUMEN

Angiotensin II (AngII) can access the brain via circumventricular organs (CVOs), including the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT), to modulate blood pressure. Previous studies have demonstrated a role for both the SFO and OVLT in the hypertensive response to chronic AngII, yet it is unclear which intracellular signaling pathways are involved in this response. Overexpression of copper/zinc superoxide dismutase (CuZnSOD) in the SFO has been shown to attenuate the chronic hypertensive effects of AngII. Presently, we tested the hypothesis that elevated levels of superoxide (O2 (∙-)) in the OVLT contribute to the hypertensive effects of AngII. To facilitate overexpression of superoxide dismutase, adenoviral vectors encoding human CuZnSOD or control adenovirus (AdEmpty) were injected directly into the OVLT of rats. Following 3 days of control saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days. Blood pressure increased 33 ± 8 mmHg in AdEmpty rats (n = 6), while rats overexpressing CuZnSOD (n = 8) in the OVLT demonstrated a blood pressure increase of only 18 ± 5 mmHg after 10 days of AngII infusion. These results support the hypothesis that overproduction of O2 (∙-) in the OVLT plays an important role in the development of chronic AngII-dependent hypertension.


Asunto(s)
Angiotensina II/metabolismo , Hipertensión/enzimología , Hipotálamo/enzimología , Organum Vasculosum/enzimología , Órgano Subfornical/enzimología , Superóxido Dismutasa-1/metabolismo , Adenoviridae/metabolismo , Animales , Presión Sanguínea , Hemodinámica , Humanos , Hipertensión/inducido químicamente , Masculino , Microscopía Confocal , Microscopía Fluorescente , Oxígeno/metabolismo , Ratas , Transducción de Señal
15.
Neurosci Lett ; 566: 36-41, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24561092

RESUMEN

In the central nervous system the extracellular matrix has important roles, e.g. supporting the extracellular space, controlling the tissue hydration, binding soluble factors and influencing their diffusion. The distribution of the extracellular matrix components in the brain has been mapped but data on the circumventricular organs (CVOs) is not available yet. The CVOs lack the blood-brain barrier and have relatively large perivascular spaces. The present study investigates tenascin-R and the lecticans: aggrecan, brevican, neurocan, and versican in the median eminence, the area postrema, the vascular organ of the lamina terminalis, the subfornical organ, the pineal body and the subcommissural organ of the rat applying immunohistochemical methods, and lectin histochemistry, using Wisteria floribunda agglutinin (WFA). The extracellular matrix components were found intensely expressed in the CVOs with two exceptions: aggrecan immunoreactivity visualized only neurons in the arcuate nucleus, and the subcommissural organ was not labeled with either WFA, or lecticans, or tenascin-R. The different labelings usually overlapped each other. The distribution of the extracellular matrix components marked the territories of the CVOs. Considering these we suppose that the extracellular matrix is essential in the maintenance of CVO functions providing the large extracellular space which is required for diffusion and other processes important in their chemosensitive and neurosecretory activities. The decrease of extracellular matrix beyond the border of the organs may contribute to the control of the diffusion of molecules from the CVOs into the surrounding brain substance.


Asunto(s)
Área Postrema/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hipotálamo/metabolismo , Eminencia Media/metabolismo , Sistemas Neurosecretores/metabolismo , Agrecanos/metabolismo , Animales , Brevicano/metabolismo , Femenino , Masculino , Neurocano/metabolismo , Glándula Pineal/metabolismo , Ratas Wistar , Órgano Subcomisural/metabolismo , Órgano Subfornical/metabolismo , Tenascina/metabolismo , Versicanos/metabolismo
16.
Cell Biochem Funct ; 32(1): 51-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23629811

RESUMEN

The blood-brain barrier (BBB) is a barrier that prevents free access of blood-derived substances to the brain through the tight junctions and maintains a specialized brain environment. Circumventricular organs (CVOs) lack the typical BBB. The fenestrated vasculature of the sensory CVOs, including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO) and area postrema (AP), allows parenchyma cells to sense a variety of blood-derived information, including osmotic ones. In the present study, we utilized immunohistochemistry to examine changes in the expression of NG2 and platelet-derived growth factor receptor beta (PDGFRB) in the OVLT, SFO and AP of adult mice during chronic osmotic stimulation. The expression of NG2 and PDGFRB was remarkably prominent in pericytes, although these angiogenesis-associated proteins are highly expressed at pericytes of developing immature vasculature. The chronic salt loading prominently increased the expression of NG2 in the OVLT and SFO and that of PDGFRB in the OVLT, SFO and AP. The vascular permeability of low-molecular-mass tracer fluorescein isothiocyanate was increased significantly by chronic salt loading in the OVLT and SFO but not AP. In conclusion, the present study demonstrates changes in pericyte expression of NG2 and PDGFRB and vascular permeability in the sensory CVOs by chronic osmotic stimulation, indicating active participation of the vascular system in osmotic homeostasis.


Asunto(s)
Antígenos/metabolismo , Área Postrema/metabolismo , Permeabilidad Capilar , Hipotálamo/metabolismo , Pericitos/metabolismo , Proteoglicanos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Órgano Subfornical/metabolismo , Animales , Antígenos/genética , Área Postrema/irrigación sanguínea , Área Postrema/citología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Hipotálamo/irrigación sanguínea , Hipotálamo/citología , Ratones , Ratones Endogámicos C57BL , Osmorregulación , Pericitos/citología , Proteoglicanos/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Cloruro de Sodio/farmacología , Órgano Subfornical/irrigación sanguínea , Órgano Subfornical/citología
17.
Brain Behav Immun ; 38: 13-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24291211

RESUMEN

Calorie restriction (CR) has been shown to increase longevity and elicit many health promoting benefits including delaying immunosenescence and attenuating neurodegeneration in animal models of Alzheimer's disease and Parkinson's disease. CR also suppresses microglial activation following cortical injury and aging. We previously demonstrated that CR attenuates lipopolysaccharide (LPS)-induced fever and shifts hypothalamic signaling pathways to an anti-inflammatory bias; however, the effects of CR on LPS-induced microglial activation remain largely unexplored. The current study investigated regional changes in LPS-induced microglial activation in mice exposed to 50% CR for 28days. Immunohistochemistry was conducted to examine changes in ionized calcium-binding adapter molecule-1 (Iba1), a protein constitutively expressed by microglia, in a total of 27 brain regions involved in immunity, stress, and/or thermoregulation. Exposure to CR attenuated LPS-induced fever, and LPS-induced microglial activation in a subset of regions: the arcuate nucleus (ARC) and ventromedial nucleus of the hypothalamus (VMH) and the subfornical organ (SFO). Microglial activation in the ARC and VMH was positively correlated with body temperature. These data suggest that CR exerts effects on regionally specific populations of microglia; particularly, in appetite-sensing regions of the hypothalamus, and/or regions lacking a complete blood brain barrier, possibly through altered pro- and anti-inflammatory signaling in these regions.


Asunto(s)
Restricción Calórica , Hipotálamo/metabolismo , Microglía/metabolismo , Órgano Subfornical/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Hipotálamo/efectos de los fármacos , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Órgano Subfornical/efectos de los fármacos
18.
Am J Physiol Regul Integr Comp Physiol ; 305(10): R1141-52, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24049115

RESUMEN

The sensory circumventricular organs (CVOs) are specialized collections of neurons and glia that lie in the midline of the third and fourth ventricles of the brain, lack a blood-brain barrier, and function as chemosensors, sampling both the cerebrospinal fluid and plasma. These structures, which include the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), are sensitive to changes in sodium concentration but the cellular mechanisms involved remain unknown. Epithelial sodium channel (ENaC)-expressing neurons of the CVOs may be involved in this process. Here we demonstrate with immunohistochemical and in situ hybridization methods that ENaC-expressing neurons are densely concentrated in the sensory CVOs. These neurons become c-Fos activated, a marker for neuronal activity, after various manipulations of peripheral levels of sodium including systemic injections with hypertonic saline, dietary sodium deprivation, and sodium repletion after prolonged sodium deprivation. The increases seen c-Fos activity in the CVOs were correlated with parallel increases in plasma sodium levels. Since ENaCs play a central role in sodium reabsorption in kidney and other epithelia, we present a hypothesis here suggesting that these channels may also serve a related function in the CVOs. ENaCs could be a significant factor in modulating CVO neuronal activity by controlling the magnitude of sodium permeability in neurons. Hence, some of the same circulating hormones controlling ENaC expression in kidney, such as angiotensin II and atrial natriuretic peptide, may coordinate ENaC expression in sensory CVO neurons and could potentially orchestrate sodium appetite, osmoregulation, and vasomotor sympathetic drive.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Hipotálamo/citología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sodio/farmacología , Órgano Subfornical/citología , Animales , Área Postrema/citología , Canales Epiteliales de Sodio/genética , Femenino , Inmunohistoquímica , Hibridación in Situ , Masculino , Proteínas Proto-Oncogénicas c-fos/genética , Ratas
19.
Glia ; 61(6): 957-71, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23468425

RESUMEN

The circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP) sense a variety of blood-borne molecules because they lack typical blood-brain barrier. Though a few signaling pathways are known, it is not known how endogenous ligands for transient receptor potential vanilloid receptor 1 ion channel (TRPV1) are sensed in the CVOs. In this study, we aimed to examine whether or not astrocytic TRPV1 senses directly blood-borne molecules in the OVLT, SFO, and AP of adult mice. The reverse transcription-polymerase chain reaction and Western analysis revealed the expression of TRPV1 in the CVOs. Confocal microscopic immunohistochemistry further showed that TRPV1 was localized prominently at thick cellular processes of astrocytes rather than fine cellular processes and cell bodies. TRPV1-expressing cellular processes of astrocytes surrounded the vasculature to constitute dense networks. The expression of TRPV1 was also found at neuronal dendrites but not somata in the CVOs. The intravenous administration of a TRPV1 agonist resiniferatoxin (RTX) prominently induced Fos expression at astrocytes in the OVLT, SFO, and AP and neurons in adjacent related nuclei of the median preoptic nuclei (MnPO) and nucleus of the solitary tract (Sol) of wild-type but not TRPV1-knockout mice. The intracerebroventricular infusion of RTX induced Fos expression at both astrocytes and neurons in the CVOs, MnPO, and Sol. Thus, this study demonstrates that blood-borne molecules are sensed directly by astrocytic TRPV1 of the CVOs in adult mammalians.


Asunto(s)
Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Encéfalo/irrigación sanguínea , Hipotálamo/irrigación sanguínea , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Órgano Subfornical/irrigación sanguínea , Órgano Subfornical/metabolismo , Canales Catiónicos TRPV/genética
20.
Regul Pept ; 179(1-3): 15-22, 2012 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-22846885

RESUMEN

Many investigations have been devoted to determining the role of angiotensin II (ANG II) and aldosterone (ALD) in sodium-depletion-induced sodium appetite, but few were focused on the mechanisms mediating the salty taste changes accompanied with sodium depletion. To further elucidate the mechanism of renin-angiotensin-aldosterone system (RAAS) action in mediating sodium intake behavior and accompanied salty taste changes, the present study examined the salty taste function changes accompanied with sodium depletion induced by furosemide (Furo) combined with different doses of angiotensin converting enzyme (ACE) inhibitor, captopril (Cap). Both the peripheral and central RAAS activity and the nuclei Fos immunoreactivity (Fos-ir) expression in the forebrain area were investigated. Results showed that sodium depletion induced by Furo+low-Cap increased taste preference for hypertonic NaCl solution with amplified brain action of ANG II but without peripheral action, while Furosemide combined with a high dose of captopril can partially inhibit the formation of brain ANG II, with parallel decreased effects on salty taste changes. And the resulting elevating forebrain ANG II may activate a variety of brain areas including SFO, PVN, SON and OVLT in sodium depleted rats injected with Furo+low-Cap, which underlines salty taste function and sodium intake behavioral changes. Neurons in SFO and OVLT may be activated mainly by brain ANG II, while PVN and SON activation may not be completely ANG II dependent. These findings suggested that forebrain derived ANG II may play a critical role in the salty taste function changes accompanied with acute sodium depletion.


Asunto(s)
Angiotensina II/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Sodio/metabolismo , Núcleo Supraóptico/efectos de los fármacos , Gusto/efectos de los fármacos , Aldosterona/metabolismo , Angiotensina I/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Apetito/efectos de los fármacos , Conducta Apetitiva/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Captopril/administración & dosificación , Captopril/farmacología , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos , Furosemida/farmacología , Inmunohistoquímica , Masculino , Núcleo Hipotalámico Paraventricular/patología , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Sistema Renina-Angiotensina , Cloruro de Sodio Dietético/administración & dosificación , Cloruro de Sodio Dietético/farmacología , Órgano Subfornical/efectos de los fármacos , Órgano Subfornical/patología , Núcleo Supraóptico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA